Note on imaginary quadratic fields satisfying the Hilbert-Speiser condition at a prime p

By Humio Ichimura
Department of Mathematical Sciences, Faculty of Science, Ibaraki University
Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan

(Communicated by Heisuke Hironaka, m.J.a., June 12, 2007)

Abstract

Let p be a prime number. A number field F satisfies the condition $\left(H_{p}\right)$ when any tame cyclic extention N / F of degree p has a normal integral basis. For the case $p=2$, it is shown by Mann that F satisfies $\left(H_{2}\right)$ only when $h_{F}=1$ where h_{F} is the class number of F. We prove that if an imaginary quadratic field F satisfies $\left(H_{p}\right)$ for some p, then $h_{F}=1$.

Key words: Hilbert-Speiser number field; imaginary quadratic field.

1. Introduction. Let p be a prime number. We say that a number field F satisfies the condition $\left(H_{p}\right)$ when any tame cyclic extension N / F of degree p has a normal integral basis (NIB for short). The classical theorem of Hilbert and Speiser asserts that the rationals \boldsymbol{Q} satisfy $\left(H_{p}\right)$ for all prime numbers p. On the other hand, Greither et al. [3] recently proved that a number field $F \neq \boldsymbol{Q}$ does not satisfy $\left(H_{p}\right)$ for infinitely many primes p. Thus, it is of interest to determine which number field F satisfies $\left(H_{p}\right)$ or not. In $[1,5,8]$, all imaginary quadratic fields F satisfying $\left(H_{p}\right)$ were determined for $p=2,3,5,7$ and 11 . It turned out that all of them satisfy $h_{F}=1$. Here, h_{F} is the class number of F. One naturally asks "can there exist a number field F satisfying $\left(H_{p}\right)$ but $h_{F}>1$?" For the case $p=2$, it is already shown by Mann [9] that if a number field F satisfies $\left(H_{2}\right)$, then $h_{F}=1$. More precisely, it is known that F satisfies $\left(H_{2}\right)$ if and only if the ray class group of F defined modulo 2 is trivial [4]. In this note, we give an answer to the above question when F is an imaginary quadratic field.

Theorem. Let p be a prime number. If an imaginary quadratic field F satisfies the condition $\left(H_{p}\right)$, then $h_{F}=1$.

It is a well known result of Stark [12] that there are exactly nine imaginary quadratic fields F with $h_{F}=1$. Hence, we obtain the following

Corollary. For each prime number p, there exist at most nine imaginary quadratic fields satisfying $\left(H_{p}\right)$.
2. Proof of Theorem. In view of the result

[^0]of Mann cited in Section 1, it suffices to deal with the case where p is odd. Let p be a fixed odd prime number, and $G=\boldsymbol{F}_{p}^{\times}$the multiplicative group of the finite field \boldsymbol{F}_{p} of p elements. For an integer $i \in \boldsymbol{Z}$ with $p \nmid i$, let σ_{i} be the corresponding element of $G=\boldsymbol{F}_{p}^{\times}$. Let \mathcal{S}_{G} be the classical Stickelberger ideal of the group ring $\boldsymbol{Z}[G]$. Let
$$
\theta=\sum_{i=1}^{p-1} \frac{i}{p} \sigma_{i}^{-1} \in \boldsymbol{Q}[G]
$$
be the Stickelberger element of conductor p. It is known that the ideal \mathcal{S}_{G} is generated over \boldsymbol{Z} by Stickelberger elements
\[

$$
\begin{equation*}
\theta_{r}=\left(r-\sigma_{r}\right) \theta=\sum_{i=1}^{p-1}\left[\frac{r i}{p}\right] \sigma_{i}^{-1} \in \boldsymbol{Z}[G] \tag{1}
\end{equation*}
$$

\]

for all $r \in \boldsymbol{Z}$ with $p \nmid r$ (cf. Washington [13, Lemma 6.9]). Here, for a real number $x,[x]$ is the largest integer $\leq x$.

Let F be a number field, and put $K=F\left(\zeta_{p}\right)$ where ζ_{p} is a primitive p-th root of unity. When F / \boldsymbol{Q} is unramified at p, the Galois group $\operatorname{Gal}(K / F)$ is identified with G through the Galois action on ζ_{p}. Hence, the group ring $\boldsymbol{Z}[G]$ acts on the ideal class group $C l_{K}$ of K. The following is a consequence of a theorem of McCulloh [10].

Lemma 1 ($[6$, Theorems 5, 6], [8, Propositions $3,4]$). Assume that F / \boldsymbol{Q} is unramified at p. Then, F satisfies the condition $\left(H_{p}\right)$ only when \mathcal{S}_{G} annihilates the class group $C l_{K}$ and the natural map $C l_{F} \rightarrow C l_{K}$ is trivial.

In all what follows, let F be an imaginary quadratic field, and put $K=F\left(\zeta_{p}\right)$. The follow-
ing lemma is an immediate consequence of $[3$, Theorem 1]. See also Replogle [11, Theorem 4.3(c)] for a "quantitative" version.

Lemma 2 ([8, Lemma 1]). When F / \boldsymbol{Q} is ramified at p, F satisfies $\left(H_{p}\right)$ if and only if $p=3$ and $F=\boldsymbol{Q}(\sqrt{-3})$.

In view of this lemma, we may and shall assume that F / \boldsymbol{Q} is unramified at p in the following. Hence, $\operatorname{Gal}(K / F)$ is identified with $G=\boldsymbol{F}_{p}^{\times}$. We fix a generator ρ of the Galois group G.

Lemma 3 ([8, Lemma 3]). If F satisfies $\left(H_{p}\right)$, then the exponent of $C l_{F}$ divides 2 .

Lemma 4 ([8, Lemma 5]). Let p be a prime number with $p \equiv 3 \bmod 4$, and let $E=F(\sqrt{-p})$. If F satisfies the condition $\left(H_{p}\right)$, then the natural map $C l_{F} \rightarrow C l_{E}$ is trivial.

Proof. We give a proof for a comparison with the case $p \equiv 1 \bmod 4$ (Lemma 7). Let \mathfrak{A} be an ideal of F. By Lemma $1, \mathfrak{A} \mathcal{O}_{K}=\alpha \mathcal{O}_{K}$ for some $\alpha \in K^{\times}$. Hence, it follows that $\mathfrak{A}^{[K: E]} \mathcal{O}_{E}=\beta \mathcal{O}_{E}$ with $\beta=N_{K / E} \alpha$. This implies that $\mathfrak{A} \mathcal{O}_{E}$ is principal since $[K: E]=(p-1) / 2$ is odd and \mathfrak{A}^{2} is principal by Lemma 3.

Lemma 5. Under the setting of Lemma 4, assume that $p \geq 7$ and that there exists a prime number q satisfying

$$
q \mid h_{E}, \quad q \nmid h_{k}, \quad q \nmid(p-1) / 2
$$

where $k=\boldsymbol{Q}(\sqrt{-p})$. Then, F does not satisfy $\left(H_{p}\right)$.
Proof. Let $E=F(\sqrt{-p})=F \cdot k$, and let $H=$ $\operatorname{Gal}(K / E) \subseteq G$. Assuming the existence of a prime number q satisfying the conditions, let c be a class in $C l_{E}$ of order q. As $q \nmid(p-1) / 2$, the lift \bar{c} of c to K is of order q. Assume that F satisfies $\left(H_{p}\right)$. Then, by Lemma 4, the class $c^{1+\rho}=1$ in $C l_{E}$, and hence

$$
\begin{equation*}
\bar{c}^{\rho}=\bar{c}^{-1} \tag{2}
\end{equation*}
$$

where ρ is a generator of G. For an integer $r \in \boldsymbol{Z}$, write $\theta_{r}=x+y \rho$ for some $x, y \in \boldsymbol{Z}[H]$. Letting $\iota_{H}: \boldsymbol{Z}[H] \rightarrow \boldsymbol{Z}$ be the augmentation, put $a=\iota_{H}(x)$ and $b=\iota_{H}(y)$. As F satisfies $\left(H_{p}\right)$, it follows from Lemma 1 that $\bar{c}^{\theta_{r}}=1$. Hence, we see from (2) that

$$
\begin{equation*}
\bar{c}^{a-b}=1 . \tag{3}
\end{equation*}
$$

Let ψ be the quadratic character of conductor p. Then, we see from (1) that

$$
a-b=\psi\left(\theta_{r}\right)=(r-\psi(r)) \cdot B_{1, \psi}
$$

where $B_{1, \psi}$ is the first Bernoulli number. As $p \equiv$ $3 \bmod 4, \psi$ is an odd character and $h_{k}=-B_{1, \psi}$
by the analytic class number formula ([13, Theorem 4.17]). Hence, it follows that

$$
a-b=(\psi(r)-r) \cdot h_{k}
$$

Noting that $p \geq 7$, we see that the ideal of \boldsymbol{Z} generated by $\psi(r)-r$ for all r with $p \nmid r$ equals \boldsymbol{Z}. Therefore, the relation (3) implies $\bar{c}^{h_{k}}=1$. This is impossible as \bar{c} is of order q and $q \nmid h_{k}$.

Proof of Theorem for the case $p \equiv$ $3 \bmod 4$. We use the same notation as in Lemma 5. Let F be an imaginary quadratic field satisfying $\left(H_{p}\right)$. We may as well assume that $p \geq 7$ since the assertion holds when $p=3$. Assume that $h_{F} \neq 1$. Then, $2 \mid h_{F}$ by Lemma 3 . As E / F is totally ramified at p, it follows that $2 \mid h_{E}$. It is well known that h_{k} is odd by genus theory. Hence, the prime $q=2$ satisfies the conditions in Lemma 5. Therefore, F does not satisfy $\left(H_{p}\right)$, a contradiction.

In all what follows, let p be a prime number with $p \equiv 1 \bmod 4$, and let 2^{e+1} be the highest power of 2 dividing $p-1$. Let k be the intermediate field of $\boldsymbol{Q}\left(\zeta_{p}\right) / \boldsymbol{Q}$ with $[k: \boldsymbol{Q}]=2^{e}$. Clearly, k is totally real. Let $F=\boldsymbol{Q}(\sqrt{-d})$ be an imaginary quadratic field unramified at p, where d is a square free positive integer with $p \nmid d$. Put

$$
E=F \cdot k \subseteq K \quad \text { and } \quad H=\operatorname{Gal}(K / E) \subseteq G
$$

To show Theorem, we may as well assume that $d \neq$ 1, 3 .

Lemma 6. Under the above setting, we have $\mathcal{O}_{E}^{\times}=\mathcal{O}_{k}^{\times}$.

Proof. Let W be the group of roots of unity in E. As $d \neq 1,3$, we have $W=\{ \pm 1\}$. Hence, it suffices to show that the unit index Q_{E} of E equals 1. Let J be the complex conjugation of E. As is well known, $\epsilon / \epsilon^{J} \in W$ for any unit $\epsilon \in \mathcal{O}_{E}^{\times}$(cf. [13, Lemma 1.6]). Consider the homomorphism

$$
\varphi: \mathcal{O}_{E}^{\times} \rightarrow W=W / W^{2}, \epsilon \rightarrow \epsilon / \epsilon^{J}
$$

It is known that $Q_{E}=1$ if and only if the $\operatorname{map} \varphi$ is trivial (cf. [13, page 40]). Assume to the contrary that φ is nontrivial. Then, $\epsilon^{J}=-\epsilon$ for some $\epsilon \in \mathcal{O}_{E}^{\times}$. It follows from Kummer theory that $\epsilon=x \sqrt{-d}$ for some $x \in k^{\times}$since $E=k(\sqrt{-d})$ and k is the maximal real subfield of E. However, this is impossible since $p \nmid d$ and a prime q dividing d is unramified at k.

Lemma 7. Under the above setting, F satisfies $\left(H_{p}\right)$ only when the natural map $C l_{F} \rightarrow C l_{E}$ is trivial.

Proof. Assume that F satisfies $\left(H_{p}\right)$. By Lemma 1, any ideal class $c \in C l_{K}$ satisfies $c^{\theta_{2}}=1$. As the norm map $C l_{K} \rightarrow C l_{E}$ is surjective, any ideal class $c \in C l_{E}$ satisfies the same relation. We write

$$
\begin{equation*}
\theta_{2}=\sum_{i=0}^{2^{e}-1} x_{i} \rho^{i} \tag{4}
\end{equation*}
$$

for some $x_{i} \in \boldsymbol{Z}[H]$ where ρ is a generator of G. Let $a_{i}=\iota_{H}\left(x_{i}\right)$ where ι_{H} is the augmentation of $\boldsymbol{Z}[H]$. Then, it follows that

$$
\begin{equation*}
c^{A}=1 \quad \text { with } \quad A=\sum_{i=0}^{2^{e}-1} a_{i} \rho^{i} \tag{5}
\end{equation*}
$$

for any $c \in C l_{E}$. By (1), we easily see that

$$
\begin{equation*}
\sum_{i=0}^{2^{e}-1} a_{i}=\sum_{j=0}^{p-1}\left[\frac{2 j}{p}\right]=\frac{p-1}{2} \tag{6}
\end{equation*}
$$

Let ψ be a character of G of order 2^{e}. Then, ψ is even, and any nontrivial character of G of order dividing 2^{e} is of the form ψ^{j} with $1 \leq j \leq 2^{e}-1$. These characters are regarded as those of the Galois group $\operatorname{Gal}(E / F)=G / H$. Let $\zeta=\psi(\rho)$ be a primitive 2^{e}-th root of unity. We see from (1) that

$$
\psi^{j}\left(\theta_{2}\right)=\left(2-\psi^{j}(2)\right) \cdot B_{1, \psi^{-j}}
$$

where $B_{1, \psi^{-j}}$ is the first Bernoulli number. However, as ψ^{j} is nontrivial and even, we have $B_{1, \psi^{-j}}=0$. Hence, it follows from (4) that

$$
\begin{equation*}
\psi^{j}\left(\theta_{2}\right)=\sum_{i=0}^{2^{e}-1} a_{i} \zeta^{i j}=0 \quad \text { for } 1 \leq j \leq 2^{e}-1 \tag{7}
\end{equation*}
$$

From (6) and (7), we obtain

$$
a_{i}=\frac{p-1}{2^{e+1}} \quad\left(0 \leq i \leq 2^{e}-1\right)
$$

Therefore, by (5), any ideal class $c \in C l_{E}$ satisfies the relation

$$
\left(c^{1+\rho+\cdots+\rho^{2^{e}-1}}\right)^{a_{0}}=1
$$

By Lemma 3, the order of the class $N_{E / F}(c) \in C l_{F}$ divides 2. Therefore, as a_{0} is odd, it follows that

$$
c^{1+\rho+\cdots+\rho^{2^{e}-1}}=1
$$

for all $c \in C l_{E}$. As the norm map $C l_{E} \rightarrow C l_{F}$ is surjectve, this implies that the map $C l_{F} \rightarrow C l_{E}$ is trivial.

Proof of Theorem for the case $p \equiv$ 1 mod 4. Assume that F satisfies the condition $\left(H_{p}\right)$. Let $-D$ be the discriminant of F. Let us show the following

Claim. For a prime number q dividing D, we have $D / q=a^{2}$ for some integer $a \in \boldsymbol{Z}$.

Actually: Let q be a prime number dividing D, and let \mathfrak{Q} be the prime ideal of F over $q ; q \mathcal{O}_{F}=$ \mathfrak{Q}^{2}. By Lemma $7, \mathfrak{Q} \mathcal{O}_{E}=x \mathcal{O}_{E}$ for some $x \in E^{\times}$. Because of Lemma 6, this implies that $q=\epsilon x^{2}$ for some unit $\epsilon \in \mathcal{O}_{k}^{\times}$. Noting that $E=k(\sqrt{-D})$, we see from Kummer theory that $q=\epsilon y^{2}$ or $q=\epsilon(-D) y^{2}$ for some $y \in k^{\times}$. However, the first equality can not hold since k / \boldsymbol{Q} is unramified outside p and $p \nmid D$. It follows from the second equality that D / q is a square in \boldsymbol{Q}^{\times}by the same reason.

By the Claim, there are only two possibilities for $-D$ according to whether D is even or odd:

$$
\text { (i) }-D=-8, \quad \text { (ii) }-D=-\lambda
$$

Here, λ is a prime number with $\lambda \equiv 3 \bmod 4$. When $-D=-8$, we have $h_{F}=1$. When $-D=-\lambda$, it is known that h_{F} is odd by genus theory. This implies $h_{F}=1$ since h_{F} is a 2-power by Lemma 3 .

Remark 1. It is known that if a prime number $p \geq 7$ remains prime in an imaginary quadratic field F, then F does not satisfy $\left(H_{p}\right)([8$, Lemma 2], [11, Theorem 4.3(a)]). Therefore, we see from Theorem that there exist infinitely many primes p for which no imaginary quadratic field satisfies $\left(H_{p}\right)$.

Remark 2. An assertion similar to Lemma 1 holds also when F / \boldsymbol{Q} is ramified at $p([6$, Theorem 5]).

Remark 3. Let us say that a number field F satisfies the condition $\left(H_{p, \infty}\right)$ when any tame abelian extension N / F of exponent p has a NIB. When $p=2$, it is known that F satisfies $\left(H_{2, \infty}\right)$ if and only if the ray class group $C l_{F}(4)$ of F defined modulo 4 is trivial ([4, Proposition 3]). As $C l_{F}(4)$ is trivial only when F is totally real ([7, Lemma 4]), there exists no imaginary quadratic field satisfying $\left(H_{2, \infty}\right)$.

For an odd prime number p and an imaginary quadratic field F with $(p, F) \neq(3, \boldsymbol{Q}(\sqrt{-3}))$, we can show that F satisfies $\left(H_{p, \infty}\right)$ if and only if it satisfies $\left(H_{p}\right)$, as follows. Let F be an imaginary quadratic field satisfying $\left(H_{p}\right)$, and let N / F be a tame abelian extension of exponent p. By Theorem and $(p, F) \neq(3, \boldsymbol{Q}(\sqrt{-3})), p$ does not divide $h_{F} \times\left|\mathcal{O}_{F}^{\times}\right|$. Then, we see from class field theory
that N is contained in the composite $M=\prod_{i} N_{i}$ of some tame cyclic extensions N_{i} / F of degree p whose conductors are prime ideals of F different from each other. As $h_{F}=1$, the extensions N_{i} / F are linearly disjoint. Therefore, since each N_{i} / F has a NIB, the composite M has a NIB by a classical theorem on rings of integers (cf. $[2,(2.13)]$). Hence, N / F has a NIB as $N \subseteq M$. The author thanks to an anonymous mathematician for pointing out this argument. Formerly, the author showed this assertion for the case $p=3$ using complicated Kummer theory argument.

Let $p=3$ and $F=\boldsymbol{Q}(\sqrt{-3})$. We can show that F does not satisfy $\left(H_{3, \infty}\right)$. Actually, let \mathfrak{G} be a copy of two cyclic groups of order p. Let $\operatorname{Cl}\left(\mathcal{O}_{F}[\mathfrak{G}]\right)$ be the locally free class group of the group ring $\mathcal{O}_{F}[\mathfrak{G}]$, and $R\left(\mathcal{O}_{F}[\mathfrak{G}]\right)$ the subset of the locally free classes $\left[\mathcal{O}_{N}\right]$ for all tame \mathfrak{G}-Galois extensions N / F. Using the main theorem in [10], we can show that $R\left(\mathcal{O}_{F}[\mathfrak{G}]\right) \neq\{0\}$ by some hard hand-calculation. This implies that there exists a tame \mathfrak{G}-Galois extension N / F without NIB.

Acknowledgements. The author was partially supported by Grant-in-Aid for Scientific Research (C), No. 19540005, Japan Society for the Promotion of Science.

References

[1] J. E. Carter, Normal integral bases in quadratic and cyclic cubic extensions of quadratic fields, Arch. Math. (Basel) 81 (2003), no. 3, 266-271: Erratum, ibid., 83 (2004), no.6, vi-vii.
[2] A. Fröhlich and M. J. Taylor, Algebraic num-
ber theory, Cambridge Univ. Press, Cambridge, 1993.
[3] C. Greither et al., Swan modules and HilbertSpeiser number fields, J. Number Theory 79 (1999), no. 1, 164-173.
[4] H. Ichimura, Note on the ring of integers of a Kummer extension of prime degree. V, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 6, 76-79.
[5] H. Ichimura, Normal integral bases and ray class groups, Acta Arith. 114 (2004), no. 1, 71-85.
[6] H. Ichimura, Normal integral bases and ray class groups. II, Yokohama Math. J. 53 (2006), no. 1, 75-81.
[7] H. Ichimura and F. Kawamoto, Normal integral basis and ray class group modulo 4, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 9, 139141.
[8] H. Ichimura and H. Sumida-Takahashi, Imaginary quadratic fields satisfying the Hilbert-Speiser type condition for a small prime p, Acta Arith., 127 (2007), 179-191.
[9] H. B. Mann, On integral bases, Proc. Amer. Math. Soc. 9 (1958), 167-172.
[10] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), no. 1, 102-134.
[11] D. R. Replogle, Kernel groups and nontrivial Galois module structure of imaginary quadratic fields, Rocky Mountain J. Math. 34 (2004), no. 1, 309-320.
[12] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27.
[13] L. C. Washington, Introduction to cyclotomic fields, Second edition, Springer, New York, 1997.

[^0]: 2000 Mathematics Subject Classiffcation. 11R33, 11R11

