A note on the 3-class field tower of a cyclic cubic field

By Akito Nomura

Mathematics Section, Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 13, 2007)

Abstract: The present note studies a sufficient condition that the length of the 3-class field tower of a cyclic cubic field is greater than 1.

Key words: Class field tower; Hilbert class field; class number; cyclic cubic field.

1. Introduction. For a number field K and a prime p, we denote by the sequence

$$K = K_0^{(p)} \subseteq K_1^{(p)} \subseteq K_2^{(p)} \subseteq \cdots$$

the *p*-class field tower of K, that is, $K_{n+1}^{(p)}$ is the Hilbert *p*-class field of $K_n^{(p)}$. We define an invariant $l_p(K)$ called the "length of the Hilbert *p*-class field tower of K" as follows: $l_p(K)$ is the smallest nonnegative integer *i* such that $K_i^{(p)} = K_{i+1}^{(p)}$, if such an integer exists, and $l_p(K)$ is ∞ otherwise. Replacing "Hilbert *p*-class field" by "Hilbert class field" in the above, we define an invariant l(K) called the "length of the Hilbert class field tower of K".

Golod-Shafarevich[6] proved that there exist infinitely many number fields K such that $l(K) = \infty$. Hajir[7] has determined all imaginary quadratic fields K such that l(K) = 1, and Benjamin-Lemmermeyer-Snyader[1] has determined all real quadratic fields K such that $l_2(K) = 1$. In case K is a certain biquadratic field, Yoshida[11] studied the condition for $l_3(K) > 1$. In this paper we shall study the case where K is a cyclic cubic field, and give the condition for $l_3(K) > 1$.

2. Theorem and the proof. Let K be a number field and p a prime. Let $Cl_K(p)$ be the p-Sylow subgroup of the ideal class group of K and $\rho_K(p)$ the rank of E/E^p where E denotes the unit group of K. For a Galois extension K/\mathbf{Q} , we denote by m(K) the number of rational primes ramified in K/\mathbf{Q} . Bond[2] proved the following

Lemma 1 (Bond [2, Corollary 3.10]). If the rank of $Cl_K(p)$ is greater than $\frac{1+\sqrt{1+8\rho_K(p)}}{2}$, then $l_p(K) > 1$.

Remark. An alternative proof of this lemma is found in Nomura[8, Corollary 4]. The approach is based on the theory of embedding problems.

By using Lemma 1 and the genus theory, we get the following lemma.

Lemma 2. Let K be a cyclic cubic field. If the 3-rank of $Cl_K(3)$ is greater than or equal to 3, then $l_3(K) > 1$. In particular, if m(K) > 3, then $l_3(K) > 1$.

We shall study the case of m(K) = 3 and get the following theorem.

Theorem 3. Let K be a cyclic cubic field such that m(K) = 3. Then the following conditions (1) and (2) are equivalent.

(1) $l_3(K) > 1.$

(2) The class number of the genus field of K is divisible by 3.

We need the following lemma, which is easily proved. For the proof, see for example [9, Lemma 7.2].

Lemma 4. Let p be an odd prime and F/\mathbf{Q} a p-extension. If the class number of F is divisible by p, then there exists a Galois extension L/\mathbf{Q} such that L contains F, L/F is unramified, and the degree [L:F] is equal to p.

Proof of Theorem 3. $(1) \Rightarrow (2)$ is trivial. We shall consider $(2) \Rightarrow (1)$. Let K_g be the genus field of K. Then K_g/\mathbf{Q} is a Galois extension and $\operatorname{Gal}(K_g/\mathbf{Q}) \cong \mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z}$. Assume that the class number of K_g is divisible by 3. By Lemma 4, there exists a Galois extension L/\mathbf{Q} such that Lcontains K_g , L/K_g is unramified, and the degree $[L : K_g]$ is equal to 3. Let $G = \operatorname{Gal}(L/\mathbf{Q})$. Then the group G satisfies the conditions:

(a) the order of G is 3^4 ;

- (b) the rank of G/[G,G] is 3.
- By virtue of Tchebotareff's monodoromy

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R29; 11R19.

No. 2]

theorem [3, Theorem 16.30], we see that the group G also satisfies the condition:

(c) G is generated by the elements of order 3. Let Γ be the group defined by

$$\Gamma = \left\langle x, y, z \middle| \begin{array}{l} x^3 = y^3 = z^3 = 1 \\ x^{-1}yx = xz, xz = zx, yz = zy \right\rangle.$$

By using GAP[5], it is easy to see that the group satisfying the conditions (a) (b) and (c) is isomorphic to $\Gamma \times \mathbf{Z}/3\mathbf{Z}$. See also Schreier[10] for the groups of order p^3, p^4, p^5 . Then G is isomorphic to $\Gamma \times \mathbf{Z}/3\mathbf{Z}$. Further we can check that any maximal subgroup of G is isomorphic to Γ or $\mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z}$.

Since $\operatorname{Gal}(L/K)$ is isomorphic to a maximal subgroup of G, it is enough to consider the following two cases.

Case 1. $\operatorname{Gal}(L/K) \cong \Gamma$: Since Γ is a non-abelian 3-group, $l_3(K) > 1$.

Case 2. $\operatorname{Gal}(L/K) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$: Since the 3-rank of $Cl_K(3)$ is greater than or equal to 3, $l_3(K) > 1$ by Lemma 2.

We have thus proved our theorem.

Remark. Assume that the prime 3 is unramified in K/\mathbf{Q} . Then the condition (2) in Theorem 3 is easily checked by using the result in Cornell-Rosen[4, Section 3].

Remark. In the previous work Nomura[9, Corollary 7.4], we have proved the following. Assume that K is a cyclic cubic field such that m(K) = 2 and that the prime 3 is unramified in K/\mathbf{Q} . If the class number of K is divisible by 27, then $l_3(K) > 1$.

Acknowledgement. I should like to express my gratitude to the referee for her/his careful reading and the advices.

References

- E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory 73 (1998), no. 2, 182– 194.
- [2] R. J. Bond, Unramified abelian extensions of number fields, J. Number Theory **30** (1988), no. 1, 1–10.
- [3] H. Cohn, A classical invitation to algebraic numbers and class fields, Springer, New York, 1978.
- [4] G. Cornell and M. Rosen, The class group of an absolutely abelian *l*-extension, Illinois J. Math. 32 (1988), no. 3, 453–461.
- [5] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4; 2005. http://www.gap-system.org
- [6] E. S. Golod and I. R. Šafarevič, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261–272.
- [7] F. Hajir, On the class numbers of Hilbert class fields, Pacific J. Math. 1997, Olga Taussky-Todd memorial issue, 177–187.
- [8] A. Nomura, On embedding problems with restricted ramifications, Arch. Math. (Basel) 73 (1999), no. 3, 199–204.
- [9] A. Nomura, On unramified 3-extensions over cyclic cubic fields, Pacific J. Math. (to appear).
- [10] O. Schreier, Über die Erweiterung von Gruppen.
 II, Abh. Math. Sem. Univ. Hamburg 4 (1926), 321–346.
- [11] E. Yoshida, On the 3-class field tower of some biquadratic fields, Acta Arith. 107 (2003), no. 4, 327–336.