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Explicit lifts of quintic Jacobi sums and period polynomials for F�
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Abstract: In this paper, we construct explicit lifts of quintic Jacobi sums for finite fields
via integer solutions of Dickson’s system. Namely we give a procedure to compute quintic Jacobi
sums for extended field Fps+t by using quintic Jacobi sums for Fps and for Fpt . We also have
the multiplication formula from Fps to Fpns as a special case. By the quintuplication formula, we
obtain the explicit factorization of the quintic period polynomials for finite fields.
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1. Introduction. Let e ≥ 2 be a positive
integer and q = pr a prime power such that q ≡
1 (mod e). Write q = ef + 1. Let ζp be a p-th
primitive root of unity, γ a fixed generator of F∗

q .
Gaussian periods η0,r, . . . , ηe−1,r of degree e for Fq

are defined by

ηi,r :=
f−1∑
j=0

ζTr(γej+i)
p ,

where Tr is the trace map Tr : Fq → Fp, and
the period polynomial Pe,r(X) of degree e for Fq

is given by Pe,r(X) :=
∏e−1

i=0 (X − ηi,r). We also
use the reduced form P ∗

e,r(X) :=
∏e−1

i=0 (X − η∗
i,r),

where η∗
i,r = e ηi,r + 1, since the coefficient of

Xe−1 of P ∗
e,r(X) is vanished. In the classical case

q = p, Gauss [7] showed that the period polyno-
mial Pe,1(X) is irreducible over Q. However this is
not always true for general q = pr. In 1981, for
δ = gcd(e, (q−1)/(p−1)), Myerson [15] showed that
the period polynomial Pe,r(X) splits over Q into δ

factors

Pe,r(X) =
δ−1∏
k=0

P (k)
e,r (X),

where P
(k)
e,r (X) is in Z[X ] and irreducible or a power

of an irreducible polynomial. Note that Pe,r(X) is
irreducible over Q if and only if p ≡ 1 (mod e) and
(r, e) = 1, i.e. δ = 1, (see [15]). The explicit de-
termination of the factors of Pe,r(X), if reducible, is
important because it is known that the (exponential)
Gauss sum gr(e) is one of the roots of P ∗

e,r(X) (see
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[4]). Myerson [15] determined the factors P
(k)
e,r (X)

for e = 2, 3, 4. In 2004, Gurak [9] gave the factors
P

(k)
e,r (X) for the case e | 8, 12 (see also [8]). How-

ever it seems to be hard to determine the explicit
factors P

(k)
e,r (X) for general prime degree. In this pa-

per, we shall give the factors P
(k)
e,r (X) in the quintic

case e = 5 by constructing explicit lifts of quintic
Jacobi sums.

Here we describe briefly our construction of lifts
of quintic Jacobi sums via Dickson’s system. Let χ

be a character of order e on F∗
q such that χ(γ) = ζe

and we extend it to Fq by χ(0) = 0. The Jacobi sum
Jr(χm, χn) of degree e for Fq, q = pr, is defined by

Jr(χm, χn) :=
∑

α∈Fq

χm(α)χn(1 − α).

We now suppose that e = 5 and p ≡ 1 (mod 5),
since the case p �≡ 1 (mod 5) is tractable (see Section
6). The following system of Diophantine equations
is called Dickson’s system:


16pr = x2 + 125w2 + 50v2 + 50u2,

xw = v2 − 4vu − u2,

x ≡ −1 (mod 5).

It is known that there exist exactly four integer solu-
tions of Dickson’s system, related to pr, which satisfy
the condition p � | x2−125w2, and we denote them by
S(p, r)U . The crucial facts are that S(p, r)U gives
the value of Jr(χ, χ) and P5,r(X) can be described
by using the value of Jr(χ, χ). In Section 4, we shall
make a lift of quintic Jacobi sums by using integer
solutions of Dickson’s system. This means that we
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give the procedure of constructing four integer so-
lutions S(p, s + t)U by using S(p, s)U and S(p, t)U .
This method gives us an algorithm for fast compu-
tation of quintic Jacobi sums for Fq (cf. [22]). In
Section 5, we shall give the multiplication formula
of the lift from S(p, s)U to S(p, ns)U explicitly. Let
σ be a non-singular linear transformation of order
four such that σ(x, w, v, u) = (x,−w,−u, v). Using
the quintuplication formula, we obtain the explicit
factorization of the quintic period polynomial.

Theorem 1. Let p ≡ 1 (mod 5), q = p5s and
(x, w, v, u) ∈ S(p, s)U . The quintic reduced period
polynomial P ∗

5,5s(X) for Fq splits over Q as follows:

P ∗
5,5s(X) =(
X +

ps

16
(
x3 − 25L

)) 3∏
i=0

(
X − ps

64
σi

(
x3 − 25M

))
,

where

L = 2x(v2 + u2) + 5w(11v2 − 4vu − 11u2),

M = 2x2u + 7xv2 + 20xvu − 3xu2 + 125w3

+ 200w2v − 150w2u + 5wv2 − 20wvu

− 105wu2 − 40v3 − 60v2u + 120vu2 + 20u3.

2. Review of the cyclotomic numbers.
We review the method which gives the period poly-
nomials using the Jacobi sums. The cyclotomic num-
bers Ai,j , (i, j = 0, . . . , e − 1) of order e for Fq are
defined by

Ai,j := #
{

(v1, v2)
∣∣∣∣ 0 ≤ v1, v2 ≤ f − 1

1 + γev1+i ≡ γev2+j (mod q)

}
.

Note that the cyclotomic numbers Ai,j depend on
a choice of γ. One can find the basic properties of
Ai,j in [4, 15]. Especially we can see the following
relations of Gaussian periods.

ηm,r ηm+i,r =
e−1∑
j=0

(
Ai,j − Dif

)
ηm+j,r,

where Di = δ0,i (resp. δ e
2 ,i), if pf is even (resp. odd)

and δi,j is Kronecker’s delta. It follows that Gaus-
sian periods ηi,r are eigenvalues of the e × e matrix
M := [Ai,j − Dif ]0≤i,j≤e−1. Hence we can obtain
the period polynomial Pe,r(X) as the characteristic
polynomial of the matrix M . The crucial fact is that
the cyclotomic numbers can be given by Jacobi sums
when degree e is prime. Let l be an odd prime. In the
case e = l and p ≡ 1 (mod l), by using Jacobi sums,

Katre and Rajwade [14] determined cyclotomic num-
bers of order l for Fq without γ-ambiguity. Acharya
and Katre [1] extended this result for order 2l. One
can find a detailed historical survey for the cyclo-
tomic problem in [4] and [14], and we also can study
recent topics for Jacobi sums and period polynomials
in [2, 10, 11, 16–22].

3. Known results of the quintic case.
We recall known results in the quintic case e = 5
such that p ≡ 1 (mod 5). The following system of
Diophantine equations is called “Dickson’s system”
since the case r = 1 was discovered by Dickson [5].




16pr = x2 + 125w2 + 50v2 + 50u2,

xw = v2 − 4vu − u2,

x ≡ −1 (mod 5).

(1)

We denote by S(p, r) the set of all integer solutions
of Dickson’s system related to pr. It is known that
#S(p, r) = (r + 1)2, (see [14, Section 2]). We define
a non-singular linear transformation σ : Z4 → Z4 of
order four by

σ : (x, w, v, u) �→ (x,−w,−u, v).

Note that if (x, w, v, u) ∈ S(p, r) then σi(x, w, v, u) ∈
S(p, r) for i = 1, 2, 3. We denote by

〈
(x, w, v, u)

〉
the

σ-orbit of a 4-tuple (x, w, v, u):

〈
(x, w, v, u)

〉
:=

{
σi(x, w, v, u)

∣∣∣ i = 0, 1, 2, 3
}
.

In [13], Katre and Rajwade gave the following result.
The Dickson’s system (1) has exactly four integer
solutions 〈(x, w, v, u)〉 which satisfy the condition

p� | x2 − 125w2.(2)

For one of these four solutions satisfying

γ(q−1)/5 ≡ X1 − 10X2

X1 + 10X2
(mod p),(3)

where X1 = x2 − 125w2 and X2 = 2xu− xv − 25vw,
the Jacobi sum Jr(χ, χ) for Fq is given by

Jr(χ, χ) =
1
4

(
Cζ5 + σ3(C)ζ2

5 + σ(C)ζ3
5 + σ2(C)ζ4

5

)
,

where C = x − 5w − 4v − 2u, and conversely for
this value of Jr(χ, χ), (x, w, v, u) gives the unique
solution of Dickson’s system which satisfies (2) and
(3). Moreover the cyclotomic numbers of order five
for Fpr , related to γ, are unambiguously given by
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A0,0 = (pr − 14 + 3x)/25,

A0,1 = (4pr − 16 − 3x + 25w + 50v)/100,

A0,2 = σ3(A0,1), A0,3 = σ(A0,1), A0,4 = σ2(A0,1),

A1,2 = (2pr + 2 + x − 25w)/50, A1,3 = σ2(A1,2).

Using the above Ai,j , we have the quintic period
polynomial P5,r(X) as the characteristic polynomial
of the matrix [Ai,j − Dif ]0≤i,j≤4. Here we describe
the reduced form of the quintic period polynomial:

P ∗
5,r(x, w, v, u; X)

= X5 − 10prX3 + 5prxX2

+
5pr

4
(
4pr − x2 + 125w2

)
X(4)

+
pr

8
(
x3 − 8prx − 625w(v2 − u2)

)
.

Note that all coefficients of P ∗
5,r(X) are σ-invariants

since P ∗
5,r(X) does not depend on a choice of γ.

This representation, however, gives us no informa-
tion about explicit factors of P ∗

5,r(X) when r = 5s.
Remark. From the equation

σ
(
Jr(χ, χ)

)
= Jr(χ2, χ2),

we see that if (x, w, v, u) gives the Jacobi sum J(χ, χ)
then the other solutions σ(x, w, v, u), σ2(x, w, v, u),
σ3(x, w, v, u) give Jr(χ2, χ2), Jr(χ4, χ4), Jr(χ3, χ3)
respectively.

4. Lift of Jacobi sums. As in Section 3,
we suppose that p ≡ 1 (mod 5). We shall construct
a lift of Jacobi sums via Dickson’s system.

Definition. Four integer solutions of Dick-
son’s system which satisfy (2) are called essentially
unique and we denote them by S(p, r)U .

The aim of this section is to give the procedure
to compute the set S(p, s+t)U by using S(p, s)U and
S(p, t)U . This is achieved by using certain quadratic
forms which are called multiplicative on algebraic va-
rieties in [12]. The following proposition, which can
be given as a special case of [12, Theorem 4], plays
a key role of our construction.

Proposition 2. Let q(X) = X2
1 + 125X2

2 +
50X2

3 + 50X2
4 and V a hypersurface defined by

X1X2 = X2
3 − 4X3X4 − X2

4 . There exists a bilinear
map ϕ : Z4 ×Z4 → Z4 such that ϕ(V × V ) ⊂ V and
q(v)q(w) = q(ϕ(v,w)) for any v,w ∈ V . Moreover
the bilinear map ϕ is given as follows:

ϕ(X,Y) = (X1Y1 + 125X2Y2 + 50X3Y3 + 50X4Y4,(5)

X2Y1 + X1Y2 − 2X3Y3 + 4X4Y3 + 4X3Y4 + 2X4Y4,

X3Y1 − 5X3Y2 + 10X4Y2 − X1Y3 + 5X2Y3 − 10X2Y4,

X4Y1 + 10X3Y2 + 5X4Y2 − 10X2Y3 − X1Y4 − 5X2Y4).

We have the following remarkable equation:

ϕ
(
σ(X), σ(Y)

)
= σ

(
ϕ(X,Y)

)
.(6)

Using ϕ in (5), we can construct a lift of integer
solutions of Dickson’s system.

Proposition 3. For s = (xs, ws, vs, us) ∈
S(p, s) and t = (xt, wt, vt, ut) ∈ S(p, t), the sixteen
4-tuples

〈
ϕ
(
s, σi(t)

)
/4

〉
, 0 ≤ i ≤ 3, are integer solu-

tions of Dickson’s system related to ps+t.
Proof . It is known that an integer solution

(x, w, v, u) of Dickson’s system satisfies the follow-
ing congruences (see [13, Lemma 1 (d)]).{

−x + w + 2u ≡ 0 (mod 4),
−x − w + 2v ≡ 0 (mod 4).

Using this, we can show that the sixteen 4-tuples
ϕ
(
σi(s), σj(t)

)
/4, (0 ≤ i, j ≤ 3), are in Z4 (see also

[12, Lemma 9]). From (6), they separate four σ-
orbits. And we can easily check that they satisfy the
conditions (1) from Proposition 2.

Definition. For s = (xs, ws, vs, us) ∈ S(p, s)
and t = (xt, wt, vt, ut) ∈ S(p, t), we define 4-tuples

of integers s
i∗ t, for 0 ≤ i ≤ 3, by

s
i∗ t := ϕ

(
s, σi(t)

)
/4,

where ϕ is defined in (5).

We have that
〈
s

i∗ t
〉 ⊂ S(p, s + t) for 0 ≤ i ≤ 3

from Proposition 3. Next we consider when there

exists integer i such that
〈
s

i∗ t
〉

= S(p, s + t)U , i.e.

which 4-tuples
〈
s

i∗ t
〉

correspond to the Jacobi sum
Js+t(χ, χ) for Fps+t . For r = (x, w, v, u) ∈ S(p, r),
we put

g1(r) := x2 − 125w2, g2(r) := v2 + vu − u2,

g3(r) := 2xu − xv − 25wv, g4(r) := g3(σ(r)).

Lemma 4. Let r = (x, w, v, u) ∈ S(p, r).
p � | g1(r) if and only if p � | gk(r) for k = 2, 3, 4.

Proof . See, for example, [13, Lemma 2].
The following proposition gives an explicit lift of
quintic Jacobi sums by using essentially unique solu-
tions of Dickson’s system.
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Theorem 5 (Addition formula). Let
s ∈ S(p, s) and t ∈ S(p, t). There exists inte-

ger i, (0 ≤ i ≤ 3) such that
〈
s

i∗ t
〉

= S(p, s + t)U if
and only if 〈s〉 = S(p, s)U and 〈t〉 = S(p, t)U .

Proof . We should show that p | g1

(
s

i∗ t
)

for
0 ≤ i ≤ 3 if and only if p | g1(s) or p | g1(t). We can
obtain the following remarkable equation:

16 g1

(
s

0∗ t
)

= g1(s)g1(t) + 2000g2(s)g2(t)

+ 20g3(s)g3(t) + 20g4(s)g4(t).

We also have similar equations for g1

(
s

i∗ t
)
, (i =

1, 2, 3) using g1(σ(t)) = g1(t), g2(σ(t)) = −g2(t),

g3(σ(t)) = g4(t), g4(σ(t)) = −g3(t). If p | g1

(
s

i∗ t
)

for 0 ≤ i ≤ 3 then p divides
∑3

i=0(−1)ig1(s
i∗ t) =

8000g2(s)g2(t), and then p | g1(s) or p | g1(t) from
Lemma 4. If p | g1(s) or p | g1(t) then it follows that

p | g1

(
s

i∗ t
)

for 0 ≤ i ≤ 3 from Lemma 4.
Theorem 5 enables us to compute the value of quin-
tic Jacobi sums for general Fq (cf. [22]). However we
should choose the suitable integer i which depends
on the first choice of s and t. In the next section, we
shall dissolve this ambiguity and give the multiplica-
tion formula explicitly.

5. Multiplication formula. First we con-
sider the case s = t in Theorem 5 in order to estab-
lish the duplication formula. For s = (x, w, v, u) ∈
S(p, s)U , we have the following equalities:

〈
s

0∗ s
〉

=
{
(4ps, 0, 0, 0)

}
,〈

s
1∗ s

〉
=

〈
s

3∗ s
〉

=
〈(x2 − 125w2

4
, v2 + vu − u2,

−x(v + u) + 5w(v + 3u)
4

,
x(v − u) + 5w(3v − u)

4

)〉
,

〈
s

2∗ s
〉

=
〈(−8ps + x2 + 125w2

2
, xw,

(7)

xv − 5wv + 10wu

2
,
xu + 10wv + 5wu

2

)〉
.

Hence if we have S(p, s)U then we can obtain nine
(different) integral solutions of Dickson’s system re-
lated to p2s. This corresponds to the fact that Dick-
son’s system related to p has four solutions and to p2

nine solutions. The following formula gives us which
above are essentially unique.

Proposition 6 (Duplication formula). For

s ∈ S(p, s)U , we have S(p, 2s)U =
〈
s

2∗ s
〉

as in (7).

Proof . It remains to show that s
2∗ s satisfy the

condition (2). Write (x2s, w2s, v2s, u2s) := s
2∗ s. We

have that x2s ≡ (x2 + 125w2)/2 (mod ps) and

(x2 + 125w2

2

)2

− 125
(
xw

)2

=
(x2 − 125w2)2

4
.

Hence we obtain

x2
2s − 125w2

2s ≡ (x2 − 125w2)2

4
(mod ps).

Thus p � | x2
2s−125w2

2s follows from p � | x2−125w2.
From the direct computation, we see that the symbol
i∗ satisfy the following law:

Lemma 7. For s ∈ S(p, s), t ∈ S(p, t),u ∈
S(p, u), we have

s
2∗ t = t

2∗ s,

(s
2∗ t)

j∗ u = s
2∗ (t

j∗ u), j = 0, 1, 2, 3.

Remark. In general, we see that s
i∗ t �= t

i∗ s

and (s
i∗ t)

j∗ u �= s
i∗ (t

j∗ u), for i = 0, 1, 3, j =
0, 1, 2, 3.
From Lemma 7, we can define the n-th power of the
symbol

2∗ as follows:

s(n) := s
2∗ s

2∗ · · · 2∗ s, (n times).

Using s(n), we obtain the multiplication formula:
Theorem 8 (Multiplication formula).

Suppose that s ∈ S(p, s)U . Then S(p, ns)U =
〈
s(n)

〉
.

Proof . We should show that if S(p, ns)U =〈
s(n)

〉
then S(p, (n + 1)s)U =

〈
s(n+1)

〉
. The case

n = 1 follows from Proposition 6. Thus we assume
that S(p, ns)U =

〈
s(n)

〉
. From Theorem 5, there ex-

ists an integer i such that s(n) i∗ s ∈ S(p, (n + 1)s)U .
However the integer i must be 2 because we obtain
that s(n−1) 2∗ (s

i∗ s) ∈ S(p, (n + 1)s)U by Lemma 7

and hence s
i∗ s ∈ S(p, 2)U from Theorem 5.

Here we describe the triplication, the quadruplica-
tion and the quintuplication formula which can be
obtained by iterating the duplication formula.

s(3) =
(x(−12ps + x2 + 375w2)

4
,

w(−12ps + 3x2 + 125w2)
4

,
σ(F )

4
,
F

4

)
,

where
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F = −4psu + x2u + 20xwv + 10xwu + 125w2u.

s(4) =
(

G1

8
,
xw(−8ps + x2 + 125w2)

2
,
σ(G2)

8
,
G2

8

)
,

where G1 = 16ps(2ps−x2−125w2)+x4+750x2w2 +
15625w4, G2 = −8ps(xu + 10wv + 5wu) + x3u +
30x2wv + 15x2wu + 375xw2u + 1250w3v + 625w3u.

s(5) =
(xH1

16
,
5wH2

16
,
σ(H3)

16
,
H3

16

)
,(8)

where H1 = 20ps(4ps−x2−375w2)+x4+1250x2w2+
78125w4, H2 = 4ps(4ps − 3x2 − 125w2) + x4 +
250x2w2 +3125w4, H3 = 4ps(4psu−3x2u−60xwv−
30xwu − 375w2u) + x4u + 40x3wv + 20x3wu +
750x2w2u + 5000xw3v + 2500xw3u + 15625w4u.

Using (8), we can prove Theorem 1 which gives
an explicit factorization of the reduced period poly-
nomial P ∗

5,5s(X) for Fp5s .
Proof of Theorem 1. From (4), we have

P ∗
5,5s(x5s, w5s, v5s, u5s; X) for Fq, (q = p5s), where

(x5s, w5s, v5s, u5s) ∈ S(p, 5s)U . Using (8), we have
that S(p, 5s)U =

〈
s(5)

〉
where s = (x, w, v, u) ∈

S(p, s)U . Since P ∗
5,5s(X) does not depend on a choice

of γ, we obtain P ∗
5,5s(X) using not (x5s, w5s, v5s, u5s)

but s = (x, w, v, u) ∈ S(p, s)U as P ∗
5,5s

(
s(5); X

)
. And

then the assertion can be checked by direct compu-
tation.

Gauss sums gr(b, e), (b ∈ Fq) of degree e for Fq

are defined by

gr(b, e) :=
∑

α∈Fq

ζTr(bαe)
p ,

(see, for example, [4]). We see that Gaussian periods
and Gauss sums have the following relation

e ηi,r + 1 = gr(γi, e), for i = 0, . . . , e − 1.

From the definition, we have gr(γi, e) = η∗
i,r, for 0 ≤

i ≤ e − 1. Hence the Gauss sums gr(γi, e) are roots
of P ∗

e,r(X). For i = 0, we write gr(e) := gr(1, e) =
gr(γ0, e). As a corollary of Theorem 1, we obtain the
location of the quintic Gauss sums for Fp5s .

Corollary 9. Let p ≡ 1 (mod 5), q = p5s.
The Gauss sum g5s(5) for Fq is given by g5s(5) =
ps(−x3 + 25L)/16, where L is in Theorem 1.

Proof . Since g5s(5) does not depend on a choice
of γ, the assertion follows from σ(−x3 + 25L) =
−x3 + 25L and (6).

Remark. It is not difficult to compute only
the value of the Gauss sum g5s(5) above. Indeed it
is known that g5s(5) can be given by using Eisenstein
sums (see [4, Chapter 12]). By Theorem 1 and (4),
we also see that g5s(5) is the product of gs(γi

s, 5), 0 ≤
i ≤ 4, where γs is a generator of F∗

ps :

g5s(5) =
4∏

i=0

gs(γi
s, 5).

Example. For p = 11, we have that

S(11, 1) = S(11, 1)U =
〈
(−1, 1, 0,−1)

〉
,

S(11, 2)U =
〈
(19,−1,−5,−2)

〉
,

S(11, 3)U =
〈
(−61,−1, 5,−18)

〉
,

S(11, 4)U =
〈
(−241,−19,−50, 11)

〉
,

S(11, 5)U =
〈
(−396,−100, 150,−30)

〉
,

P ∗
5,1(X) = X5 − 110X3 − 55X2 + 2310X + 979,

P ∗
5,5(X) = X5 − 1610510X3 − 318880980X2

+ 349760093485X + 36198435398004

= (X+99)(X+649)(X+979)(X−451)(X−1276).

And we also obtain that g5(5) = −979 = −11 · 89.
6. Appendix: tractable case. Let e ≥ 2

be a positive integer and q = pr a prime power such
that q ≡ 1 (mod e). In this section, we assume that

−1 is a power of p (mod e).

It is known that this situation is more tractable. For
example, Evans [6] showed that −1 is a power of
p (mod e) if and only if the Jacobi sum Jr(χs, χt) is
pure (i.e. some non-zero integral power of it is real)
for all s, t ∈ Z. The cyclotomic numbers Ai,j of order
e for Fq are called uniform if A0,i = Ai,0 = Ai,i and
Ai,j = A1,2 (i �= j), for 1 ≤ i, j ≤ e − 1. And Gaus-
sian periods ηi,r of degree e for Fq are also called
uniform if for some fixed c and η we have ηi,r = η for
i �= c. Baumert, Mills and Ward [3] showed that the
following conditions are equivalent for e ≥ 3: (i) −1
is a power of p (mod e), (ii) The cyclotomic numbers
of order e for Fq are uniform, (iii) The Gaussian pe-
riods of degree e for Fq are uniform.

For e = l, where l is an odd prime, Anuradha
and Katre [2] evaluated Jacobi sums and cyclotomic
numbers of order l for Fq as follows. For a prime
p such that m = ord p (mod l) is even, q = pr ≡
1 (mod l), and r = ms, (s ≥ 1),
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Jr(χ, χn) = (−1)s−1pr/2, for 1 ≤ n ≤ l − 2,

(9)

l2A0,0 = q − 3l + 1 − (l − 1)(l − 2)(−1)sq1/2,

l2A0,j = q − l + 1 + (l − 2)(−1)sq1/2, for j �= 0,

l2Ai,j = q + 1 − 2(−1)sq1/2, for i, j, i− j �= 0.

By (9), we can easily obtain the following lemma
which includes the quintic case l = 5 such that p �≡
1 (mod 5).

Lemma 10. Let l be an odd prime. Suppose
m = ord p (mod l) is even and q = pms ≡ 1 (mod l),
(s ≥ 1). The reduced period polynomial P ∗

l,ms(X) of
degree l for Fq splits over Q as follows:

P ∗
l,ms(X) ={

(X − q1/2)l−1(X + (l − 1)q1/2), if s is even,

(X + q1/2)l−1(X − (l − 1)q1/2), if s is odd.

Proof . The period polynomial Pl,ms(X) of de-
gree l is given as the characteristic polynomials of
the matrix [Ai,j −δ0,if ]0≤i,j≤l−1, since pf is even. It
is easily verified that

Pl,ms(X) = (X − A0,1 + A1,2)l−2
(
(X − A0,0 + f)×

(X − A0,1 − (l − 2)A1,2) + (l − 1)A0,1(f − A0,1)
)
,

because the cyclotomic numbers are uniform. Thus
the assertion follows from (9).
The calculations in this paper were carried out with
Maple and Mathematica [23].
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