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Estimates of the proximate function of differential polynomials
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Abstract:

We obtain a Clunie type theorem for a rather general form of functional equations

involving differential polynomials. Our theorems can give a much sharper estimate on the error
term of the proximity function of solutions of differential equations and functional equations than
the upper bound obtained by Clunie, Doeringer, He-Xiao, Korhonen and etc. In particular, our
theorem can also be applied to study various types of Painlevé differential equations.
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1. Introduction. Let f denote a function
meromorphic on the complex plane. Nevanlinna the-
ory of meromorphic functions has played an impor-
tant role in the study of complex differential equa-
tions. One of the quantities that people always want
to know in solving a complex differential equation
is m(r, f), the proximity function of its solution. In
1960’s, J. Clunie [2] proved a lemma giving an esti-
mate of a proximity functions, which has numerous
applications to complex functional and differential
equations. Recently, Shimomura (e.g. see: [9, 10])
and Steinmetz [13] use this kind of lemma in their
studies in Painlevé differential equations. Since Clu-
nie’s work in 1960, there are several generalizations
based on the Clunie’s lemma. I. Laine called them
as Clunie type lemmas in his book [7, Lemmas 2.4.1-
2.4.5; pg.39-55]. In 2004, R. Korhonen [6] studied
Clunie type lemma and had a sharper estimate of
the error term in the Clunie’s lemma. In 2006, Ko-
rhonen [6] corrected several errors in his theorems in
[6] and improved an estimate of the error terms in
two Clunie type lemmas. In this paper, we derive
a better estimate on proximity functions than what
were obtained by Clunie [2], Doeringer [3], He-Xiao
[5] and Korhonen [6]. The general treatment of Clu-
nie type lemmas is to utilize a logarithmic derivative
lemma as in [2, 3, 5, 6]. Here we not only use a
modified version of Gol’dberg-Grinshtein’s logarith-
mic derivative lemma, but also treat every step with
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Nevanlinna’s value distribution theory, differential polynomial, Painlevé equa-

thorough analyses and technical calculations. The
technique used in this paper can be used to deal with
other kind of problems to get a better error term in
the case of seeking sharper upper bound. Our main
theorems enable one to derive, with easy, more pre-
cise estimates of the proximity functions m(r, f) and
m(r,1/(f —a)), for any value a # oo, for many well-
known meromorphic functions such as expz, sinz
and for meromorphic solutions f of various types of
Painlevé differential equations. Moreover, we also
show a sharper error term than that of Mohon’ko’s
result in [8].

2. Main results. Let n be a positive integer
and

P(z,f) =Y pr(2)f*(2)

a polynomial of f with meromorphic function co-
efficients py’s. Let A = {( Do, ,A)

Aj is a non-negative integer and 0 < j < p < oo}
be an index set with a finite cardinal number and let

A%z, ) = D ax(@) ()M o (f)

AEA

be a polynomial of f and its derivatives with mero-
morphic coefficients ay’s. Clearly, P(z, f) is a special
form of A*(z, f). In the sequel, notation A*(z, f),
an alphabet A with an asterisk, denotes a differ-
ential polynomial in general sense in f, while no-
tation A(z, f), an alphabet A without an asterisk,
denotes a polynomial of f with meromorphic coeffi-
cients. Denote the length of A = (Ao, A1, -+ ,A,) € A

o
and the total degree of A*(z, f) by |A| = Z Aj and
=0

d(A*) = maxyena |A|; and the weight length of A\ and
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the weight degree of A*(z, f) by w(\) = > i_; i)
and w(A*) = maxyea w(N), respectively.

We begin with the Clunie’s lemma in the form
given by Laine [7].

Theorem A (Clunie). Let f be a transcenden-
tal meromorphic solution of

[ A (2, f) = B (2, f),

where A* and B* have meromorphic coefficients a)
and b, respectively, with

=o(T(r,f)) and m(r,b,)
If n > d(B*), then

m(r, A*(z, f)) = o(T'(r, f))

for all large v outside a set of a finite Lebesgue mea-
sure.

Theorem B (Korhonen).
the equation in Theorem A with

m(r,ay)

= o(T(r, f))-

Suppose f satisfies

Az ) =D ax) oM (fP) Y and
A€A
Z by (2) frO(f")0 - (f @)
YEA
If n > d(B*), Then, there exists ro such that
m(r, A*(z, f)) <
T (p, f)
)+ gt 2
% % rp—r)

+Y m(r,ax) + Y m(r,by) +O(1)
A Y

forallry <r < p < oo.

Note the author in [6] has an explicit expression
of constant term in Theorem B.

Theorem C (He-Xiao). Let f be a transcen-
dental meromorphic solution of

P(Za f)A*(Z7f) = Q(va);

where all coefficients ps, q; and ay of P, Q and
A* satisfy, m(r,ps) = m(r,1/ps) = m(r,qs) =
m(r,ax) = O(log(rT'(r, f))). If d(P) > d(Q), then

m(r, A*(z, f)) = o(T(r, f))

for all large v outside a set of a finite Lebesgue mea-
sure.

Theorem D (Mohon’ko). Let f be a transcen-
dental meromorphic solution of the differential equa-
tion
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Az, f) =0
with polynomial coefficients. If there is a constant c

with A*(z,c) £ 0, then
m(r,1/(f = ¢)) = o(T(r, f))

as v — oo outside of a possible exceptional set of
finite Lebesgue measure.
The following is the main result in this paper.
Theorem 1. Suppose that f is a meromorphic
solution of the differential equation

P(z, [)A™ (2, f) = B*(z, f).

If d(P) > d(B*), then, there is a constant ro such
that,
A*(z,f)) <

max(w(A*), w(B*))log"

m(r,
PT(p, f)
r(p—r)

+ Zm(r, ay) + Zm(r, by)
A B!

+0)

m(r,1/pn)

for any p > 1 > 1o, where ¢ = >, |A|.

Remark. The condition d(P) > d(B*) in the
theorem is necessary.
solution of the differential equation f2 =1 —
We can take

P(Zaf) af):f and B*(z7f):1—(fl)2,

Thus, d(P) < d(B*) and the conclusion of the theo-
rem is not true.

Let ¢ and ¢ be increasing functions in (0, c0)
with

For example, f = sinz is a

(f)2.

=A"(z

/ © dr - d
——— < o0 an — =
e TY(r) e O(r)
Applying a growth lemma (e.g. see. [1, Pg. 99])
to Theorem 1, we have

Corollary 1. Under the assumptions of Theo-
rem 1, we have

f)) <
max(w(A*), w(B

m(r, A*(z

T(r, N)Y(T(r, f))
(r)

")) log™

+ Zm(r, ay) + Zm(r, by)
A B!
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n—1 n
m(r, pj c

+c§ (7,])+ 1+§ — | m(r,1/pn)
j=0 J =17

+0(1),

for all large r outside a set E with [, dr/¢(r) < cc.

By choosing a different i) and ¢, we can control
the upper bound of m(r, A*(z, f)) and the excep-
tional set E. For instance, when we take ¢(r) = r
and ¢(r) = 1, our Corollary 1 gives a better estimate
on the proximity function than those in Theorems A
and C.

As a by-product of these ideas, we also can im-
prove A. Mohon’ko and V. Mohon’ko’s result in [§]
as follows:

Theorem 2. Let f be a transcendental mero-
morphic solution of the differential equation

A*(z, f)=0.

If there is a constant ¢ with A*(z,c) £ 0, then, there
exists a positive constant ro such that

" (”’ - c> < w(A7) log” %

m ( ﬁ) + S miran) +0(),

for any p > 1r > ro.
Corollary 2. Under the assumptions of Theo-
rem 2, there is a positive constant ro such that

1 <
m<r’f—c>‘

w(A*) log™

T(r, YP(T(r, f))
(r)

+m (r, ﬁ) + ;m(r, ax) + O(1),

for all large v outside a set E with

dr/¢(r) < .

We give some applications of Thbéorems 1 and 2
as follows:
Example 1. Let w(z) be a meromorphic solu-
tion of the fourth type Painlevé equation
1

3
ww” = E(w’)2 + 51114 + 42w + 2(2% = Bw + 7.

Rewrite it as

1
<;w2 + 4zw> w? = ww” — E(w’)2 —2(22 = Bw —~
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3
with P(z,w) = 51112 + 42w, A*(z,w) = w? and
B*(z,w) = ww” — (w')? = 2(22 — B)w — 7y in Theo-
rem 1. Knowing that d(P) = 2 = d(B*), w(4*) =0,
w(B*) =2 and T(r,w) < Cr*in [9, 11, 13], we have,
from Theorem 1, that, for all large 7,

m(r,w) < 5logr + O(1).

Korhonen [6, (8.3)] proves m(r,w) < 15logr + O(1).
In many references, one can ounly get m(r,w) <
O(logr). If v # 0, then, we obtain from Theorem
2 that for any complex number a, m(r,1/(w —a)) <
9logr + O(1). If v = 0, then, for any non-zero com-
plex number a, m(r,1/(w —a)) < 9logr + O(1).

Example 2. Let w(z) be a meromorphic so-
lution of the second type Painlevé equation w’” =
2w + zw + a. Rewrite it as 2uw)w? = w" —
2w — a with P(z,w) = 2w, A*(z,w) = w? and
B*(z,w) = w" — zw — « in Theorem 1. Knowing
that T(r,w) < Cr® in [9, 11, 13], we have, from
Theorem 1, that, m(r,w?) < 4logr + logr + O(1).
Therefore, m(r,w) < 2logr + O(1) for all large r.
Korhonen in [6] proves m(r,w) < 5logr + O(1)
and one gets m(r,w) = O(logr) before. If o # 0,
then, we obtain from Theorem 2 that for any com-
plex number a, m(r,1/(w — a)) < blogr + O(1). If
a = 0, then, for any non-zero complex number a,
m(r,1/(w—a)) < 5logr + O(1).

Example 3. We also can use Theorems 1 and
2 to estimate the proximate functions for many clas-
sical meromorphic functions, such as, e?, sin z, cos z,
tan z and etc. For instance, let f(z) = sin z. It satis-
fies the equations f2 — 1+ (f)2 =0and f’+ f = 0.
Recall that T'(r, f) = 2r/m + O(1). For any complex
number a, applying Theorem 2 to f2—1+ (f')2 =0
ifa # +1 and to f/ + f = 0 if a = +1, we have
m(r,1/(sinz —a)) = O(1). This is much better than
m(r,1/(sinz —a)) = O(logr) as stated in many ref-
erences.

3. Proofs of results.
lemmas in our proofs.

Lemma 1. Let f be a mon-constant mero-
morphic function in the complex plane. Let s be a
positive integer and o a positive real number with
0 < as < 1/2. Then, there are two constants ro > 1
and C = C(s,a,19) such that, for all ro <1 < p,

S e | de pT(p, /)\*
/0 7 et §§C<T(p—7“)> '

The lemma, cited here is a simple version of the result

We need following
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of Z. Ye [14, Lemma 6]. The proof is based on a result
of Gol’dberg-Grinshtein [4].

Lemma 2. Let k be a positive integer and let f
be a meromorphic function and

g =19/ /1<i<k
Assume that A\j(1 < j < k) are non-negative inte-
gers. Then, for any B > 0 with 0 < 52?:1 JA <
1/2, there are two positive constants ro and C =
C(k, Zle Aj, B,10) such that, for all ro <1 < p,

koo
/%f‘“g |ﬁ>\ d9 (PT(Pa f)>ﬁzj_l])\J

j < LS LA )
0

r(p—r)

Proof. The Holder inequality and Lemma 1 give

/%ﬁmw I_[(/ |g|ﬁ“‘ji)/
ﬁ(pT pvf))m".

It follows the lemma is proved.
Proof of Theorem 1. Let

I /\

Thus,
n—1
(1) m(r, ’ZL) § m(r,p])
J=0 neJ
"1
+ Z; m(r,1/pn) + O(1).
Jj=1

Assume that, for any fixed » > 0, and z = re®?,

E=E(r)={0¢c0,2m): [f(2)] <u(2)}

and F' = F(r) = [0,27) \ E(r). Define xg(d) = 1
when 6 € E; and otherwise xg(6) = 0.

Noting for any «« > 0 and xj > 0, there is a posi-
tive constant C(«a) such that (3° zx)* < C(a) > xf,
we obtain, set g; = fU)/f,

(2) |A* (2, )]* <
"
C@) > [laa I 1£91
j=1

A

n
=C()>_ | laa ™M [T g5

A j=1
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1/2

1/2 L
. (z mﬁlﬁa) S [Tl
A A

j=1

So, for any 6 € E(r), we have

1/2
B AN <Cla (Zlaxuk'l2a>

1/2

xe(0).

nw
) | (I
A

Jj=1

For § € F(r), we get |f(2)| > u(z) > 2|pn_;/pal'/?

for j=1,--- ,n. Thus,
. J

[Pn—] < ﬂ for j=1,--+,n
[Pn| 2

Therefore,

 |Pnj pallf1"
|P(z, /)l = lpnllf] ;::1 7Pl o

Set hy, = fF)
and noting

/f. Similar to the computation of (2),

|f(2)] > u(z) > 1, for € F(r); and d(P) > d(B"),

we have, for any small a > 0,

@ 14t = |5
L Y fo(F ... W)\ v ’
< <Ipn||f|" Zvjbw( VFOF) T (F) )

IN

<%;|bw| i mw)a
<o () ) <|b | H mw)

<o (7)) (Z' ') )

1/2
> (H |hk|2a%> xr(0)-

y k=1

Combining (3) and (4) gives
(5)  m(r,A") =

e do
- logt |A* a””
S st e
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+ % /027r log™* (; Ibwl2a> g
+ é/o% log™ <%)a % +0(1)
+ i OQW log™ ;f{l |g; |2 (9)%
+ % OQW 10g+§: (E Ihkl2‘”k> Xﬂﬂ%

=h+L+I+I1I,+1;+0(1).

Therefore, we obtain

6) L<) mira)+ <Z |A|> m(r, u)
A

A
+ O(1),
and,
(7)) L+13< Zm(r, by) +m(r,1/ps) + O(1).

Now to estimate I, and I5 together. Indeed, set

> 11912 ) xe(6)

A =1
Z H |hj|7k2a XF(H)a
v J=1

then, by applying the concavity of log™ and Lemma
2, we have

2 do
8) ILi+1Is= —/ log™ V(r, 0)5-

ot [V

<Z PT/% ))QO‘ZM
+ Z( £>2azm> +0(1)

+ T (p, f)
r(p—r)

It follows from (6), (1), (7), (8) and (5) that the
theorem is proved.

| /\

< max(w(A*), w(B"))log +0(1).
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Proof of Theorem 2. Without loss of the gen-
erality, we can assume that A*(z,0) # 0, otherwise
we replace f by f — c¢. Thus, we may write

Z ax H (FONN

A>1  g=1
= ap + B* ( 7f)a
where ag(z) = A*(2,0) £ 0. Set E = E(r) = {0 €
(0,27] : |f(re®)] < 1}. Therefore, for any small
a > 0, and noting A*(z, f) = 0, we have

A%z, f) =

m(r,%):/Elo =

f‘%

Lo (BN L
aJg f aog| 2w
A\
1 ! de
< —~log" Z/ —
[AI>1 2m
1
— o(1).

The rest of proof of the theorem follows from
Lemma 2 as we have done in the proof of Theorem
1.
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