# On meromorphic functions sharing two one-point sets and two two-point sets 

By Manabu Shirosaki and Masaharu Taketani<br>Department of Mathematical Sciences, College of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan<br>(Communicated by Shigefumi Mori, m.J.A., March 12, 2007)


#### Abstract

We give a uniqueness theorem of two meromorphic functions sharing two onepoint sets and two two-point sets CM.


Key words: Uniqueness theorem; shared values; Nevanlinna theory.

1. Introduction. For nonconstant meromorphic functions $f$ and $g$ on $\boldsymbol{C}$ and a finite set $S$ in $\hat{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$, we say that $f$ and $g$ share $S$ CM (counting multiplicities) if $f^{-1}(S)=g^{-1}(S)$ and if for each $z_{0} \in f^{-1}(S)$ two functions $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ have the same multiplicity of zero at $z_{0}$, where the notations $f-\infty$ and $g-\infty$ mean $1 / f$ and $1 / g$, respectively. In particular if $S$ is a one-point set $\{a\}$, then we say also that $f$ and $g$ share $a$ CM.

In $[\mathrm{N}], \mathrm{R}$. Nevanlinna showed
Theorem A1. Let $f$ and $g$ be two distinct nonconstant meromorphic functions on $\boldsymbol{C}$ and $a_{1}, \cdots, a_{4}$ four distinct points in $\hat{\boldsymbol{C}}$. If $f$ and $g$ share $a_{1}, \cdots, a_{4}$ $C M$, then $f$ is a Möbius transformation of $g$ and there exists a permutation $\sigma$ of $\{1,2,3,4\}$ such that $a_{\sigma(3)}, a_{\sigma(4)}$ are Picard exceptional values of $f$ and $g$ and the cross ratio $\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}, a_{\sigma(4)}\right)=-1$.

We get by this result a uniqueness theorem of meromorphic functions as a following corollary:

Corollary A2. Let $f$ and $g$ be two nonconstant meromorphic functions on $\boldsymbol{C}$ sharing distinct four points $a_{1}, a_{2}, a_{3}, a_{4} C M$. If any cross ratio of $a_{1}, a_{2}, a_{3}, a_{4}$ is not -1 , then $f=g$.

Also, in [T] Tohge considered two meromorphic functions sharing $1,-1, \infty$ and a two-point set containing none of them.

Theorem B. Let $f$ and $g$ be two nonconstant meromorphic functions on $\boldsymbol{C}$ sharing $1,-1, \infty$ and a two-point set $S=\{a, b\} C M$ respectively, where $a, b \neq 1,-1, \infty$. If $a+b \neq 0, a b \neq 1, a+b \neq$ $2, a+b \neq-2,(a+1)(b+1) \neq 4$ and $(a-1)(b-1) \neq 4$, then $f=g$.

By Tohge's result we can get a uniqueness theorem of meromorphic functions sharing three values and one two-point CM since given three points
are mapped to $1,-1, \infty$, respcetively, by a suitable Möbius transformation.

In this paper we consider the uniqueness problem of meromorphic functions on $\boldsymbol{C}$ sharing two values and two two-point sets CM and it is enough to consider the case where meromorphic functions on $\boldsymbol{C}$ sharing $0, \infty$ CM by the same reason as above.

We prepare a terminology to state our result.
Definition 1.1. Let $\mathcal{A}=\left\{S_{1}, \cdots, S_{q}\right\}$ be a finite collection of pairwise disjoint finite subsets of $\hat{\boldsymbol{C}}$ and let $T$ be a Möbius transformation. We call a point $z_{0}$ a wandering point of $T$ for $\mathcal{A}$ if $z_{0}$ and $T\left(z_{0}\right)$ do not belong to the same $S_{j}(j=0,1, \cdots, q)$, where $S_{0}=\hat{\boldsymbol{C}} \backslash\left(\cup_{j=1}^{q} S_{j}\right)$.

Theorem 1.2. Let $S_{1}$ and $S_{2}$ be two disjoint two-point subsets in $\boldsymbol{C}$ not containg 0. Assume that $f$ and $g$ be two nonconstant meromorphic functions on $\boldsymbol{C}$ sharing $0, \infty, S_{1}, S_{2} C M$. If for the collection $\left\{\{0\},\{\infty\}, S_{1}, S_{2}\right\}$ each Möbius transformation except the indentity has at least three wandering points, then $f=g$.

The six conditions about $a$ and $b$ in Theorem B imply that for the collection $\{\{1\},\{-1\},\{\infty\},\{a, b\}\}$ each Möbius transformation except the identity has at least three wandering points.

Lemma 1.3. Let $\mathcal{A}=\left\{S_{1}, \cdots, S_{q}\right\}$ be a finite collection of pairwise disjoint finite subsets of $\boldsymbol{C}$. Let $f$ and $g$ be two nonconstant meromorphic function on $\boldsymbol{C}$ with a relation $f=T(g)$, where $T$ is a Möbius transformation not the identity. If $f$ and $g$ share each $S_{j} C M(j=1, \cdots, q)$, then $T$ has at most two wandering points for $\mathcal{A}$.

Proof. If $z_{0}$ is not a Picard exceptional value of $g$, then $z_{0}$ is not a wandering point of $T$ for $\mathcal{A}$. Hence, by the little Picard Theorem, we get the conclusion.

[^0]
## 2. Representations of rank $N$ and some

 lemmas. In this section we introduce the definition of representations of rank $N$. Let $G$ be a torsion-free abelian multiplicative group, and consider a $q$-tuple $A=\left(a_{1}, a_{2}, \ldots, a_{q}\right)$ of elements $a_{i}$ in $G$.Definition 2.1 Let $N$ be a positive integer. We call integers $\mu_{j}$ representations of rank $N$ of $a_{j}$ if

$$
\begin{equation*}
\prod_{j=1}^{q} a_{j} \varepsilon^{\varepsilon_{j}}=\prod_{j=1}^{q} a_{j}^{\varepsilon_{j}^{\prime}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}=\sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j} \tag{2.2}
\end{equation*}
$$

are equivalent for any integers $\varepsilon_{j}, \varepsilon_{j}^{\prime}$ with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$. In particular we call representations of rank 1, simply, representations.

Remark. For the existence of representations of rank $N$, see [S]. However, according to the construction of them in $[\mathrm{S}],(2.1)$ always implies (2.2) for any integers $\varepsilon_{j}, \varepsilon_{j}^{\prime}$. Hence, in Definition 2.1, it is significant that (2.2) implies (2.1) for any integers $\varepsilon_{j}, \varepsilon_{j}^{\prime}$ with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$.

We introduce the following Borel's Lemma, whose proof can be found, for example, on p. 186 of [La].

Lemma 2.2. If entire functions $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ without zeros satisfy

$$
\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}=0
$$

then for each $j=0,1, \cdots, n$ there exists some $k \neq j$ such that $\alpha_{j} / \alpha_{k}$ is constant.

Now we investigate the torsion-free abelian multiplicative group $G=\mathcal{E} / \mathcal{C}$, where $\mathcal{E}$ is the abelian group of entire functions without zeros and $\mathcal{C}$ is the subgroup of all non-zero constant functions.

Let $\alpha_{1}, \cdots, \alpha_{q}$ be elements in $\mathcal{E}$. We represent by $\left[\alpha_{j}\right]$ the element of $\mathcal{E} / \mathcal{C}$ with the representative $\alpha_{j}$. Take representations $\mu_{j}$ of rank $N$ of $\left[\alpha_{j}\right]$. For $\prod_{j=1}^{q} \alpha_{j}{ }^{\varepsilon_{j}}$ we define its index by $\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}$. The indices depend only on $\left[\prod_{j=1}^{q} \alpha_{j}{ }^{\varepsilon_{j}}\right]$ under the condition $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$.

We use the following Lemma in the proof of Theorem 1.2 which is an application of Lemma 2.2.

Lemma 2.3. Assume that there is a relation $\Psi\left(\alpha_{1}, \cdots, \alpha_{q}\right) \equiv 0$ where $\Psi\left(X_{1}, \cdots, X_{q}\right) \in$ $\boldsymbol{C}\left[X_{1}, \cdots, X_{q}\right]$ is a nonconstant polynomial of degree at most $N$ of $X_{1}, \cdots, X_{q}$. Then each term $a X_{1}{ }^{\varepsilon_{1}} \cdots X_{q}{ }^{\varepsilon_{q}}$ of $\Psi\left(X_{1}, \cdots, X_{q}\right)$ has another term $b X_{1}{ }^{\varepsilon_{1}^{\prime}} \cdots X_{q}{ }^{\varepsilon_{q}^{\prime}}$ such that $\alpha_{1}{ }^{\varepsilon_{1}} \cdots \alpha_{q}{ }^{\varepsilon_{q}}$ and $\alpha_{1} \varepsilon_{1}^{\prime} \cdots \alpha_{q}{ }^{\varepsilon_{q}^{\prime}}$ have the same indices, where $a$ and $b$ are non-zero constants.

Proof. By using Lemma 2.2 each term $a X_{1}{ }^{\varepsilon_{1}} \cdots X_{q}{ }^{\varepsilon_{q}}$ has another term $b X_{1}{ }^{\varepsilon_{1}^{\prime}} \cdots X_{q}{ }^{\varepsilon_{q}^{\prime}}$ such that $\left(\alpha_{1}{ }^{\varepsilon_{1}} \cdots \alpha_{q}{ }^{\varepsilon_{q}}\right) /\left(\alpha_{1}{ }^{\varepsilon_{1}^{\prime}} \cdots \alpha_{q}{ }^{\varepsilon_{q}^{\prime}}\right)$ is constant. This implies the conclusion of Lemma.
3. Proof of Theorem 1.2. Let $S_{j}$ be defined by the equation $P_{j}(z):=z^{2}+a_{j} z+b_{j}=0$ and $\xi_{j}, \eta_{j}$ its elements. By assumption there exist entire functions without zeros $\alpha_{0}, \alpha_{1}, \alpha_{2}$ such that

$$
\begin{equation*}
f=\alpha_{0} g \tag{3.1}
\end{equation*}
$$

and
(3.2) $f^{2}+a_{j} f+b_{j}=\alpha_{j}\left(g^{2}+a_{j} g+b_{j}\right)(j=1,2)$.

Now we assume $f \neq g$.
Proposition 3.1. $f^{-1}\left(\xi_{j}\right) \neq g^{-1}\left(\eta_{j}\right)(j=$ $1,2)$.

Proof. Assume that $f^{-1}\left(\xi_{1}\right)=g^{-1}\left(\eta_{1}\right)$. Then there exist entire functions without zeros $\beta$ and $\gamma$ such that

$$
f-\xi_{1}=\beta\left(g-\eta_{1}\right), f-\eta_{1}=\gamma\left(g-\xi_{1}\right)
$$

Note that any of $\beta, \gamma, \beta / \gamma, \alpha_{0} / \beta, \alpha_{0} / \gamma$ is not constant since $f$ is not any Möbius transformation of $g$ by Lemma 1.3. By these two equations and (3.1) we get
$\left(\xi_{1}-\eta_{1}\right)\left(\beta \gamma-\alpha_{0}\right)-\eta_{1} \beta+\xi_{1} \gamma-\xi_{1} \alpha_{0} \gamma+\eta_{1} \alpha_{0} \beta=0$.
It follows from this, by Lemma 2.2 and the note above, that $\beta \gamma / \alpha_{0}, \alpha_{0} \beta / \gamma$ and $\alpha_{0} \gamma / \beta$ are constant. However, we can induce a contradiction $\beta^{2}=$ $\beta\left(\alpha_{0} \beta\right) / \alpha_{0}=c_{1} \beta \gamma / \alpha_{0}=c_{1} c_{2}$, where $c_{1}$ and $c_{2}$ are constants.

The case of $f^{-1}\left(\xi_{2}\right)=g^{-1}\left(\eta_{2}\right)$ is the same.
Proposition 3.2. Any of $\alpha_{j}$ is not constant.
Proof. If $\alpha_{0}$ is constant $c \neq 0$, then for the Möbius transformation $T(z)=c z$ we have $f=T(g)$. By Lemma 1.3 and the assumption of Theorem 1.2 we have $c=1$, which contradicts to $f \neq g$. Note that $f$ is not any Möbius transformation of $g$.

Next assume $\alpha_{1}$ is constant $c \neq 0$.

If $c=1$, then $f$ is a Möbius transformation of $g$. However it does not occur by Lemma 1.3. So $c \neq 1$ and it follows from (3.2) for $j=1$ that $f$ and $g$ does not simultaneously take any finite value outside $S_{1}$. Therefore $f^{-1}\left(\eta_{2}\right)=g^{-1}\left(\xi_{2}\right)$, which is impossible by Proposition 3.1.

The case where $\alpha_{2}$ is constant is the same.
Proposition 3.3. Any of $\alpha_{j} / \alpha_{0}(j=1,2)$ is not constant.

Proof. Assume that $\alpha_{1} / \alpha_{0}$ is constant $c$. Then

$$
\frac{f^{2}+a_{1} f+b_{1}}{f}=c \frac{g^{2}+a_{1} g+b_{1}}{g} .
$$

If $c=1$, then $f=g$ or $f g=b_{1}$. In the latter case $f$ is a Möbius transformation of $g$.

The case of $c \neq 1$ induces a contradiction $f^{-1}\left(\xi_{2}\right) \neq g^{-1}\left(\eta_{2}\right)$ to Proposition 3.1.

The case of $\alpha_{2} / \alpha_{0}$ is constant is the same.
Proposition 3.4. The entire function $\alpha_{2} / \alpha_{1}$ is not constant.

Proof. Assume that $\alpha_{2} / \alpha_{1}$ is a constant $c$, then

$$
\begin{equation*}
\frac{f^{2}+a_{2} f+b_{2}}{f^{2}+a_{1} f+b_{1}}=c \frac{g^{2}+a_{2} g+b_{2}}{g^{2}+a_{1} g+b_{1}} . \tag{3.4}
\end{equation*}
$$

If $c=1$, then we have

$$
\left(a_{2}-a_{1}\right) f g+\left(b_{2}-b_{1}\right)(f+g)+\left(a_{1} b_{2}-a_{2} b_{1}\right)=0
$$

because of $f \neq g$, which implies $f$ is a Möbius transformation of $g$.

Hence $c \neq 1$ and it follows from (3.4) that $f$ and $g$ does not simultaneously take any value outside $S_{1} \cup$ $S_{2}$ in $\hat{\boldsymbol{C}}$. In particular $f$ and $g$ are entire functions without zeros. By applying Borel's Lemma to (3.2) for $j=1$, we can induce $f^{3}=\alpha_{1}^{3} g^{3}$. However, by this and (3.1), $\left(\alpha_{1} / \alpha_{0}\right)^{3}=1$, which contradicts to Proposition 3.3.

Proposition 3.5. Any of $\alpha_{0}{ }^{2} / \alpha_{j}(j=1,2)$ is not constant.

Proof. Assume that $\alpha_{0}{ }^{2} / \alpha_{1}$ is a constant $c$, then

$$
\begin{equation*}
\frac{f^{2}}{f^{2}+a_{1} f+b_{1}}=c \frac{g^{2}}{g^{2}+a_{1} g+b_{1}} . \tag{3.5}
\end{equation*}
$$

If $c=1$, then $a_{1} f g+b_{1}(f+g)=0$, which implies $f$ is a Möbius transformation of $g$.

Hence $c \neq 1$ and it follows from (3.4) that $f$ and $g$ does not simultaneously take any value outside $S_{1} \cup\{0\}$ in $\hat{\boldsymbol{C}}$. Hence $f^{-1}\left(\xi_{2}\right)=g^{-1}\left(\eta_{2}\right)$, which contradicts to Proposition 3.1.

The case where $\alpha_{0}^{2} / \alpha_{1}$ is constant is the same.

By substituting (3.1) into (3.2) we have
$\left(\alpha_{0}^{2}-\alpha_{j}\right) g^{2}+a_{j}\left(\alpha-\alpha_{j}\right) g+b_{j}\left(1-\alpha_{j}\right)=0(j=1,2)$.
Consider the resultant of these polynomials of $g$, then

$$
\begin{aligned}
& 0= \\
& \left|\begin{array}{cccc}
\alpha_{0}^{2}-\alpha_{1} & a_{1}\left(\alpha_{0}-\alpha_{1}\right) & b_{1}\left(1-\alpha_{1}\right) & 0 \\
0 & \alpha_{0}{ }^{2}-\alpha_{1} & a_{1}\left(\alpha_{0}-\alpha_{1}\right) & b_{1}\left(1-\alpha_{1}\right) \\
\alpha_{0}{ }^{2}-\alpha_{1} & a_{1}\left(\alpha_{0}-\alpha_{1}\right) & b_{1}\left(1-\alpha_{1}\right) & 0 \\
0 & \alpha_{0}{ }^{2}-\alpha_{1} & a_{1}\left(\alpha_{0}-\alpha_{1}\right) & b_{1}\left(1-\alpha_{1}\right)
\end{array}\right| \\
& =-2 b_{1} b_{2} \alpha_{1} \alpha_{2} \alpha_{0}^{4}+b_{1} \alpha_{1}^{2} \alpha_{0}{ }^{4}+b_{2} \alpha_{2}^{2} \alpha_{0}{ }^{4} \\
& \\
& +b_{1}\left\{a_{2}\left(a_{1}-a_{2}\right)-2\left(b_{1}-b_{2}\right)\right\} \alpha_{1} \alpha_{0}{ }^{4} \\
& \\
& +b_{2}\left\{a_{1}\left(a_{2}-a_{1}\right)-2\left(b_{2}-b_{1}\right)\right\} \alpha_{2} \alpha_{0}^{4} \\
& \\
& +\left\{\left(a_{1}-a_{2}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)+\left(b_{1}-b_{2}\right)^{2}\right\} \alpha_{0}^{4} \\
& \\
& +\left\{P_{32}\left(\alpha_{1}, \alpha_{2}\right)+P_{31}\left(\alpha_{1}, \alpha_{2}\right)\right\} \alpha_{0}^{3} \\
& \\
& +\left\{P_{23}\left(\alpha_{1}, \alpha_{2}\right)+P_{22}\left(\alpha_{1}, \alpha_{2}\right)+P_{21}\left(\alpha_{1}, \alpha_{2}\right)\right\} \alpha_{0}^{2} \\
& \\
& +\left\{P_{13}\left(\alpha_{1}, \alpha_{2}\right)+P_{12}\left(\alpha_{1}, \alpha_{2}\right)\right\} \alpha_{0} \\
& \\
& +\left\{\left(a_{1}-a_{2}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)+\left(b_{1}-b_{2}\right)^{2}\right\} \alpha_{1}^{2} \alpha_{2}^{2} \\
& \\
& +b_{1}\left\{a_{2}\left(a_{1}-a_{2}\right)-2\left(b_{1}-b_{2}\right)\right\} \alpha_{1} \alpha_{2}^{2} \\
& \\
& +b_{2}\left\{a_{1}\left(a_{2}-a_{1}\right)-2\left(b_{2}-b_{1}\right)\right\} \alpha_{1}^{2} \alpha_{1} \\
& \\
& +b_{2} \alpha_{1}^{2}+b_{1} \alpha_{2}^{2}-2 b_{1} b_{2} \alpha_{1} \alpha_{2} .
\end{aligned}
$$

Here $P_{k j}(X, Y)$ are homogeneous polynomials of degree $j$ about $X$ and $Y$, and in particular $P_{k 3}(X, Y)$ have only two terms $X^{2} Y$ and $X Y^{2}$ with some coefficients.

Let $\mu_{0}, \mu_{1}, \mu_{2}$ be representations of $\left[\alpha_{0}\right],\left[\alpha_{1}\right],\left[\alpha_{2}\right]$ with rank 6 . Now we find the terms with the minimal or maximal indices in the expansion above. By assumption and Propositions above $\mu_{j} \neq 0(j=0,1,2), \mu_{0} \neq \mu_{j}, 2 \mu_{0} \neq \mu_{j}(j=1,2)$ and $\mu_{1} \neq \mu_{2}$. We may assume (A) $\mu_{0}<\mu_{1}<\mu_{2}$ or (B) $\mu_{1}<\mu_{0}<\mu_{2}$.

In the case (A) it is enough to consider only four cases (i) $0<\mu_{0}<\mu_{1}<\mu_{2}$; (ii) $\mu_{0}<0<\mu_{1}<\mu_{2}$; (iii) $\mu_{0}<\mu_{1}<0<\mu_{2}$; (iv) $\mu_{0}<\mu_{1}<\mu_{2}<0$.

In the case (i) if $\mu_{0}>\frac{1}{2} \mu_{1}$, then only the term $\alpha_{1}{ }^{2}$ has the minimal index $2 \mu_{1}$; if $\mu_{0}<\frac{1}{2} \mu_{1}$, then only the term $\alpha_{1}{ }^{4}$ has the minimal index $4 \mu_{0}$. In the case (ii) the coefficient of the term $\alpha_{0}{ }^{4}$ is not zero since it is the resultant of $P_{1}(z)$ and $P_{2}(z)$, and only $\alpha_{0}{ }^{4}$ has the minimal index $4 \mu_{0}$. In the case (iii) only the term $\alpha_{2}{ }^{2}$ has the maximal index $2 \mu_{2}$. In the case (iv) only the term $\alpha_{0}{ }^{4} \alpha_{1}{ }^{2}$ has the minimal index $4 \mu_{0}+2 \mu_{1}$. In all cases we get contradictions to Lemma 2.3.

In the case (B) it is enough to consider only two cases (i) $0<\mu_{1}<\mu_{0}<\mu_{2}$; (ii) $\mu_{1}<0<\mu_{0}<\mu_{2}$. In each cases only the term $\alpha_{1}{ }^{2}$, in the expansion, has the minimal index $2 \mu_{1}$, which contradicts to Lemma 2.3. The proof is completed.

## References

[La] S. Lang, Introduction to complex hyperbolic spaces, Springer, New York, 1987.
[ Li ] P. Li, Meromorphic functions sharing three values
or sets CM, Kodai Math. J. 21 (1998), no. 2, 138-152.
[ N ] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[S ] M. Shirosaki, On meromorphic functions sharing three values and one set, Kodai Math. J., 29 (2006), 475-484.
[ T ] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J. 11 (1988), no. 2, 249-279.


[^0]:    2000 Mathematics Subject Classiffcation. Primary 30D35.

