Exact WKB analysis for the degenerate third Painlevé equation of type (D_{8})

By Hideaki Wakako*) and Yoshitsugu Takei**)

(Communicated by Heisuke Hironaka, m.J.a., May 14, 2007)

Abstract

Exact WKB analysis for instanton-type solutions of the degenerate third Painlevé equation of type $\left(D_{8}\right)$ is discussed. Explicit connection formulas are obtained through computations of the monodromy data of the underlying linear equations.

Key words: Exact WKB analysis, connection formula, third Painlevé equation.

1. Introduction. In this paper we discuss the exact WKB analysis for instanton-type solutions (i.e., 2-parameter formal solutions) of the following degenerate third Painlevé equation of type $\left(D_{8}\right)$ with a large parameter η :
(P) $\frac{d^{2} q}{d t^{2}}=\frac{1}{q}\left(\frac{d q}{d t}\right)^{2}-\frac{1}{t}\left(\frac{d q}{d t}\right)+\eta^{2}\left(\frac{q^{2}}{t^{2}}-\frac{1}{t}\right)$.

Exact WKB analysis for instanton-type solutions of Painlevé equations $\left(P_{J}\right)(J=\mathrm{I}, \ldots, \mathrm{VI})$ with a large parameter has been developed in $[3,1,4,9]$ etc. On the other hand, since the work of Sakai [8] on geometrical classification of the space of initial conditions of $\left(P_{J}\right)$, it is considered to be natural to distinguish the degenerate third Painlevé equations of type $\left(D_{7}\right)$ and $\left(D_{8}\right)$ from the generic third Painlevé equation $\left(P_{\mathrm{III}}\right)$: Separately from $\left(P_{\mathrm{III}}\right)$, several important properties (such as τ-functions, irreducibility etc.) and asymptotics of solutions of the degenerate third Painlevé equations are studied in [7] and [5], respectively. The above equation (P) is obtained from an equation equivalent to the most degenerate third Painlevé equation of type $\left(D_{8}\right)$ by introducing a large parameter η through an appropriate scaling of variables (or through the degeneration from $\left(P_{\mathrm{III}}\right)$; cf. [10]). From the viewpoint of exact WKB analysis (P) is also very peculiar: There is no turning point of (P) in the sense of [3] while it has two singular points $t=0$ and ∞. In particular, $t=0$ can be regarded as a non-linear analogue of a "singular point of simple pole type" (i.e., a singular point which also plays the role of turning points) of a second order

[^0]linear differential equation discussed in [6]. In fact, as we will show in $\S 3$ below, a Stokes curve of (P) emanates from $t=0$. The purpose of this paper is to discuss the Stokes phenomenon and connection formula for instanton-type solutions of (P) on a Stokes curve emanating from $t=0$.

To analyze the Stokes phenomena, we make full use of the well-known fact that Painlevé equations govern the isomonodromic deformations of underlying systems of linear differential equations in the sense of [2]. In the case of (P) it is formulated as follows (cf. [7, §3]): Let $(S L)$ and (D) denote the following linear differential equations, respectively.

$$
\begin{align*}
& \left(-\frac{\partial^{2}}{\partial x^{2}}+\eta^{2} Q\right) \psi=0 \tag{SL}\\
& \frac{\partial \psi}{\partial t}=A \frac{\partial \psi}{\partial x}-\frac{1}{2} \frac{\partial A}{\partial x} \psi \tag{D}
\end{align*}
$$

where

$$
\begin{aligned}
& Q=\frac{t K}{x^{2}}+\frac{1}{2 x}+\frac{t}{2 x^{3}}-\eta^{-1} \frac{q p}{x(x-q)} \\
& \quad-\eta^{-2} \frac{1}{x(x-q)}+\eta^{-2} \frac{3}{4(x-q)^{2}} \\
& t K= \\
& q^{2} p^{2}-\left(\frac{q}{2}+\frac{t}{2 q}\right)+\eta^{-1} q p, \quad A=\frac{x q}{t(x-q)} .
\end{aligned}
$$

Then the compatibility condition of $(S L)$ and (D) is described by the Hamiltonian system

$$
\begin{equation*}
\frac{d q}{d t}=\eta \frac{\partial K}{\partial p}, \quad \frac{d p}{d t}=-\eta \frac{\partial K}{\partial q} \tag{H}
\end{equation*}
$$

which is equivalent to (P). Consequently the monodromy data of ($S L$) are preserved (i.e., not depending on t) if a solution of (H) is substituted into the coefficients of $(S L)$. In this paper, following the argument of [9] where the connection formula for $\left(P_{\mathrm{I}}\right)$
is discussed, we explicitly compute the monodromy data of $(S L)$ to write down the connection formula for (P).
2. Instanton-type solutions of (\boldsymbol{P}). First of all, we introduce instanton-type solutions of (P).

We can readily see that $q= \pm \sqrt{t}$ and $(q, p)=$ $\pm\left(\sqrt{t},-\eta^{-1} /(4 \sqrt{t})\right)$ respectively satisfy (P) and (H). As these solutions contain no free parameters, they are called 0-parameter solutions. In what follows we adopt

$$
\begin{equation*}
q^{(0)}=\sqrt{t}, \quad\left(q^{(0)}, p^{(0)}\right)=\left(\sqrt{t},-\eta^{-1} \frac{1}{4 \sqrt{t}}\right) \tag{1}
\end{equation*}
$$

as 0-parameter solutions of (P) and (H).
Instanton-type formal solutions $q(t, \eta ; \alpha, \beta)$ containing 2 free parameters (α, β) (or "2-parameter solutions" for short) are then constructed through the multiple-scale analysis. See $[1, \S 1]$ for details. In particular, similarly to the case of $\left(P_{\mathrm{I}}\right)(\mathrm{cf} .[9, \S 1])$, we can construct the following 2-parameter solutions of (P) with homogeneity:

$$
\begin{equation*}
q(t, \eta ; \alpha, \beta)=\sqrt{t}+\eta^{-1 / 2} \sum_{n=0}^{\infty} \eta^{-n / 2} L_{n / 2}(t, \eta) \tag{2}
\end{equation*}
$$

where $L_{0}=L_{0}(t, \eta)$ is given by

$$
L_{0}=t^{3 / 8}\left(\alpha\left(t^{1 / 4} \eta\right)^{\sqrt{2} \gamma} e^{\phi \eta}+\beta\left(t^{1 / 4} \eta\right)^{-\sqrt{2} \gamma} e^{-\phi \eta}\right)
$$

with $\gamma=\alpha \beta$ and $\phi=4 \sqrt{2} t^{1 / 4}$, and $L_{n / 2}=L_{n / 2}(t, \eta)$ ($n \geq 1$) is of the form

$$
\sum_{k=0}^{n+1} c_{n+1-2 k}^{(n / 2)} t^{(3-n) / 8}\left(\left(t^{1 / 4} \eta\right)^{\sqrt{2} \gamma} e^{\phi \eta}\right)^{n+1-2 k}
$$

with $c_{l}^{(n / 2)}$ being constants depending only on (α, β). Note that $q=q(t, \eta ; \alpha, \beta)$ has homogeneity to the effect that $t^{-1 / 2} q$ is a formal series of one variable $t^{1 / 4} \eta$. Using the first equation of (H), i.e., $p=$ $\eta^{-1}\{t(d q / d t)-q\} /\left(2 q^{2}\right)$, we also obtain 2-parameter solutions $(q(t, \eta ; \alpha, \beta), p(t, \eta ; \alpha, \beta))$ of (H).
3. Stokes geometry of (P) and $(S L)$. To define the Stokes geometry (i.e., turning points and Stokes curves) of (P), we consider its Frechét derivative at $q^{(0)}=\sqrt{t}$:

$$
\begin{equation*}
-\frac{d^{2} \varphi}{d t^{2}}+\eta^{2}\left(\frac{2}{t^{3 / 2}}-\eta^{-2} \frac{1}{4 t^{2}}\right) \varphi=0 \tag{3}
\end{equation*}
$$

It is transformed by a change of variables $(t, \varphi)=$ $\left(\tilde{t}^{2}, \tilde{t}^{1 / 2} \tilde{\varphi}\right)$ into

$$
\begin{equation*}
-\frac{d^{2} \tilde{\varphi}}{d \tilde{t}^{2}}+\eta^{2}\left(\frac{8}{\tilde{t}}-\eta^{-2} \frac{1}{4 \tilde{t}^{2}}\right) \tilde{\varphi}=0 \tag{4}
\end{equation*}
$$

Note that (4) has the same form as the equation discussed in [6]. As is proved in [6], $\tilde{t}=0$ plays the role of a turning point of (4). Having this result in mind, we consider $\tilde{t}=0$, i.e., $t=0$ as a turning point of (P), though (P) has no ordinary turning point.

Definition 3.1. (i) We call $t=0$ a turning point of (P).
(ii) A Stokes curve of (P) is by definition
(5) $\left\{t \in \mathbf{C} \left\lvert\, \operatorname{Im} \int_{0}^{t} \sqrt{\frac{2}{t^{3 / 2}}} d t=\operatorname{Im}\left(4 \sqrt{2} t^{1 / 4}\right)=0\right.\right\}$.

By the definition (5) the Stokes curves of (P) are explicitly given by $\{t \in \mathbf{C} \mid \arg \sqrt{t}=2 n \pi(n \in \mathbf{Z})\}$.

We now study the relationship between the Stokes geometry of (P) and that of $(S L)$. Here and in what follows we assume 2 -parameter solutions $(q(t, \eta ; \alpha, \beta), p(t, \eta ; \alpha, \beta))$ are substituted into the coefficients of $(S L)$ and (D). Then Q becomes an infinite series (in $\eta^{-1 / 2}$) of the form $Q=$ $\sum_{n \geq 0} \eta^{-n / 2} Q_{n / 2}$ with

$$
Q_{0}=\frac{(x-\sqrt{t})^{2}}{2 x^{3}} \quad \text { and } \quad Q_{1 / 2} \equiv 0
$$

Hence ($S L$) has only one turning point at $x=\sqrt{t}$, which is double. Furthermore, letting γ be a positively oriented circle $\{|x|=\sqrt{t}\}$ starting and ending at $x=\sqrt{t}$, we find
$\int_{\gamma} \sqrt{Q_{0}} d x=\frac{1}{\sqrt{2}} \int_{\gamma}\left(\frac{1}{\sqrt{x}}-\frac{\sqrt{t}}{\sqrt{x^{3}}}\right) d x=-4 \sqrt{2} t^{1 / 4}$.
This implies

$$
\operatorname{Im} \int_{\gamma} \sqrt{Q_{0}} d x=0 \Longleftrightarrow \arg \sqrt{t}=2 n \pi(n \in \mathbf{Z})
$$

Thus we have
Proposition 3.2. (i) (SL) has a unique turning point at $x=\sqrt{t}$, which is double.
(ii) When and only when $\arg \sqrt{t}=2 n \pi(n \in \mathbf{Z})$, there exists a Stokes curve of $(S L)$ that starts from \sqrt{t}, encircles $t=0$ and returns to \sqrt{t}. It is the circle centered at the origin with radius \sqrt{t} (cf. Fig.1).
4. Canonical form of $(S L)$ and (D) near the double turning point. In this section, as a preparation for computations of the monodromy data of $(S L)$, we discuss the transformation of $(S L)$ and (D) near the double turning point $x=\sqrt{t}$ into their canonical form.

We first introduce the following WKB solutions as fundamental systems of solutions of $(S L)$.
(i)
(ii)

(iii)

Fig. 1. Stokes curves of $(S L)$ in the case of (i) $\arg \sqrt{t}>0$, (ii) $\arg \sqrt{t}=0$ and (iii) $\arg \sqrt{t}<0$.
(6)

$$
\begin{aligned}
& \psi_{ \pm}^{(k)}=\frac{1}{\sqrt{S_{\text {odd }}}} \exp \left(\pm \eta 2 \sqrt{2} t^{1 / 4}\right) \times \\
& \quad \exp \pm\left(\eta \int_{\sqrt{t}}^{x} S_{-1} d x+\int_{k}^{x}\left(S_{\text {odd }}-\eta S_{-1}\right) d x\right)
\end{aligned}
$$

where $k=0$ or $\infty, S=\sum_{n \geq-2} \eta^{-n / 2} S_{n / 2}$ is a formal power series solution of the Riccati equation $S^{2}+(\partial S / \partial x)=\eta^{2} Q$ associated with $(S L)$ and $S_{\text {odd }}$ denotes its odd part in the sense of [1, Def. 3.1]. Note that both WKB solutions (6) are well-defined since $S_{\text {odd }}=\eta S_{-1}+\sum_{n>0} \eta^{-n / 2} S_{\text {odd }, n / 2}$ satisfies that $x^{1 / 2} S_{\text {odd }, n / 2}$ (resp., $x^{\overline{3} / 2} S_{\text {odd }, n / 2}$) are holomorphic at $x=0$ (resp., $x=\infty$) for $n \geq 0$. Here and in what follows we assume the branch of (6) is chosen so that $(x-\sqrt{t})^{1 / 2}>0$ for $x>\sqrt{t}$ and $x^{-3 / 4}>0$ for $x>0$ may hold (in defining $\sqrt{S_{-1}}$) when $\arg \sqrt{t}=0$. (As we are interested in Stokes phenomena for (P), we may assume that t lies near a Stokes curve $\arg \sqrt{t}=0$ of (P).) The WKB solutions (6) then become single-valued in a cut plane indicated in Fig.2. We also have the following relation between $\psi_{ \pm}^{(0)}$ and $\psi_{ \pm}^{(\infty)}$:

$$
\begin{equation*}
\psi_{ \pm}^{(\infty)}=\left(\exp \pm\left(\pi i \operatorname{Res}_{x=\sqrt{t}} S_{\mathrm{odd}}\right)\right) \psi_{ \pm}^{(0)} \tag{7}
\end{equation*}
$$

Now, using $(\partial / \partial t) S_{\text {odd }}=(\partial / \partial x)\left(A S_{\text {odd }}\right)(c f .[1$, (2.14)]), we can confirm the following

Proposition 4.1. Both $W K B$ solutions $\psi_{ \pm}^{(0)}$ and $\psi_{ \pm}^{(\infty)}$ satisfy (D).

Furthermore, the WKB solutions (6) enjoy the following homogeneity property: Letting \mathcal{H} be a scaling operator defined by $\mathcal{H}:(x, t, \eta) \mapsto\left(r^{-2} x, r^{-4} t\right.$, $r \eta$), we find (6) are homogeneous of degree -1 for \mathcal{H} (i.e., $\psi_{ \pm}^{(k)}(\mathcal{H}(x, t, \eta))=r^{-1} \psi_{ \pm}^{(k)}(x, t, \eta)$ hold $)$.

To determine the connection formula for the WKB solutions (6) on Stokes curves of (SL) emanating from $x=\sqrt{t}$, we make use of the transformation theorem proved in [4] for Painlevé equations: Let $\left(S L_{\mathrm{can}}\right)$ and (D_{can}) denote the following equations,

Fig. 2. $\quad x$-plane with cuts. (Wiggly lines designate cuts.)
respectively.

$$
\begin{array}{ll}
\left(S L_{\mathrm{can}}\right) & \left(-\frac{\partial^{2}}{\partial z^{2}}+\eta^{2} Q_{\mathrm{can}}\right) \phi=0 \\
\left(D_{\mathrm{can}}\right) & \frac{\partial \phi}{\partial s}=A_{\mathrm{can}} \frac{\partial \phi}{\partial z}-\frac{1}{2} \frac{\partial A_{\mathrm{can}}}{\partial z} \phi
\end{array}
$$

where

$$
\begin{gathered}
Q_{\mathrm{can}}=4 z^{2}+\eta^{-1} E+\frac{\eta^{-3 / 2} \rho}{z-\eta^{-1 / 2} \sigma}+\frac{3 \eta^{-2}}{4\left(z-\eta^{-1 / 2} \sigma\right)^{2}} \\
E=\rho^{2}-4 \sigma^{2}, \quad A_{\mathrm{can}}=\frac{1}{2\left(z-\eta^{-1 / 2} \sigma\right)}
\end{gathered}
$$

The compatibility condition of $\left(S L_{\mathrm{can}}\right)$ and (D_{can}) is given by the following Hamiltonian system:
$\left(H_{\text {can }}\right) \quad \frac{\partial \rho}{\partial s}=-4 \eta \sigma, \quad \frac{\partial \sigma}{\partial s}=-\eta \rho$
(cf. [4, Prop. 2.1]). In what follows $\left(\rho_{\text {can }}, \sigma_{\text {can }}\right)$ denotes a solution of $\left(H_{\text {can }}\right)$ and $E_{\text {can }}=\rho_{\text {can }}^{2}-4 \sigma_{\text {can }}^{2}$, that is,

$$
\left\{\begin{array}{l}
\sigma_{\mathrm{can}}(s, \eta)=A(\eta) e^{2 \eta s}+B(\eta) e^{-2 \eta s} \tag{8}\\
\rho_{\mathrm{can}}(s, \eta)=-2 A(\eta) e^{2 \eta s}+2 B(\eta) e^{-2 \eta s} \\
E_{\mathrm{can}}(\eta)=-16 A(\eta) B(\eta)
\end{array}\right.
$$

with $A(\eta)=\sum \eta^{-n / 2} A_{n / 2}$ and $B(\eta)=$ $\sum \eta^{-n / 2} B_{n / 2}$ being formal power series with constant coefficients. Then the following theorem holds:

Theorem 4.2. For any given 2-parameter (α, β) and a point t_{0} in question, there exist a neighborhood V of t_{0}, a neighborhood U of $x=\sqrt{t_{0}}$, formal series $(A(\eta), B(\eta))=$ $\left(\sum \eta^{-n / 2} A_{n / 2}, \sum \eta^{-n / 2} B_{n / 2}\right)$, and formal series $z(x, t, \eta)=\sum \eta^{-n / 2} z_{n / 2}(x, t)$ and $s(t, \eta)=$ $\sum \eta^{-n / 2} s_{n / 2}(t)$ whose coefficients $z_{n / 2}$ and $s_{n / 2}$ are holomorphic on $U \times V$ and V respectively, so that the following holds: If $\phi(z, s, \eta)$ is a WKB solution of $\left(S L_{\text {can }}\right)$ which also satisfies $\left(D_{\text {can }}\right)$, then

$$
\begin{equation*}
\psi(x, t, \eta)=\left(\frac{\partial z}{\partial x}\right)^{-1 / 2} \phi(z(x, t, \eta), s(t, \eta), \eta) \tag{9}
\end{equation*}
$$

satisfies both $(S L)$ and (D).
For the proof see [4, Prop. 3.1]. In our case, by the same reasoning as that used in $[9, \S 2.3]$ for the underlying linear equations of $\left(P_{\mathrm{I}}\right)$, we can verify that
$z(x, t, \eta)$ and $s(t, \eta)$ are homogeneous for \mathcal{H} of degree $-1 / 2$ and -1 respectively. Furthermore, $A(\eta)$ and $B(\eta)$ can be taken so that

$$
\begin{equation*}
A(\eta)=2^{-3 / 4} \alpha, \quad B(\eta)=2^{-3 / 4} \beta \tag{10}
\end{equation*}
$$

may hold and $E=E_{\text {can }}(\eta)$ also satisfies

$$
\begin{equation*}
E=-4 \sqrt{2} \alpha \beta=4 \operatorname{Res}_{x=\sqrt{t}} S_{\mathrm{odd}} \tag{11}
\end{equation*}
$$

See $[9, \S 2.3]$ for the proof of (10) and (11).
As in $[9, \S 2.3]$, we take the following WKB solutions of ($S L_{\text {can }}$):

$$
\begin{aligned}
& \phi_{ \pm}=\frac{1}{\sqrt{T_{\text {odd }}}}\left(\eta^{1 / 2} z\right)^{ \pm E / 4} \times \\
& \quad \exp \pm\left(\eta \int_{0}^{z} T_{-1} d z+\int_{\infty}^{z}\left(T_{\text {odd }}-\eta T_{-1}-\frac{E}{4 z}\right) d z\right)
\end{aligned}
$$

where $T=\sum_{n \geq-2} \eta^{-n / 2} T_{n / 2}$ is a solution of the Riccati equation associated with $\left(S L_{\text {can }}\right)$ and $T_{\text {odd }}$ denotes its odd part. For the fundamental properties (such as the well-definedness) of $\phi_{ \pm}$we refer the reader to $[9, \S 2.3]$ and only recall the following important properties here: $e^{ \pm \eta s} \phi_{ \pm}$also satisfy $\left(D_{\text {can }}\right)$ ([9, Lemma 2]) and further $\phi_{ \pm}$are homogeneous of degree $-1 / 4$ for a scaling operator $\tilde{\mathcal{H}}:(z, s, \eta) \mapsto\left(r^{-1 / 2} z, r^{-1} s, r \eta\right)$.

Between $\phi_{ \pm}$and (6) we have the following

Proposition 4.3.

$$
\begin{equation*}
\psi_{ \pm}^{(k)}=C_{ \pm}^{(k)}\left(\frac{\partial z}{\partial x}\right)^{-1 / 2} \phi_{ \pm}(z(x, t, \eta), s(t, \eta), \eta) \tag{12}
\end{equation*}
$$

$(k=0, \infty)$ hold with

$$
\begin{equation*}
C_{ \pm}^{(\infty)}=2^{\mp 5 E / 16} e^{ \pm \eta s(t, \eta)}, \quad C_{ \pm}^{(0)}=e^{\mp \pi i E / 4} C_{ \pm}^{(\infty)} \tag{13}
\end{equation*}
$$

Using Theorem 4.2 and the homogeneity of $\psi_{ \pm}^{(\infty)}, \phi_{ \pm}$ and $(z(x, t, \eta), s(t, \eta))$, we can prove Proposition 4.3 by the same argument as in the proof of [9, Prop. 3]. Note that the second relation of (13) is an immediate consequence of (7) and (11).

Combining Proposition 4.3 and the connection formula for $\phi_{ \pm}([9$, Prop. 4$])$, we obtain the following connection formulas for the WKB solutions (6): Here we label the Stokes curves and the Stokes regions near $x=\sqrt{t}$ as is indicated in Fig.3. We also use the notation $\psi_{ \pm}^{(k), R}(k=0, \infty)$ to denote the Borel sum of $\psi_{ \pm}^{(k)}$ in a Stokes region R here and in what follows.

$$
\left\{\begin{array}{l}
\psi_{+}^{(k), R_{j-1}}=\psi_{+}^{(k), R_{j}}+\frac{C_{+}^{(k)}}{C_{-}^{(k)}} a_{j-1 j} \psi_{-}^{(k), R_{j}} \tag{14}\\
\psi_{-}^{(k), R_{j-1}}=\psi_{-}^{(k), R_{j}}
\end{array}\right.
$$

Fig. 3. Stokes curves and Stokes regions near $x=\sqrt{t}$.

Fig. 4. Paths of analytic continuation $\gamma^{(0)}, \gamma^{(c)}$ and $\gamma^{(\infty)}$ and Stokes curves for $\arg \sqrt{t}>0 .(A, B, C, \ldots$ designate the label of Stokes regions.)
on C_{j} for $j=1,3$ and

$$
\left\{\begin{array}{l}
\psi_{+}^{(k), R_{j-1}}=\psi_{+}^{(k), R_{j}} \tag{15}\\
\psi_{-}^{(k), R_{j-1}}=\psi_{-}^{(k), R_{j}}+\frac{C_{-}^{(k)}}{C_{+}^{(k)}} a_{j-1 j} \psi_{+}^{(k), R_{j}}
\end{array}\right.
$$

on C_{j} for $j=2,4$, where $C_{ \pm}^{(k)}(k=0, \infty)$ are defined by (13) and $a_{j-1 j}$ are given as follows:

$$
\begin{equation*}
(-1)^{(j+1) / 2} \frac{\rho+2 \sigma}{2} \frac{i \sqrt{2 \pi}}{\Gamma\left(1-\frac{E}{4}\right)} 2^{-E / 2} e^{(j-1) \pi i E / 4} \tag{16}
\end{equation*}
$$

for $j=1,3$ and

$$
\begin{equation*}
(-1)^{(j-2) / 2} \frac{\rho-2 \sigma}{2} \frac{\sqrt{2 \pi}}{\Gamma\left(1+\frac{E}{4}\right)} 2^{E / 2} e^{(1-j) \pi i E / 4} \tag{17}
\end{equation*}
$$

for $j=2,4$ with $(\rho, \sigma)=\left(\rho_{\text {can }}, \sigma_{\text {can }}\right), E=-4 \sqrt{2} \alpha \beta$.
5. Computation of the monodromy data of $(\boldsymbol{S L})$. In this section, using the connection formulas (14) and (15), we explicitly compute the monodromy data of $(S L)$.

First, we review the monodromy data of $(S L)$ (cf. [2]). As in Fig.4, let us take base points x_{0}, x_{∞} and paths of analytic continuation $\gamma^{(k)}(k=0, c, \infty)$. Further, we take fundamental systems $\varphi_{ \pm}^{k}$ of holomorphic solutions near $x_{k}(k=0, \infty)$. Then, according to $[2, \S 2]$, the monodromy data of $(S L)$ is given by the following set of matrices

$$
\left\{M_{0}, M_{c}, M_{\infty}\right\}
$$

where the matrices $M_{k}(k=0, c, \infty)$ are defined by

$$
\begin{aligned}
& \left(\gamma_{*}^{(k)}\right)\left(\varphi_{+}^{k}, \varphi_{-}^{k}\right)=\left(\varphi_{+}^{k}, \varphi_{-}^{k}\right) M_{k} \quad(\text { for } k=0, \infty) \\
& \left(\gamma_{*}^{(c)}\right)\left(\varphi_{+}^{0}, \varphi_{-}^{0}\right)=\left(\varphi_{+}^{\infty}, \varphi_{-}^{\infty}\right) M_{c} .
\end{aligned}
$$

Here and in what follows $\gamma_{*}(f)$ designates the analytic continuation of f along a path γ.

Remark 5.1. Since $x=0$ and $x=\infty$ are irregular singular points (with Poincaré rank $1 / 2$) of $(S L)$, the monodromy matrices M_{0} and M_{∞} are expressed in terms of the (triangular) Stokes matrices S_{0} and S_{∞} as

$$
M_{0}=S_{0} J, M_{\infty}=J S_{\infty} \text { with } J=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)
$$

Note that the matrix J appears as an effect of crossing a cut emanating from $x=0$ or $x=\infty$. In the case of $(S L)$ we can also confirm the following

$$
\begin{equation*}
-\left(M_{0}\right)^{-1}=\left(M_{c}\right)^{-1} M_{\infty} M_{c} \tag{18}
\end{equation*}
$$

Thanks to (18), if we write

$$
S_{0}=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right), S_{\infty}=\left(\begin{array}{cc}
1 & 0 \\
b & 1
\end{array}\right), M_{c}=\left(\begin{array}{cc}
c & d \\
e & f
\end{array}\right)
$$

we find that all monodromy data are determined once a and d are computed.

In what follows, we adopt the Borel sum of $\psi_{ \pm}^{(k)}$ near $x_{k}(k=0, \infty)$ as fundamental systems of solutions, i.e., $\varphi_{ \pm}^{0}=\psi_{ \pm}^{(0), C}$ and $\varphi_{ \pm}^{\infty}=\psi_{ \pm}^{(\infty), E}$, and compute M_{0}, M_{c} when $\arg \sqrt{t}>0$ and $\arg \sqrt{t}<0$ respectively. To illustrate how the computations are done, we explain the computation of M_{0} for $\arg \sqrt{t}>0$ in details here.

First, we consider the analytic continuation from a point x_{1} in Region A to a point x_{2} in Region B (cf. Fig.4). It is described by the connection formula (14) for $j=3$, that is,

$$
\left(\psi_{+}^{(0), A}, \psi_{-}^{(0), A}\right)=\left(\psi_{+}^{(0), B}, \psi_{-}^{(0), B}\right)\left(\begin{array}{cc}
1 & 0 \tag{19}\\
-\frac{C_{+}^{(0)}}{C_{-}^{(0)}} a_{23} & 0
\end{array}\right)
$$

Second, we discuss the analytic continuation from x_{2} to x_{0}. We divide this step of analytic continuation into the following three substeps; (i) from x_{2} to x_{D} along $\gamma_{B D}$, (ii) from x_{D} to x_{A} across a Stokes curve emanating from \sqrt{t}, and (iii) from x_{A} to x_{0} along $\gamma_{A C}$ (cf. Fig.5). The substep (i) is described by

$$
\left(\gamma_{B D}\right)_{*}\left(\psi_{+}^{(0), B}, \psi_{-}^{(0), B}\right)=\left(\psi_{+}^{(0), D}, \psi_{-}^{(0), D}\right)\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)
$$

Fig. 5. Paths $\gamma_{B D}$ and $\gamma_{A C}$.
the substep (ii) is described by the connection formula (15) for $j=4$:

$$
\left(\psi_{+}^{(0), D}, \psi_{-}^{(0), D}\right)=\left(\psi_{+}^{(0), A}, \psi_{-}^{(0), A}\right)\left(\begin{array}{cc}
1 & -\frac{C_{-}^{(0)}}{C_{+}^{(0)}} a_{34} \\
0 & 1
\end{array}\right)
$$

and the substep (iii) is described by

$$
\left(\gamma_{A C}\right)_{*}\left(\psi_{+}^{(0), A}, \psi_{-}^{(0), A}\right)=\left(\psi_{+}^{(0), C}, \psi_{-}^{(0), C}\right)\left(\begin{array}{ll}
0 & i \tag{20}\\
i & 0
\end{array}\right)
$$

Combining these three substeps, we obtain

$$
\left(\psi_{+}^{(0), B}, \psi_{-}^{(0), B}\right)=\left(\psi_{+}^{(0), C}, \psi_{-}^{(0), C}\right)\left(\begin{array}{cc}
1 & 0 \tag{21}\\
-\frac{C_{-}^{(0)}}{C_{+}^{(0)}} a_{34} & 1
\end{array}\right)
$$

for the analytic continuation from x_{2} to x_{0}. Finally, (20) also entails

$$
\left(\gamma_{A C}^{-1}\right)_{*}\left(\psi_{+}^{(0), C}, \psi_{-}^{(0), C}\right)=\left(\psi_{+}^{(0), A}, \psi_{-}^{(0), A}\right)\left(\begin{array}{cc}
0 & -i \tag{22}\\
-i & 0
\end{array}\right)
$$

which describes the analytic continuation from x_{0} to x_{1}. We thus conclude from (19), (21) and (22) that

$$
\begin{equation*}
\gamma_{*}^{(0)}\left(\psi_{+}^{(0), C}, \psi_{-}^{(0), C}\right)=\left(\psi_{+}^{(0), C}, \psi_{-}^{(0), C}\right) M_{0} \tag{23}
\end{equation*}
$$

with

$$
M_{0}=\left(\begin{array}{ccc}
1 & 0 \tag{24}\\
-\frac{C_{+}^{(0)}}{C_{-}^{(0)}} a_{23}-\frac{C_{-}^{(0)}}{C_{+}^{(0)}} a_{34} & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)
$$

for $\arg \sqrt{t}>0$.
The computation of M_{c} for $\arg \sqrt{t}>0$ and that of M_{0} and M_{c} for $\arg \sqrt{t}<0$ can be done in a similar manner. Here, omitting the details of computations, we give only the consequence of them:
for $\arg \sqrt{t}>0$,
(26) $M_{0}=\left(\begin{array}{ccc}1 & 0 \\ -\frac{C_{+}^{(0)}}{C_{-}^{(0)}} a_{23}-\frac{C_{-}^{(0)}}{C_{+}^{(0)}} a_{12} & 1\end{array}\right)\left(\begin{array}{cc}0 & -i \\ -i & 0\end{array}\right)$,

$$
M_{c}=\left(\begin{array}{cc}
\frac{C_{+}^{(0)}}{C_{+}^{(\infty)}} & -\frac{C_{-}^{(0)}}{C_{+}^{(\infty)}} a_{12} \tag{27}\\
\frac{\left(C_{-}^{(0)}\right)^{2}}{C_{+}^{(0)} C_{-}^{(\infty)}} a_{34} & \frac{C_{-}^{(0)}}{C_{-}^{(\infty)}}-\frac{\left(C_{-}^{(0)}\right)^{3}}{\left(C_{+}^{(0)}\right)^{2} C_{-}^{(\infty)}} a_{12} a_{34}
\end{array}\right)
$$

for $\arg \sqrt{t}<0$.
Using these results together with (8), (10), (11), (13), (16) and (17), we thus obtain the following formulas (with $E=-4 \sqrt{2} \alpha \beta$) for the relevant monodromy data a and d explained in Remark 5.1.
(When $\arg \sqrt{t}>0$)

$$
\begin{align*}
\begin{array}{l}
a= \\
\\
\\
\\
\\
\quad-2^{-9 E / 8+1 / 4} \frac{i \sqrt{2 \pi} \beta}{\Gamma\left(-\frac{E}{4}+1\right)} \\
d=2^{9 E / 8+1 / 4} e^{-i \pi E / 4} \frac{\sqrt{2 \pi} \alpha}{\Gamma\left(\frac{E}{4}+1\right)} \\
\end{array} \\ \tag{28}
\end{align*}
$$

(When $\arg \sqrt{t}<0$)

$$
\begin{align*}
\begin{aligned}
a= & 2^{-9 E / 8+1 / 4} \frac{i \sqrt{2 \pi} \beta}{\Gamma\left(-\frac{E}{4}+1\right)} \\
& +2^{9 E / 8+1 / 4} e^{i \pi E / 4} \frac{\sqrt{2 \pi} \alpha}{\Gamma\left(\frac{E}{4}+1\right)} \\
d= & 2^{9 E / 8+1 / 4} \frac{\sqrt{2 \pi} \alpha}{\Gamma\left(\frac{E}{4}+1\right)}
\end{aligned} .
\end{align*}
$$

6. Connection formula for 2-parameter instanton-type solutions of (\boldsymbol{P}). Finally we discuss the connection formula for 2 -parameter instanton-type solutions of (P).

Let us now suppose that a 2-parameter solution $q(t, \eta ; \alpha, \beta)$ in $\{t ; \arg \sqrt{t}>0\}$ and a 2 -parameter solution $q(t, \eta ; \tilde{\alpha}, \tilde{\beta})$ in $\{t ; \arg \sqrt{t}<0\}$ may represent the same holomorphic solution of (P). Then, thanks to the result of [2], the corresponding monodromy data of $(S L)$ for $\arg \sqrt{t}>0$ should coincide with that for $\arg \sqrt{t}<0$. Since the monodromy data is explicitly given by (28) and (29), we thus conclude (α, β) and ($\tilde{\alpha}, \tilde{\beta})$ should satisfy

$$
\begin{aligned}
& 2^{-9 E / 8} \frac{i \beta}{\Gamma\left(-\frac{E}{4}+1\right)}+2^{9 E / 8} e^{-i \pi E / 4} \frac{\alpha}{\Gamma\left(\frac{E}{4}+1\right)} \\
& \quad=2^{-9 \tilde{E} / 8} \frac{i \tilde{\beta}}{\Gamma\left(-\frac{\tilde{E}}{4}+1\right)}-2^{9 \tilde{E} / 8} e^{i \pi \tilde{E} / 4} \frac{\tilde{\alpha}}{\Gamma\left(\frac{\tilde{E}}{4}+1\right)} \\
& 2^{9 E / 8} \frac{\alpha}{\Gamma\left(\frac{E}{4}+1\right)}=2^{9 \tilde{E} / 8} \frac{\tilde{\alpha}}{\Gamma\left(\frac{\tilde{E}}{4}+1\right)}
\end{aligned}
$$

with $E=-4 \sqrt{2} \alpha \beta$ and $\tilde{E}=-4 \sqrt{2} \tilde{\alpha} \tilde{\beta}$. By (30) we find that (α, β) and $(\tilde{\alpha}, \tilde{\beta})$ are different in general. This is the Stokes phenomenon for $q(t, \eta ; \alpha, \beta)$ and (30) gives their connection formula.

Acknowledgment. We are deeply grateful to Prof. Tatsuya Koike for his kind help in drawing Stokes curves.

References

[1] T. Aoki, T. Kawai and Y. Takei, WKB analysis of Painlevé transcendents with a large parameter. II. Multiple-scale analysis of Painlevé transcendents, in Structure of solutions of differential equations (Katata/Kyoto, 1995), 1-49, World Sci. Publ., River Edge, NJ, 1996.
[2] M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function, Phys. D 2 (1981), no. 2, 306-352.
[3] T. Kawai and Y. Takei, WKB analysis of Painlevé transcendents with a large parameter. I, Adv. Math. 118 (1996), no. 1, 1-33.
[4] T. Kawai and Y. Takei, WKB analysis of Painlevé transcendents with a large parameter. III. Local reduction of 2-parameter Painlevé transcendents, Adv. Math. 134 (1998), no. 1, 178-218.
[5] A. V. Kitaev and A. H. Vartanian, Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I, Inverse Problems 20 (2004), no. 4, 1165-1206.
[6] T. Koike, On the exact WKB analysis of second order linear ordinary differential equations with simple poles, Publ. Res. Inst. Math. Sci. 36 (2000), no. 2, 297-319.
[7] Y. Ohyama et al., Studies on the Painlevé equations. V. Third Painlevé equations of special type $P_{\mathrm{III}}\left(D_{7}\right)$ and $P_{\mathrm{III}}\left(D_{8}\right)$, J. Math. Sci. Univ. Tokyo 13 (2006), no. 2, 145-204.
[8] H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), no. 1, 165-229.
[9] Y. Takei, An explicit description of the connection formula for the first Painlevé equation, in Toward the exact WKB analysis of differential equations, linear or non-linear (Kyoto, 1998), 271-296, Kyoto Univ. Press, Kyoto, 2000.
[10] H. Wakako: WKB analysis for the third Painlevé equation of type (D_{8}), Master's thesis, Kyoto University, 2007. (in Japanese).

[^0]: 2000 Mathematics Subject Classiffcation. 34M55, 34M60, 34M40.
 *) Kaiyo Academy, 3-12-1 Kaiyo-cho, Gamagori-shi, Aichi 443-8588, Japan.
 **) Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 6068502, Japan.

