Explicit lifts of quintic Jacobi sums and period polynomials for F_q

By Akinari Hoshi

Department of Mathematics, School of Education, Waseda University, 1–6–1, Nishi-Waseda, Shinjuku-ku, Tokyo 169–8050, Japan

(Communicated by Heisuke HIRONAKA, M.J.A., Sept. 12, 2006)

Abstract: In this paper, we construct explicit lifts of quintic Jacobi sums for finite fields via integer solutions of Dickson's system. Namely we give a procedure to compute quintic Jacobi sums for extended field \mathbf{F}_{p^s+t} by using quintic Jacobi sums for \mathbf{F}_{p^s} and for \mathbf{F}_{p^t} . We also have the multiplication formula from \mathbf{F}_{p^s} to $\mathbf{F}_{p^{ns}}$ as a special case. By the quintuplication formula, we obtain the explicit factorization of the quintic period polynomials for finite fields.

Key words: Jacobi sums; Gaussian periods; Dickson's system; Gauss sums.

1. Introduction. Let $e \geq 2$ be a positive integer and $q = p^r$ a prime power such that $q \equiv 1 \pmod{e}$. Write q = ef + 1. Let ζ_p be a p-th primitive root of unity, γ a fixed generator of \mathbf{F}_q^* . Gaussian periods $\eta_{0,r}, \ldots, \eta_{e-1,r}$ of degree e for \mathbf{F}_q are defined by

$$\eta_{i,r} := \sum_{j=0}^{f-1} \zeta_p^{\operatorname{Tr}(\gamma^{ej+i})},$$

where Tr is the trace map Tr : $\mathbf{F}_q \to \mathbf{F}_p$, and the period polynomial $P_{e,r}(X)$ of degree e for \mathbf{F}_q is given by $P_{e,r}(X) := \prod_{i=0}^{e-1} (X - \eta_{i,r})$. We also use the reduced form $P_{e,r}^*(X) := \prod_{i=0}^{e-1} (X - \eta_{i,r}^*)$, where $\eta_{i,r}^* = e \, \eta_{i,r} + 1$, since the coefficient of X^{e-1} of $P_{e,r}^*(X)$ is vanished. In the classical case q = p, Gauss [7] showed that the period polynomial $P_{e,1}(X)$ is irreducible over \mathbf{Q} . However this is not always true for general $q = p^r$. In 1981, for $\delta = \gcd(e, (q-1)/(p-1))$, Myerson [15] showed that the period polynomial $P_{e,r}(X)$ splits over \mathbf{Q} into δ factors

$$P_{e,r}(X) = \prod_{k=0}^{\delta-1} P_{e,r}^{(k)}(X),$$

where $P_{e,r}^{(k)}(X)$ is in $\mathbf{Z}[X]$ and irreducible or a power of an irreducible polynomial. Note that $P_{e,r}(X)$ is irreducible over \mathbf{Q} if and only if $p \equiv 1 \pmod{e}$ and (r,e)=1, i.e. $\delta=1$, (see [15]). The explicit determination of the factors of $P_{e,r}(X)$, if reducible, is important because it is known that the (exponential) Gauss sum $g_r(e)$ is one of the roots of $P_{e,r}^*(X)$ (see

2000 Mathematics Subject Classification. Primary 11E25, 11L05, 11T22, 11T24.

[4]). Myerson [15] determined the factors $P_{e,r}^{(k)}(X)$ for e=2,3,4. In 2004, Gurak [9] gave the factors $P_{e,r}^{(k)}(X)$ for the case $e\mid 8,12$ (see also [8]). However it seems to be hard to determine the explicit factors $P_{e,r}^{(k)}(X)$ for general prime degree. In this paper, we shall give the factors $P_{e,r}^{(k)}(X)$ in the quintic case e=5 by constructing explicit lifts of quintic Jacobi sums.

Here we describe briefly our construction of lifts of quintic Jacobi sums via Dickson's system. Let χ be a character of order e on \mathbf{F}_q^* such that $\chi(\gamma) = \zeta_e$ and we extend it to \mathbf{F}_q by $\chi(0) = 0$. The Jacobi sum $J_r(\chi^m, \chi^n)$ of degree e for \mathbf{F}_q , $q = p^r$, is defined by

$$J_r(\chi^m, \chi^n) := \sum_{\alpha \in \mathbf{F}_q} \chi^m(\alpha) \chi^n(1 - \alpha).$$

We now suppose that e = 5 and $p \equiv 1 \pmod{5}$, since the case $p \not\equiv 1 \pmod{5}$ is tractable (see Section 6). The following system of Diophantine equations is called Dickson's system:

$$\begin{cases} 16p^r = x^2 + 125w^2 + 50v^2 + 50u^2, \\ xw = v^2 - 4vu - u^2, \\ x \equiv -1 \pmod{5}. \end{cases}$$

It is known that there exist exactly four integer solutions of Dickson's system, related to p^r , which satisfy the condition $p \not \mid x^2 - 125w^2$, and we denote them by $S(p,r)^U$. The crucial facts are that $S(p,r)^U$ gives the value of $J_r(\chi,\chi)$ and $P_{5,r}(X)$ can be described by using the value of $J_r(\chi,\chi)$. In Section 4, we shall make a lift of quintic Jacobi sums by using integer solutions of Dickson's system. This means that we

give the procedure of constructing four integer solutions $S(p, s + t)^U$ by using $S(p, s)^U$ and $S(p, t)^U$. This method gives us an algorithm for fast computation of quintic Jacobi sums for \mathbf{F}_q (cf. [22]). In Section 5, we shall give the multiplication formula of the lift from $S(p, s)^U$ to $S(p, ns)^U$ explicitly. Let σ be a non-singular linear transformation of order four such that $\sigma(x, w, v, u) = (x, -w, -u, v)$. Using the quintuplication formula, we obtain the explicit factorization of the quintic period polynomial.

Theorem 1. Let $p \equiv 1 \pmod{5}$, $q = p^{5s}$ and $(x, w, v, u) \in S(p, s)^U$. The quintic reduced period polynomial $P_{5.5s}^*(X)$ for \mathbf{F}_q splits over \mathbf{Q} as follows:

$$\begin{split} &P_{5,5s}^*(X) = \\ &\left(X + \frac{p^s}{16} \big(x^3 - 25L\big)\right) \prod_{i=0}^3 \Big(X - \frac{p^s}{64} \sigma^i \big(x^3 - 25M\big)\Big), \end{split}$$

where

$$L = 2x(v^{2} + u^{2}) + 5w(11v^{2} - 4vu - 11u^{2}),$$

$$M = 2x^{2}u + 7xv^{2} + 20xvu - 3xu^{2} + 125w^{3} + 200w^{2}v - 150w^{2}u + 5wv^{2} - 20wvu - 105wu^{2} - 40v^{3} - 60v^{2}u + 120vu^{2} + 20u^{3}.$$

2. Review of the cyclotomic numbers.

We review the method which gives the period polynomials using the Jacobi sums. The cyclotomic numbers $A_{i,j}$, (i, j = 0, ..., e-1) of order e for \mathbf{F}_q are defined by

$$A_{i,j} := \# \bigg\{ (v_1, v_2) \ \bigg| \ \begin{array}{c} 0 \leq v_1, v_2 \leq f - 1 \\ 1 + \gamma^{ev_1 + i} \equiv \gamma^{ev_2 + j} \pmod{q} \end{array} \bigg\}.$$

Note that the cyclotomic numbers $A_{i,j}$ depend on a choice of γ . One can find the basic properties of $A_{i,j}$ in [4, 15]. Especially we can see the following relations of Gaussian periods.

$$\eta_{m,r} \, \eta_{m+i,r} = \sum_{j=0}^{e-1} \left(A_{i,j} - D_i f \right) \eta_{m+j,r},$$

where $D_i = \delta_{0,i}$ (resp. $\delta_{\frac{e}{2},i}$), if pf is even (resp. odd) and $\delta_{i,j}$ is Kronecker's delta. It follows that Gaussian periods $\eta_{i,r}$ are eigenvalues of the $e \times e$ matrix $M := [A_{i,j} - D_i f]_{0 \le i,j \le e-1}$. Hence we can obtain the period polynomial $P_{e,r}(X)$ as the characteristic polynomial of the matrix M. The crucial fact is that the cyclotomic numbers can be given by Jacobi sums when degree e is prime. Let e be an odd prime. In the case e = e and e in e 1 (mod e), by using Jacobi sums,

Katre and Rajwade [14] determined cyclotomic numbers of order l for \mathbf{F}_q without γ -ambiguity. Acharya and Katre [1] extended this result for order 2l. One can find a detailed historical survey for the cyclotomic problem in [4] and [14], and we also can study recent topics for Jacobi sums and period polynomials in [2, 10, 11, 16–22].

3. Known results of the quintic case. We recall known results in the quintic case e=5 such that $p\equiv 1\pmod 5$. The following system of Diophantine equations is called "Dickson's system" since the case r=1 was discovered by Dickson [5].

(1)
$$\begin{cases} 16p^r = x^2 + 125w^2 + 50v^2 + 50u^2, \\ xw = v^2 - 4vu - u^2, \\ x \equiv -1 \pmod{5}. \end{cases}$$

We denote by S(p,r) the set of all integer solutions of Dickson's system related to p^r . It is known that $\#S(p,r)=(r+1)^2$, (see [14, Section 2]). We define a non-singular linear transformation $\sigma: \mathbf{Z}^4 \to \mathbf{Z}^4$ of order four by

$$\sigma:(x,w,v,u)\mapsto (x,-w,-u,v).$$

Note that if $(x, w, v, u) \in S(p, r)$ then $\sigma^{i}(x, w, v, u) \in S(p, r)$ for i = 1, 2, 3. We denote by $\langle (x, w, v, u) \rangle$ the σ -orbit of a 4-tuple (x, w, v, u):

$$\left\langle (x,w,v,u)\right\rangle := \Bigr\{\sigma^i(x,w,v,u) \ \Bigl| \ i=0,1,2,3\Bigr\}.$$

In [13], Katre and Rajwade gave the following result. The Dickson's system (1) has exactly four integer solutions $\langle (x, w, v, u) \rangle$ which satisfy the condition

(2)
$$p \nmid x^2 - 125w^2$$
.

For one of these four solutions satisfying

(3)
$$\gamma^{(q-1)/5} \equiv \frac{X_1 - 10X_2}{X_1 + 10X_2} \pmod{p},$$

where $X_1=x^2-125w^2$ and $X_2=2xu-xv-25vw$, the Jacobi sum $J_r(\chi,\chi)$ for ${\bf F}_q$ is given by

$$J_r(\chi,\chi) = \frac{1}{4} \Big(C\zeta_5 + \sigma^3(C)\zeta_5^2 + \sigma(C)\zeta_5^3 + \sigma^2(C)\zeta_5^4 \Big),$$

where C = x - 5w - 4v - 2u, and conversely for this value of $J_r(\chi, \chi)$, (x, w, v, u) gives the unique solution of Dickson's system which satisfies (2) and (3). Moreover the cyclotomic numbers of order five for \mathbf{F}_{p^r} , related to γ , are unambiguously given by

$$A_{0,0} = (p^r - 14 + 3x)/25,$$

$$A_{0,1} = (4p^r - 16 - 3x + 25w + 50v)/100,$$

$$A_{0,2} = \sigma^3(A_{0,1}), \ A_{0,3} = \sigma(A_{0,1}), \ A_{0,4} = \sigma^2(A_{0,1}),$$

$$A_{1,2} = (2p^r + 2 + x - 25w)/50, \ A_{1,3} = \sigma^2(A_{1,2}).$$

Using the above $A_{i,j}$, we have the quintic period polynomial $P_{5,r}(X)$ as the characteristic polynomial of the matrix $[A_{i,j} - D_i f]_{0 \le i,j \le 4}$. Here we describe the reduced form of the quintic period polynomial:

$$P_{5,r}^{*}(x, w, v, u; X)$$

$$= X^{5} - 10p^{r}X^{3} + 5p^{r}xX^{2}$$

$$+ \frac{5p^{r}}{4}(4p^{r} - x^{2} + 125w^{2})X$$

$$+ \frac{p^{r}}{8}(x^{3} - 8p^{r}x - 625w(v^{2} - u^{2})).$$

Note that all coefficients of $P_{5,r}^*(X)$ are σ -invariants since $P_{5,r}^*(X)$ does not depend on a choice of γ . This representation, however, gives us no information about explicit factors of $P_{5,r}^*(X)$ when r = 5s.

Remark. From the equation

$$\sigma(J_r(\chi,\chi)) = J_r(\chi^2,\chi^2),$$

we see that if (x, w, v, u) gives the Jacobi sum $J(\chi, \chi)$ then the other solutions $\sigma(x, w, v, u)$, $\sigma^2(x, w, v, u)$, $\sigma^3(x, w, v, u)$ give $J_r(\chi^2, \chi^2)$, $J_r(\chi^4, \chi^4)$, $J_r(\chi^3, \chi^3)$ respectively.

4. Lift of Jacobi sums. As in Section 3, we suppose that $p \equiv 1 \pmod{5}$. We shall construct a lift of Jacobi sums via Dickson's system.

Definition. Four integer solutions of Dickson's system which satisfy (2) are called *essentially* unique and we denote them by $S(p,r)^U$.

The aim of this section is to give the procedure to compute the set $S(p,s+t)^U$ by using $S(p,s)^U$ and $S(p,t)^U$. This is achieved by using certain quadratic forms which are called multiplicative on algebraic varieties in [12]. The following proposition, which can be given as a special case of [12, Theorem 4], plays a key role of our construction.

Proposition 2. Let $q(\mathbf{X}) = X_1^2 + 125X_2^2 + 50X_3^2 + 50X_4^2$ and V a hypersurface defined by $X_1X_2 = X_3^2 - 4X_3X_4 - X_4^2$. There exists a bilinear map $\varphi : \mathbf{Z}^4 \times \mathbf{Z}^4 \to \mathbf{Z}^4$ such that $\varphi(V \times V) \subset V$ and $q(\mathbf{v})q(\mathbf{w}) = q(\varphi(\mathbf{v},\mathbf{w}))$ for any $\mathbf{v},\mathbf{w} \in V$. Moreover the bilinear map φ is given as follows:

(5)
$$\varphi(\mathbf{X}, \mathbf{Y}) = (X_1Y_1 + 125X_2Y_2 + 50X_3Y_3 + 50X_4Y_4,$$

$$X_2Y_1 + X_1Y_2 - 2X_3Y_3 + 4X_4Y_3 + 4X_3Y_4 + 2X_4Y_4,$$

 $X_3Y_1 - 5X_3Y_2 + 10X_4Y_2 - X_1Y_3 + 5X_2Y_3 - 10X_2Y_4,$
 $X_4Y_1 + 10X_3Y_2 + 5X_4Y_2 - 10X_2Y_3 - X_1Y_4 - 5X_2Y_4).$

We have the following remarkable equation:

(6)
$$\varphi(\sigma(\mathbf{X}), \sigma(\mathbf{Y})) = \sigma(\varphi(\mathbf{X}, \mathbf{Y})).$$

Using φ in (5), we can construct a lift of integer solutions of Dickson's system.

Proposition 3. For $\mathbf{s} = (x_s, w_s, v_s, u_s) \in S(p, s)$ and $\mathbf{t} = (x_t, w_t, v_t, u_t) \in S(p, t)$, the sixteen 4-tuples $\langle \varphi(\mathbf{s}, \sigma^i(\mathbf{t}))/4 \rangle$, $0 \le i \le 3$, are integer solutions of Dickson's system related to p^{s+t} .

Proof. It is known that an integer solution (x, w, v, u) of Dickson's system satisfies the following congruences (see [13, Lemma 1 (d)]).

$$\begin{cases} -x + w + 2u \equiv 0 \pmod{4}, \\ -x - w + 2v \equiv 0 \pmod{4}. \end{cases}$$

Using this, we can show that the sixteen 4-tuples $\varphi(\sigma^{i}(\mathbf{s}), \sigma^{j}(\mathbf{t}))/4$, $(0 \leq i, j \leq 3)$, are in \mathbf{Z}^{4} (see also [12, Lemma 9]). From (6), they separate four σ -orbits. And we can easily check that they satisfy the conditions (1) from Proposition 2.

Definition. For $\mathbf{s} = (x_s, w_s, v_s, u_s) \in S(p, s)$ and $\mathbf{t} = (x_t, w_t, v_t, u_t) \in S(p, t)$, we define 4-tuples of integers $\mathbf{s} \stackrel{i}{\mathbf{s}} \mathbf{t}$, for 0 < i < 3, by

$$\mathbf{s} \stackrel{i}{*} \mathbf{t} := \varphi(\mathbf{s}, \sigma^i(\mathbf{t}))/4,$$

where φ is defined in (5).

We have that $\langle \mathbf{s} \stackrel{i}{*} \mathbf{t} \rangle \subset S(p,s+t)$ for $0 \leq i \leq 3$ from Proposition 3. Next we consider when there exists integer i such that $\langle \mathbf{s} \stackrel{i}{*} \mathbf{t} \rangle = S(p,s+t)^U$, i.e. which 4-tuples $\langle \mathbf{s} \stackrel{i}{*} \mathbf{t} \rangle$ correspond to the Jacobi sum $J_{s+t}(\chi,\chi)$ for $\mathbf{F}_{p^{s+t}}$. For $\mathbf{r}=(x,w,v,u)\in S(p,r)$, we put

$$g_1(\mathbf{r}) := x^2 - 125w^2,$$
 $g_2(\mathbf{r}) := v^2 + vu - u^2,$ $g_3(\mathbf{r}) := 2xu - xv - 25wv,$ $g_4(\mathbf{r}) := g_3(\sigma(\mathbf{r})).$

Lemma 4. Let $\mathbf{r}=(x,w,v,u)\in S(p,r).$ $p \not\mid g_1(\mathbf{r})$ if and only if $p \not\mid g_k(\mathbf{r})$ for k=2,3,4.

Proof. See, for example, [13, Lemma 2].

The following proposition gives an explicit lift of quintic Jacobi sums by using essentially unique solutions of Dickson's system.

Theorem 5 (Addition formula). Let $\mathbf{s} \in S(p,s)$ and $\mathbf{t} \in S(p,t)$. There exists integer i, $(0 \le i \le 3)$ such that $\langle \mathbf{s} \ast \mathbf{t} \rangle = S(p,s+t)^U$ if and only if $\langle \mathbf{s} \rangle = S(p,s)^U$ and $\langle \mathbf{t} \rangle = S(p,t)^U$.

Proof. We should show that $p \mid g_1(\mathbf{s} \stackrel{i}{*} \mathbf{t})$ for $0 \le i \le 3$ if and only if $p \mid g_1(\mathbf{s})$ or $p \mid g_1(\mathbf{t})$. We can obtain the following remarkable equation:

$$16 g_1(\mathbf{s} * \mathbf{t}) = g_1(\mathbf{s})g_1(\mathbf{t}) + 2000g_2(\mathbf{s})g_2(\mathbf{t}) + 20g_3(\mathbf{s})g_3(\mathbf{t}) + 20g_4(\mathbf{s})g_4(\mathbf{t}).$$

We also have similar equations for $g_1(\mathbf{s} \overset{i}{*} \mathbf{t}), (i = 1, 2, 3)$ using $g_1(\sigma(\mathbf{t})) = g_1(\mathbf{t}), g_2(\sigma(\mathbf{t})) = -g_2(\mathbf{t}),$ $g_3(\sigma(\mathbf{t})) = g_4(\mathbf{t}), g_4(\sigma(\mathbf{t})) = -g_3(\mathbf{t}).$ If $p \mid g_1(\mathbf{s} \overset{i}{*} \mathbf{t})$ for $0 \le i \le 3$ then p divides $\sum_{i=0}^{3} (-1)^i g_1(\mathbf{s} \overset{i}{*} \mathbf{t}) = 8000g_2(\mathbf{s})g_2(\mathbf{t}),$ and then $p \mid g_1(\mathbf{s})$ or $p \mid g_1(\mathbf{t})$ from Lemma 4. If $p \mid g_1(\mathbf{s})$ or $p \mid g_1(\mathbf{t})$ then it follows that $p \mid g_1(\mathbf{s} \overset{i}{*} \mathbf{t})$ for $0 \le i \le 3$ from Lemma 4. \square Theorem 5 enables us to compute the value of quintic Jacobi sums for general \mathbf{F}_q (cf. [22]). However we should choose the suitable integer i which depends on the first choice of \mathbf{s} and \mathbf{t} . In the next section, we shall dissolve this ambiguity and give the multiplication formula explicitly.

5. Multiplication formula. First we consider the case s=t in Theorem 5 in order to establish the duplication formula. For $\mathbf{s}=(x,w,v,u)\in S(p,s)^U$, we have the following equalities:

$$\langle \mathbf{s} \stackrel{0}{*} \mathbf{s} \rangle = \left\{ (4p^{s}, 0, 0, 0) \right\},$$

$$\langle \mathbf{s} \stackrel{1}{*} \mathbf{s} \rangle = \langle \mathbf{s} \stackrel{3}{*} \mathbf{s} \rangle = \left\langle \left(\frac{x^{2} - 125w^{2}}{4}, v^{2} + vu - u^{2}, \frac{x(v+u) + 5w(v+3u)}{4}, \frac{x(v-u) + 5w(3v-u)}{4} \right) \right\rangle,$$

$$\langle \mathbf{s} \stackrel{2}{*} \mathbf{s} \rangle = \left\langle \left(\frac{-8p^{s} + x^{2} + 125w^{2}}{2}, xw, \frac{xv - 5wv + 10wu}{2}, \frac{xu + 10wv + 5wu}{2} \right) \right\rangle.$$

Hence if we have $S(p,s)^U$ then we can obtain nine (different) integral solutions of Dickson's system related to p^{2s} . This corresponds to the fact that Dickson's system related to p has four solutions and to p^2 nine solutions. The following formula gives us which above are essentially unique.

Proposition 6 (Duplication formula). For $\mathbf{s} \in S(p,s)^U$, we have $S(p,2s)^U = \langle \mathbf{s} * \mathbf{s} \rangle$ as in (7).

Proof. It remains to show that $\mathbf{s} \stackrel{?}{*} \mathbf{s}$ satisfy the condition (2). Write $(x_{2s}, w_{2s}, v_{2s}, u_{2s}) := \mathbf{s} \stackrel{?}{*} \mathbf{s}$. We have that $x_{2s} \equiv (x^2 + 125w^2)/2 \pmod{p^s}$ and

$$\left(\frac{x^2 + 125w^2}{2}\right)^2 - 125\left(xw\right)^2 = \frac{(x^2 - 125w^2)^2}{4}.$$

Hence we obtain

$$x_{2s}^2 - 125w_{2s}^2 \equiv \frac{(x^2 - 125w^2)^2}{4} \pmod{p^s}.$$

Thus $p \not\mid x_{2s}^2 - 125w_{2s}^2$ follows from $p \not\mid x^2 - 125w^2$. \square From the direct computation, we see that the symbol i = 1 satisfy the following law:

Lemma 7. For $\mathbf{s} \in S(p,s), \mathbf{t} \in S(p,t), \mathbf{u} \in S(p,u)$, we have

$$\mathbf{s} \stackrel{2}{*} \mathbf{t} = \mathbf{t} \stackrel{2}{*} \mathbf{s},$$
$$(\mathbf{s} \stackrel{2}{*} \mathbf{t}) \stackrel{j}{*} \mathbf{u} = \mathbf{s} \stackrel{2}{*} (\mathbf{t} \stackrel{j}{*} \mathbf{u}), \quad j = 0, 1, 2, 3.$$

Remark. In general, we see that $\mathbf{s} \stackrel{i}{*} \mathbf{t} \neq \mathbf{t} \stackrel{i}{*} \mathbf{s}$ and $(\mathbf{s} \stackrel{i}{*} \mathbf{t}) \stackrel{j}{*} \mathbf{u} \neq \mathbf{s} \stackrel{i}{*} (\mathbf{t} \stackrel{j}{*} \mathbf{u})$, for i = 0, 1, 3, j = 0, 1, 2, 3.

From Lemma 7, we can define the n-th power of the symbol $\stackrel{2}{*}$ as follows:

$$\mathbf{s}^{(n)} := \mathbf{s} \stackrel{?}{*} \mathbf{s} \stackrel{?}{*} \cdots \stackrel{?}{*} \mathbf{s}, \quad (n \text{ times}).$$

Using $\mathbf{s}^{(n)}$, we obtain the multiplication formula:

Theorem 8 (Multiplication formula). Suppose that $\mathbf{s} \in S(p,s)^U$. Then $S(p,ns)^U = \langle \mathbf{s}^{(n)} \rangle$.

Proof. We should show that if $S(p,ns)^U = \langle \mathbf{s}^{(n)} \rangle$ then $S(p,(n+1)s)^U = \langle \mathbf{s}^{(n+1)} \rangle$. The case n=1 follows from Proposition 6. Thus we assume that $S(p,ns)^U = \langle \mathbf{s}^{(n)} \rangle$. From Theorem 5, there exists an integer i such that $\mathbf{s}^{(n)} \stackrel{i}{*} \mathbf{s} \in S(p,(n+1)s)^U$. However the integer i must be 2 because we obtain that $\mathbf{s}^{(n-1)} \stackrel{2}{*} (\mathbf{s} \stackrel{i}{*} \mathbf{s}) \in S(p,(n+1)s)^U$ by Lemma 7 and hence $\mathbf{s} \stackrel{i}{*} \mathbf{s} \in S(p,2)^U$ from Theorem 5. \square Here we describe the triplication, the quadruplication and the quintuplication formula which can be obtained by iterating the duplication formula.

$$\mathbf{s}^{(3)} = \left(\frac{x(-12p^s + x^2 + 375w^2)}{4}, \frac{w(-12p^s + 3x^2 + 125w^2)}{4}, \frac{\sigma(F)}{4}, \frac{F}{4}\right),$$

where

 $F = -4p^{s}u + x^{2}u + 20xwv + 10xwu + 125w^{2}u.$

$$\mathbf{s}^{(4)} = \left(\frac{G_1}{8}, \frac{xw(-8p^s + x^2 + 125w^2)}{2}, \frac{\sigma(G_2)}{8}, \frac{G_2}{8}\right),\,$$

where $G_1 = 16p^s(2p^s - x^2 - 125w^2) + x^4 + 750x^2w^2 + 15625w^4$, $G_2 = -8p^s(xu + 10wv + 5wu) + x^3u + 30x^2wv + 15x^2wu + 375xw^2u + 1250w^3v + 625w^3u$.

(8)
$$\mathbf{s}^{(5)} = \left(\frac{xH_1}{16}, \frac{5wH_2}{16}, \frac{\sigma(H_3)}{16}, \frac{H_3}{16}\right),$$

where $H_1 = 20p^s(4p^s - x^2 - 375w^2) + x^4 + 1250x^2w^2 + 78125w^4$, $H_2 = 4p^s(4p^s - 3x^2 - 125w^2) + x^4 + 250x^2w^2 + 3125w^4$, $H_3 = 4p^s(4p^su - 3x^2u - 60xwv - 30xwu - 375w^2u) + x^4u + 40x^3wv + 20x^3wu + 750x^2w^2u + 5000xw^3v + 2500xw^3u + 15625w^4u$.

Using (8), we can prove Theorem 1 which gives an explicit factorization of the reduced period polynomial $P_{5.5s}^*(X)$ for $\mathbf{F}_{v^{5s}}$.

Proof of Theorem 1. From (4), we have $P_{5,5s}^*(x_{5s},w_{5s},v_{5s},u_{5s};X)$ for $\mathbf{F}_q,(q=p^{5s})$, where $(x_{5s},w_{5s},v_{5s},u_{5s})\in S(p,5s)^U$. Using (8), we have that $S(p,5s)^U=\left\langle \mathbf{s}^{(5)}\right\rangle$ where $\mathbf{s}=(x,w,v,u)\in S(p,s)^U$. Since $P_{5,5s}^*(X)$ does not depend on a choice of γ , we obtain $P_{5,5s}^*(X)$ using not $(x_{5s},w_{5s},v_{5s},u_{5s})$ but $\mathbf{s}=(x,w,v,u)\in S(p,s)^U$ as $P_{5,5s}^*(\mathbf{s}^{(5)};X)$. And then the assertion can be checked by direct computation.

Gauss sums $g_r(b, e)$, $(b \in \mathbf{F}_q)$ of degree e for \mathbf{F}_q are defined by

$$g_r(b,e) := \sum_{\alpha \in \mathbf{F}_q} \zeta_p^{\mathrm{Tr}(b\alpha^e)},$$

(see, for example, [4]). We see that Gaussian periods and Gauss sums have the following relation

$$e \eta_{i,r} + 1 = q_r(\gamma^i, e), \text{ for } i = 0, \dots, e - 1.$$

From the definition, we have $g_r(\gamma^i,e) = \eta^*_{i,r}$, for $0 \le i \le e-1$. Hence the Gauss sums $g_r(\gamma^i,e)$ are roots of $P^*_{e,r}(X)$. For i=0, we write $g_r(e) := g_r(1,e) = g_r(\gamma^0,e)$. As a corollary of Theorem 1, we obtain the location of the quintic Gauss sums for $\mathbf{F}_{p^{5s}}$.

Corollary 9. Let $p \equiv 1 \pmod{5}$, $q = p^{5s}$. The Gauss sum $g_{5s}(5)$ for \mathbf{F}_q is given by $g_{5s}(5) = p^s(-x^3 + 25L)/16$, where L is in Theorem 1.

Proof. Since $g_{5s}(5)$ does not depend on a choice of γ , the assertion follows from $\sigma(-x^3 + 25L) = -x^3 + 25L$ and (6).

Remark. It is not difficult to compute only the value of the Gauss sum $g_{5s}(5)$ above. Indeed it is known that $g_{5s}(5)$ can be given by using Eisenstein sums (see [4, Chapter 12]). By Theorem 1 and (4), we also see that $g_{5s}(5)$ is the product of $g_s(\gamma_s^i, 5)$, $0 \le i \le 4$, where γ_s is a generator of $\mathbf{F}_{p^s}^*$:

$$g_{5s}(5) = \prod_{i=0}^{4} g_s(\gamma_s^i, 5).$$

Example. For p = 11, we have that

$$S(11,1) = S(11,1)^{U} = \langle (-1,1,0,-1) \rangle,$$

$$S(11,2)^{U} = \langle (19,-1,-5,-2) \rangle,$$

$$S(11,3)^{U} = \langle (-61,-1,5,-18) \rangle,$$

$$S(11,4)^{U} = \langle (-241,-19,-50,11) \rangle,$$

$$S(11,5)^{U} = \langle (-396,-100,150,-30) \rangle,$$

$$P_{5,1}^{*}(X) = X^{5} - 110X^{3} - 55X^{2} + 2310X + 979,$$

$$P_{5,5}^{*}(X) = X^{5} - 1610510X^{3} - 318880980X^{2} + 349760093485X + 36198435398004$$

$$= (X+99)(X+649)(X+979)(X-451)(X-1276).$$

And we also obtain that $g_5(5) = -979 = -11 \cdot 89$.

6. Appendix: tractable case. Let $e \ge 2$ be a positive integer and $q = p^r$ a prime power such that $q \equiv 1 \pmod{e}$. In this section, we assume that

$$-1$$
 is a power of $p \pmod{e}$.

It is known that this situation is more tractable. For example, Evans [6] showed that -1 is a power of $p \pmod{e}$ if and only if the Jacobi sum $J_r(\chi^s, \chi^t)$ is pure (i.e. some non-zero integral power of it is real) for all $s, t \in \mathbf{Z}$. The cyclotomic numbers $A_{i,j}$ of order e for \mathbf{F}_q are called uniform if $A_{0,i} = A_{i,0} = A_{i,i}$ and $A_{i,j} = A_{1,2}$ $(i \neq j)$, for $1 \leq i, j \leq e - 1$. And Gaussian periods $\eta_{i,r}$ of degree e for \mathbf{F}_q are also called uniform if for some fixed e and e we have e are e for e and e because e for e and e large e for e and e large e for e and e large e for e are uniform, (ii) The Gaussian periods of degree e for e are uniform, (iii) The Gaussian periods of degree e for e are uniform.

For e=l, where l is an odd prime, Anuradha and Katre [2] evaluated Jacobi sums and cyclotomic numbers of order l for \mathbf{F}_q as follows. For a prime p such that m= ord $p\pmod{l}$ is even, $q=p^r\equiv 1\pmod{l}$, and r=ms, $(s\geq 1)$,

$$J_r(\chi,\chi^n) = (-1)^{s-1} p^{r/2}, \text{ for } 1 \le n \le l-2,$$
(9)
$$l^2 A_{0,0} = q - 3l + 1 - (l-1)(l-2)(-1)^s q^{1/2},$$

$$l^2 A_{0,j} = q - l + 1 + (l-2)(-1)^s q^{1/2}, \text{ for } j \ne 0,$$

$$l^2 A_{i,j} = q + 1 - 2(-1)^s q^{1/2}, \text{ for } i, j, i - j \ne 0.$$

By (9), we can easily obtain the following lemma which includes the quintic case l = 5 such that $p \not\equiv 1 \pmod{5}$.

Lemma 10. Let l be an odd prime. Suppose $m = ord \ p \ (mod \ l)$ is even and $q = p^{ms} \equiv 1 \ (mod \ l)$, $(s \ge 1)$. The reduced period polynomial $P_{l,ms}^*(X)$ of degree l for \mathbf{F}_q splits over \mathbf{Q} as follows:

$$\begin{split} P_{l,ms}^*(X) &= \\ & \left\{ \begin{array}{l} (X - q^{1/2})^{l-1}(X + (l-1)q^{1/2}), \ \ \textit{if s is even}, \\ (X + q^{1/2})^{l-1}(X - (l-1)q^{1/2}), \ \ \textit{if s is odd}. \end{array} \right. \end{split}$$

Proof. The period polynomial $P_{l,ms}(X)$ of degree l is given as the characteristic polynomials of the matrix $[A_{i,j} - \delta_{0,i}f]_{0 \le i,j \le l-1}$, since pf is even. It is easily verified that

$$P_{l,ms}(X) = (X - A_{0,1} + A_{1,2})^{l-2} \Big((X - A_{0,0} + f) \times (X - A_{0,1} - (l-2)A_{1,2}) + (l-1)A_{0,1}(f - A_{0,1}) \Big),$$

because the cyclotomic numbers are uniform. Thus the assertion follows from (9).

The calculations in this paper were carried out with Maple and Mathematica [23].

Acknowledgements. The author is grateful to the referee for pointing out a misunderstanding in the manuscript. Theorem 8 was improved by the referee's valuable comments. He is also grateful to Prof. Ki-ichiro Hashimoto who gave him helpful comments and various suggestions during this study.

References

- [1] V. V. Acharya and S. A. Katre, Cyclotomic numbers of order 2l, l an odd prime, Acta Arith. **69** (1995), 51–74.
- [2] N. Anuradha and S. A. Katre, Number of points on the projective curves $aY^l = bX^l + cZ^l$ and $aY^{2l} = bX^{2l} + cZ^{2l}$ defined over finite fields, l an odd prime, J. Number Theory **77** (1999), 288–313.
- [3] L. D. Baumert, W. H. Mills and R. L. Ward, Uniform cyclotomy, J. Number Theory 14 (1982), 67–82.
- [4] B. C. Berndt, R. J. Evans and K. S. Williams,

- Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley, New York, 1998.
- [5] L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. J. Math. 57 (1935), 391–424.
- [6] R. J. Evans, Pure Gauss sums over finite fields, Mathematika. 28 (1981), 239–248.
- 7] C. F. Gauss, *Disquisitiones Arithmeticae*, Section 358.
- [8] S. Gurak, Period polynomials for F_{p^2} of fixed small degree, in *Finite fields and applications* (Augsburg, 1999) 196–207, Springer, Berlin.
- [9] S. Gurak, Period polynomials for \mathbf{F}_q of fixed small degree, in *Number theory*, 127–145, Amer. Math. Soc., Providence, 2004.
- [10] K. Hashimoto and A. Hoshi, Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations, Math. Comp. 74 (2005), 1519–1530.
- [11] K. Hashimoto and A. Hoshi, Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups, Tokyo J. Math. 28 (2005), 13–32.
- [12] A. Hoshi, Multiplicative quadratic forms on algebraic varieties, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no.4, 71–75.
- [13] S. A. Katre and A. R. Rajwade, Unique determination of cyclotomic numbers of order five, Manuscripta Math. 53 (1985), 65–75.
- [14] S. A. Katre and A. R. Rajwade, Complete solution of the cyclotomic problem in \mathbf{F}_q^* for any prime modulus $l, q = p^{\alpha}, p \equiv 1 \pmod{l}$, Acta Arith. **45** (1985), 183–199.
- [15] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith. **39** (1981), 251–264.
- [16] F. Thaine, Properties that characterize Gaussian periods and cyclotomic numbers, Proc. Amer. Math. Soc. 124 (1996), 35–45.
- [17] F. Thaine, On the coefficients of Jacobi sums in prime cyclotomic fields, Trans. Amer. Math. Soc. 351 (1999), 4769–4790.
- [18] F. Thaine, Families of irreducible polynomials of Gaussian periods and matrices of cyclotomic numbers, Math. Comp. 69 (2000), 1653–1666.
- [19] F. Thaine, Jacobi sums and new families of irreducible polynomials of Gaussian periods, Math. Comp. **70** (2001), 1617–1640.
- [20] F. Thaine, On Gaussian periods that are rational integers, Michigan Math. J. **50** (2002), 313–337.
- [21] F. Thaine, Cyclic polynomials and the multiplication matrices of their roots, J. Pure Appl. Algebra 188 (2004), 247–286.
- [22] P. V. Wamelen, Jacobi sums over finite fields, Acta Arith. 102 (2002), 1–20.
- [23] S. Wolfram, The Mathematica book, Fourth ed., Wolfram Media, Inc., Cambridge Univ. Press, Cambridge-New York, 1999.