Note on imaginary quadratic fields satisfying the Hilbert-Speiser condition at a prime p

By Humio ICHIMURA

Department of Mathematical Sciences, Faculty of Science, Ibaraki University Bunkyo 2–1–1, Mito, Ibaraki 310–8512, Japan

(Communicated by Heisuke HIRONAKA, M.J.A., June 12, 2007)

Abstract: Let p be a prime number. A number field F satisfies the condition (H_p) when any tame cyclic extention N/F of degree p has a normal integral basis. For the case p = 2, it is shown by Mann that F satisfies (H_2) only when $h_F = 1$ where h_F is the class number of F. We prove that if an imaginary quadratic field F satisfies (H_p) for some p, then $h_F = 1$.

Key words: Hilbert-Speiser number field; imaginary quadratic field.

1. Introduction. Let *p* be a prime number. We say that a number field F satisfies the condition (H_p) when any tame cyclic extension N/F of degree p has a normal integral basis (NIB for short). The classical theorem of Hilbert and Speiser asserts that the rationals Q satisfy (H_p) for all prime numbers p. On the other hand, Greither et al. [3] recently proved that a number field $F \neq Q$ does not satisfy (H_p) for infinitely many primes p. Thus, it is of interest to determine which number field F satisfies (H_p) or not. In [1, 5, 8], all imaginary quadratic fields F satisfying (H_p) were determined for p = 2, 3, 5, 7 and 11. It turned out that all of them satisfy $h_F = 1$. Here, h_F is the class number of F. One naturally asks "can there exist a number field F satisfying (H_p) but $h_F > 1$?" For the case p = 2, it is already shown by Mann [9] that if a number field F satisfies (H_2) , then $h_F = 1$. More precisely, it is known that F satisfies (H_2) if and only if the ray class group of F defined modulo 2 is trivial [4]. In this note, we give an answer to the above question when F is an imaginary quadratic field.

Theorem. Let p be a prime number. If an imaginary quadratic field F satisfies the condition (H_p) , then $h_F = 1$.

It is a well known result of Stark [12] that there are exactly nine imaginary quadratic fields F with $h_F = 1$. Hence, we obtain the following

Corollary. For each prime number p, there exist at most nine imaginary quadratic fields satisfying (H_p) .

2. Proof of Theorem. In view of the result

of Mann cited in Section 1, it suffices to deal with the case where p is odd. Let p be a *fixed* odd prime number, and $G = \mathbf{F}_p^{\times}$ the multiplicative group of the finite field \mathbf{F}_p of p elements. For an integer $i \in \mathbf{Z}$ with $p \nmid i$, let σ_i be the corresponding element of $G = \mathbf{F}_p^{\times}$. Let S_G be the classical Stickelberger ideal of the group ring $\mathbf{Z}[G]$. Let

$$\theta = \sum_{i=1}^{p-1} \frac{i}{p} \sigma_i^{-1} \in \boldsymbol{Q}[G]$$

be the Stickelberger element of conductor p. It is known that the ideal S_G is generated over Z by Stickelberger elements

(1)
$$\theta_r = (r - \sigma_r)\theta = \sum_{i=1}^{p-1} \left[\frac{ri}{p}\right] \sigma_i^{-1} \in \mathbb{Z}[G]$$

for all $r \in \mathbb{Z}$ with $p \nmid r$ (cf. Washington [13, Lemma 6.9]). Here, for a real number x, [x] is the largest integer $\leq x$.

Let F be a number field, and put $K = F(\zeta_p)$ where ζ_p is a primitive *p*-th root of unity. When F/\mathbf{Q} is unramified at p, the Galois group $\operatorname{Gal}(K/F)$ is identified with G through the Galois action on ζ_p . Hence, the group ring $\mathbf{Z}[G]$ acts on the ideal class group Cl_K of K. The following is a consequence of a theorem of McCulloh [10].

Lemma 1 ([6, Theorems 5, 6], [8, Propositions 3, 4]). Assume that F/\mathbf{Q} is unramified at p. Then, F satisfies the condition (H_p) only when S_G annihilates the class group Cl_K and the natural map $Cl_F \rightarrow Cl_K$ is trivial.

In all what follows, let F be an imaginary quadratic field, and put $K = F(\zeta_p)$. The follow-

²⁰⁰⁰ Mathematics Subject Classification. 11R33, 11R11.

ing lemma is an immediate consequence of [3, Theorem 1]. See also Replogle [11, Theorem 4.3(c)] for a "quantitative" version.

Lemma 2 ([8, Lemma 1]). When F/Q is ramified at p, F satisfies (H_p) if and only if p = 3 and $F = Q(\sqrt{-3})$.

In view of this lemma, we may and shall assume that F/\mathbf{Q} is unramified at p in the following. Hence, $\operatorname{Gal}(K/F)$ is identified with $G = \mathbf{F}_p^{\times}$. We fix a generator ρ of the Galois group G.

Lemma 3 ([8, Lemma 3]). If F satisfies (H_p) , then the exponent of Cl_F divides 2.

Lemma 4 ([8, Lemma 5]). Let p be a prime number with $p \equiv 3 \mod 4$, and let $E = F(\sqrt{-p})$. If F satisfies the condition (H_p) , then the natural map $Cl_F \rightarrow Cl_E$ is trivial.

Proof. We give a proof for a comparison with the case $p \equiv 1 \mod 4$ (Lemma 7). Let \mathfrak{A} be an ideal of F. By Lemma 1, $\mathfrak{AO}_K = \alpha \mathcal{O}_K$ for some $\alpha \in K^{\times}$. Hence, it follows that $\mathfrak{A}^{[K:E]}\mathcal{O}_E = \beta \mathcal{O}_E$ with $\beta = N_{K/E}\alpha$. This implies that \mathfrak{AO}_E is principal since [K:E] = (p-1)/2 is odd and \mathfrak{A}^2 is principal by Lemma 3.

Lemma 5. Under the setting of Lemma 4, assume that $p \ge 7$ and that there exists a prime number q satisfying

$$q \mid h_E, \quad q \nmid h_k, \quad q \nmid (p-1)/2$$

where $k = \mathbf{Q}(\sqrt{-p})$. Then, F does not satisfy (H_p) .

Proof. Let $E = F(\sqrt{-p}) = F \cdot k$, and let $H = \operatorname{Gal}(K/E) \subseteq G$. Assuming the existence of a prime number q satisfying the conditions, let c be a class in Cl_E of order q. As $q \nmid (p-1)/2$, the lift \overline{c} of c to K is of order q. Assume that F satisfies (H_p) . Then, by Lemma 4, the class $c^{1+\rho} = 1$ in Cl_E , and hence

(2)
$$\bar{c}^{\rho} = \bar{c}^{-1}$$

where ρ is a generator of G. For an integer $r \in \mathbb{Z}$, write $\theta_r = x + y\rho$ for some $x, y \in \mathbb{Z}[H]$. Letting $\iota_H : \mathbb{Z}[H] \to \mathbb{Z}$ be the augmentation, put $a = \iota_H(x)$ and $b = \iota_H(y)$. As F satisfies (H_p) , it follows from Lemma 1 that $\bar{c}^{\theta_r} = 1$. Hence, we see from (2) that

$$(3) \qquad \qquad \bar{c}^{a-b} = 1.$$

Let ψ be the quadratic character of conductor p. Then, we see from (1) that

$$a - b = \psi(\theta_r) = (r - \psi(r)) \cdot B_{1,\psi}$$

where $B_{1,\psi}$ is the first Bernoulli number. As $p \equiv 3 \mod 4$, ψ is an odd character and $h_k = -B_{1,\psi}$

by the analytic class number formula ([13, Theorem 4.17]). Hence, it follows that

$$a - b = (\psi(r) - r) \cdot h_k$$

Noting that $p \geq 7$, we see that the ideal of Z generated by $\psi(r) - r$ for all r with $p \nmid r$ equals Z. Therefore, the relation (3) implies $\bar{c}^{h_k} = 1$. This is impossible as \bar{c} is of order q and $q \nmid h_k$.

Proof of Theorem for the case $p \equiv$ **3 mod 4.** We use the same notation as in Lemma 5. Let *F* be an imaginary quadratic field satisfying (H_p) . We may as well assume that $p \ge 7$ since the assertion holds when p = 3. Assume that $h_F \ne 1$. Then, $2 \mid h_F$ by Lemma 3. As E/F is totally ramified at *p*, it follows that $2 \mid h_E$. It is well known that h_k is odd by genus theory. Hence, the prime q = 2satisfies the conditions in Lemma 5. Therefore, *F* does not satisfy (H_p) , a contradiction.

In all what follows, let p be a prime number with $p \equiv 1 \mod 4$, and let 2^{e+1} be the highest power of 2 dividing p-1. Let k be the intermediate field of $Q(\zeta_p)/Q$ with $[k : Q] = 2^e$. Clearly, k is totally real. Let $F = Q(\sqrt{-d})$ be an imaginary quadratic field unramified at p, where d is a square free positive integer with $p \nmid d$. Put

$$E = F \cdot k \subseteq K$$
 and $H = \operatorname{Gal}(K/E) \subseteq G$.

To show Theorem, we may as well assume that $d \neq 1, 3$.

Lemma 6. Under the above setting, we have $\mathcal{O}_E^{\times} = \mathcal{O}_k^{\times}$.

Proof. Let W be the group of roots of unity in E. As $d \neq 1, 3$, we have $W = \{\pm 1\}$. Hence, it suffices to show that the unit index Q_E of E equals 1. Let J be the complex conjugation of E. As is well known, $\epsilon/\epsilon^J \in W$ for any unit $\epsilon \in \mathcal{O}_E^{\times}$ (cf. [13, Lemma 1.6]). Consider the homomorphism

$$\varphi: \mathcal{O}_E^{\times} \to W = W/W^2, \ \epsilon \to \epsilon/\epsilon^J$$

It is known that $Q_E = 1$ if and only if the map φ is trivial (cf. [13, page 40]). Assume to the contrary that φ is nontrivial. Then, $\epsilon^J = -\epsilon$ for some $\epsilon \in \mathcal{O}_E^{\times}$. It follows from Kummer theory that $\epsilon = x\sqrt{-d}$ for some $x \in k^{\times}$ since $E = k(\sqrt{-d})$ and k is the maximal real subfield of E. However, this is impossible since $p \nmid d$ and a prime q dividing d is unramified at k. \Box

Lemma 7. Under the above setting, F satisfies (H_p) only when the natural map $Cl_F \rightarrow Cl_E$ is trivial. *Proof.* Assume that F satisfies (H_p) . By Lemma 1, any ideal class $c \in Cl_K$ satisfies $c^{\theta_2} = 1$. As the norm map $Cl_K \to Cl_E$ is surjective, any ideal class $c \in Cl_E$ satisfies the same relation. We write

(4)
$$\theta_2 = \sum_{i=0}^{2^e - 1} x_i \rho^i$$

for some $x_i \in \mathbb{Z}[H]$ where ρ is a generator of G. Let $a_i = \iota_H(x_i)$ where ι_H is the augmentation of $\mathbb{Z}[H]$. Then, it follows that

(5)
$$c^A = 1$$
 with $A = \sum_{i=0}^{2^e - 1} a_i \rho^i$

for any $c \in Cl_E$. By (1), we easily see that

(6)
$$\sum_{i=0}^{2^{e}-1} a_{i} = \sum_{j=0}^{p-1} \left[\frac{2j}{p}\right] = \frac{p-1}{2}.$$

Let ψ be a character of G of order 2^e . Then, ψ is even, and any nontrivial character of G of order dividing 2^e is of the form ψ^j with $1 \leq j \leq 2^e - 1$. These characters are regarded as those of the Galois group $\operatorname{Gal}(E/F) = G/H$. Let $\zeta = \psi(\rho)$ be a primitive 2^e -th root of unity. We see from (1) that

$$\psi^{j}(\theta_{2}) = (2 - \psi^{j}(2)) \cdot B_{1,\psi^{-j}}$$

where $B_{1,\psi^{-j}}$ is the first Bernoulli number. However, as ψ^j is nontrivial and even, we have $B_{1,\psi^{-j}} = 0$. Hence, it follows from (4) that

(7)
$$\psi^{j}(\theta_{2}) = \sum_{i=0}^{2^{e}-1} a_{i}\zeta^{ij} = 0 \text{ for } 1 \le j \le 2^{e} - 1.$$

From (6) and (7), we obtain

$$a_i = \frac{p-1}{2^{e+1}} \quad (0 \le i \le 2^e - 1)$$

Therefore, by (5), any ideal class $c \in Cl_E$ satisfies the relation

$$(c^{1+\rho+\dots+\rho^{2^e-1}})^{a_0} = 1.$$

By Lemma 3, the order of the class $N_{E/F}(c) \in Cl_F$ divides 2. Therefore, as a_0 is odd, it follows that

$$c^{1+\rho+\dots+\rho^{2^e-1}} = 1$$

for all $c \in Cl_E$. As the norm map $Cl_E \to Cl_F$ is surjective, this implies that the map $Cl_F \to Cl_E$ is trivial. **Proof of Theorem for the case** $p \equiv 1 \mod 4$. Assume that *F* satisfies the condition (H_p) . Let -D be the discriminant of *F*. Let us show the following

Claim. For a prime number q dividing D, we have $D/q = a^2$ for some integer $a \in \mathbb{Z}$.

Actually: Let q be a prime number dividing D, and let \mathfrak{Q} be the prime ideal of F over q; $q\mathcal{O}_F = \mathfrak{Q}^2$. By Lemma 7, $\mathfrak{Q}\mathcal{O}_E = x\mathcal{O}_E$ for some $x \in E^{\times}$. Because of Lemma 6, this implies that $q = \epsilon x^2$ for some unit $\epsilon \in \mathcal{O}_k^{\times}$. Noting that $E = k(\sqrt{-D})$, we see from Kummer theory that $q = \epsilon y^2$ or $q = \epsilon(-D)y^2$ for some $y \in k^{\times}$. However, the first equality can not hold since k/\mathbf{Q} is unramified outside p and $p \nmid D$. It follows from the second equality that D/q is a square in \mathbf{Q}^{\times} by the same reason.

By the Claim, there are only two possibilities for -D according to whether D is even or odd:

(i)
$$-D = -8$$
, (ii) $-D = -\lambda$.

Here, λ is a prime number with $\lambda \equiv 3 \mod 4$. When -D = -8, we have $h_F = 1$. When $-D = -\lambda$, it is known that h_F is odd by genus theory. This implies $h_F = 1$ since h_F is a 2-power by Lemma 3.

Remark 1. It is known that if a prime number $p \ge 7$ remains prime in an imaginary quadratic field F, then F does not satisfy (H_p) ([8, Lemma 2], [11, Theorem 4.3(a)]). Therefore, we see from Theorem that there exist infinitely many primes p for which no imaginary quadratic field satisfies (H_p) .

Remark 2. An assertion similar to Lemma 1 holds also when F/Q is ramified at p ([6, Theorem 5]).

Remark 3. Let us say that a number field F satisfies the condition $(H_{p,\infty})$ when any tame abelian extension N/F of exponent p has a NIB. When p = 2, it is known that F satisfies $(H_{2,\infty})$ if and only if the ray class group $Cl_F(4)$ of F defined modulo 4 is trivial ([4, Proposition 3]). As $Cl_F(4)$ is trivial only when F is totally real ([7, Lemma 4]), there exists no imaginary quadratic field satisfying $(H_{2,\infty})$.

For an odd prime number p and an imaginary quadratic field F with $(p, F) \neq (3, \mathbf{Q}(\sqrt{-3}))$, we can show that F satisfies $(H_{p,\infty})$ if and only if it satisfies (H_p) , as follows. Let F be an imaginary quadratic field satisfying (H_p) , and let N/F be a tame abelian extension of exponent p. By Theorem and $(p, F) \neq (3, \mathbf{Q}(\sqrt{-3}))$, p does not divide $h_F \times |\mathcal{O}_F^{\times}|$. Then, we see from class field theory No. 6]

91

that N is contained in the composite $M = \prod_i N_i$ of some tame cyclic extensions N_i/F of degree p whose conductors are prime ideals of F different from each other. As $h_F = 1$, the extensions N_i/F are linearly disjoint. Therefore, since each N_i/F has a NIB, the composite M has a NIB by a classical theorem on rings of integers (cf. [2, (2.13)]). Hence, N/F has a NIB as $N \subseteq M$. The author thanks to an anonymous mathematician for pointing out this argument. Formerly, the author showed this assertion for the case p = 3 using complicated Kummer theory argument.

Let p = 3 and $F = \mathbf{Q}(\sqrt{-3})$. We can show that F does not satisfy $(H_{3,\infty})$. Actually, let \mathfrak{G} be a copy of two cyclic groups of order p. Let $Cl(\mathcal{O}_F[\mathfrak{G}])$ be the locally free class group of the group ring $\mathcal{O}_F[\mathfrak{G}]$, and $R(\mathcal{O}_F[\mathfrak{G}])$ the subset of the locally free classes $[\mathcal{O}_N]$ for all tame \mathfrak{G} -Galois extensions N/F. Using the main theorem in [10], we can show that $R(\mathcal{O}_F[\mathfrak{G}]) \neq \{0\}$ by some hard hand-calculation. This implies that there exists a tame \mathfrak{G} -Galois extension N/F without NIB.

Acknowledgements. The author was partially supported by Grant-in-Aid for Scientific Research (C), No. 19540005, Japan Society for the Promotion of Science.

References

- J. E. Carter, Normal integral bases in quadratic and cyclic cubic extensions of quadratic fields, Arch. Math. (Basel) 81 (2003), no. 3, 266–271: Erratum, *ibid.*, 83 (2004), no.6, vi-vii.
- [2] A. Fröhlich and M. J. Taylor, Algebraic num-

ber theory, Cambridge Univ. Press, Cambridge, 1993.

- [3] C. Greither *et al.*, Swan modules and Hilbert-Speiser number fields, J. Number Theory **79** (1999), no. 1, 164–173.
- H. Ichimura, Note on the ring of integers of a Kummer extension of prime degree. V, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 6, 76–79.
- [5] H. Ichimura, Normal integral bases and ray class groups, Acta Arith. 114 (2004), no. 1, 71–85.
- [6] H. Ichimura, Normal integral bases and ray class groups. II, Yokohama Math. J. 53 (2006), no. 1, 75–81.
- H. Ichimura and F. Kawamoto, Normal integral basis and ray class group modulo 4, Proc. Japan Acad. Ser. A Math. Sci. **79** (2003), no. 9, 139– 141.
- [8] H. Ichimura and H. Sumida-Takahashi, Imaginary quadratic fields satisfying the Hilbert-Speiser type condition for a small prime p, Acta Arith., 127 (2007), 179–191.
- [9] H. B. Mann, On integral bases, Proc. Amer. Math. Soc. 9 (1958), 167–172.
- [10] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), no. 1, 102–134.
- [11] D. R. Replogle, Kernel groups and nontrivial Galois module structure of imaginary quadratic fields, Rocky Mountain J. Math. 34 (2004), no. 1, 309–320.
- [12] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27.
- [13] L. C. Washington, Introduction to cyclotomic fields, Second edition, Springer, New York, 1997.