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Abstract:

We will study special solutions of the sixth Painlevé equation which are mero-

morphic at a fixed singularity. We will calculate the linear monodromy for our solutions. We will
show the relation between Umemura’s classical solutions and our solutions.
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1. Introduction. The Painlevé equation
can be represented by an isomonodromic deforma-
tion of a linear equation. We call the monodromy
data of the linear equation a linear monodromy of
the Painlevé function. In general the linear mon-
odromy cannot be calculated explicitly, and we will
study Painlevé functions whose linear monodromy
can be explicitly determined. In this paper we call
such Painlevé functions monodromy solvable.
Examples of monodromy solvable Painlevé func-
tions are Umemura’s classical solutions [10]. But
there exist some monodromy solvable Painlevé func-
tions which are not included in Umemura’s classi-
cal solutions. It was R. Fuchs who first found a
monodromy solvable solution that is not included in
Umemura’s classical solutions [2]. He calculated the
linear monodromy of the so-called Picard’s solution

[9], which satisfies the sixth Painlevé equation
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with special parameters: « = =7 =0 and § =
1/2. R. Fuchs’ result was discovered again recently
[7]. Other monodromy solvable solutions are sym-
metric solutions of the first and second Painlevé
equations which are shown by A. V. Kitaev [6]. The
author has found the monodromy solvable solutios
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for the fourth and fifth Painlevé equations [3, 4].

In this paper we will classify the meromorphic
solutions of the sixth Painlevé equation at each fixed
singularity. There exist four meromorphic solutions
at t = 0 for generic values of parameters «, 3,7, 4.
By some Backlund transformations we obtain four
meromorphic solutions at each point t = 1 and ¢t =
00. These twelve meromorphic solutions are invari-
ant under the action of the Bécklund transforma-
tion group.

The aim of this paper is to show that these
meromorphic solutions are monodromy solvable. We
will calculate the linear monodromy for one of these
meromorphic solutions at ¢ = 0 by Jimbo’s method
[5]. We take two confluences of singularities of the
linear equation. One is the confluence between z =
0 and z = ¢ and the other is the confluence be-
tween x = 1 and x = oo. From these two confluences
we obtain the linear monodromy for our solution
explicitly.

One of our solutions includes the algebraic so-
lution y = +/t for the parameters (o + 3 = 0, v +
0 = 1/2). Some of our solutions also include one
of the Riccati solutions. In section five we describe
the relations between our solutions and Umemura’s
classicial solutions.

2. Isomonodromic deformation of Pyri.
The sixth Painlevé equation is represented by an
isomonodromic deformation of a second order single
equation [1, 8J:
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+%’ y(t) = u+0(t)’
z(x—1)(x —y) a
y—t wlz—1) (3.5)  (0-IV): —an(as + as)
_ _ 1— a3
b(z,t) = (1—ay—az—a)(y—1) These solutions satisfy the system (2.8) and they
(2.6) ’ 2t(t — 1) are convergent since (2.8) is of Briot-Bouget type
’ yly—1D)(y —t)z at ¢t = 0. We gave a proof of the convergence for the
h tit—1)(z —vy)’ fifth Painlevé transcendent in [4]. For generic values
of parameters, there are no meromorphic solutions
(2.7)

t(t—1)Hvi = y(y—1)(y—1)z*
—laa(y =Dy —t)+asy(ly—t)+ (a0 — Dy(y—1)]=
+ag(aq +a9)(y—t).
The compatibility condition of (2.1) and (2.2) will
give a Hamiltonian system
dy - 8HVI dz - 8HVI
dt 0z ' dt Oy
Eliminating z from the above system, we have the
sixth Painlevé equation Py; (1.1) for the parameters

(2.9) , , )
af oy o3 1—ag
L A R
3. Meromorphic
fixed singularity. In this section we will clas-
sify all of meromorphic solutions around a fixed
singularity. ~ We consider the solution of (2.8)
around ¢ = 0:

o0 o0
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For generic values of parame-
ters, the sixth Painlevé equation has the following
four meromorphic solutions around t = 0:

(2.8)

solutions around a

(3.1)

Theorem 1.

Oy
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A= . N Lo,

y(t) = ot 4 O,
(3.3)  (0-II): !

Z(t) — M + O(t),

1—0[4—0[0

around t = 0 except for these four solutions. The
solution (0-I) exists for ay — ag ¢ Z.

Remark 2. In the case of a3 = 0 (o = 0),
the sixth Painlevé equation has the following special
solution around ¢ = 0:

(3.6)
y(t) =t (ag + art + ast®> +---),

(3.7) 2(t) =t (bo + byt + bot® +---),

(ai S C),

The Béacklund transformations for the sixth Painlevé
equation are shown in Table I.

Let o1 and o3 act on the solutions (0-I), (0-II),
(0-I1T) and (0-IV). Then we obtain the meromorphic
solutions of the system (2.8) which are meromorphic
around ¢t = 1 and t = oo.

Theorem 3. The sizth Painlevé equation has
the following meromorphic solutions
(1) aroundt=1:

(3.8)
=140 -n),
= o -rp)
(3.9)
y(H) =1+0((1-1),
1-11 Q{0 T Q2
T = el e o)
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o y(t) ==L+ 0(1-1),
1-1T1 a1
1) = e 01 1)),
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Table I. The Bécklund transformations for the sixth Painlevé equation
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(3.11) Theorem 4. These twelve meromorphic solu-
y(t) = oy +O((1-1), tions are inyarz'ant under ‘the action of t@e B{icklund
(1-TV): 51 transformation group, which are shown in Fig. 1.
' ai(og 4 o) 4. The linear monodromy for the solu-
2(t) = ——— + 0((1 1)), .
a1 — ay tion (0-I).
(2) around t = oco: 4.1. Normalization of (2.1). We trans-
form the linear equation (2.1) so that the linear mon-
(3.12) o — o odromy is a subgroup of SL(2,C). By putting ¢ =
y(t) = 1oz O + o1, x04/2(x — 1)*3/2(x — t)0/2(z — y)p, (2.1) is trans-
(00-1): 1 formed to
1
2(t) = _a(ator) 1 +0(t72), &2 & .
a1 — o 3 (4.1) —— + iz, t) == + pa(x, 1)1 = 0,
(3.13) . du du
where
yG)ZCMJ%mt+CK“_U%» 11 1 1
(o0-I1): ' (42)  plet)=—+ + + ,
() = — % Lo ) -1+O(t_2) x xz—t x—1 z—y
a1 +ap t ’
(3'14) o @-I)(J'% @o-][) < S @o-]]D < S (OO-IV)
= ot
(0o-I11): ¥t og + o3 - ( )7 G % G %
= 2latan) 1 0-D)«—S%—©0-D~%>0-D< >0
1-— Q3 — 0y t ’
(3.15) i i * :
y(ty= —% Lo ) U-D<S=>0-D<-%=0-ID= >0
(00-IV): Qg — Qg
zZ(t) =y —asg + O(t_l). Fig. 1. The Bicklund transformations of the

twelve solutions.
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(4.3) The Riemann scheme of (4.7) is
o=~ (3) - (3) “oem e
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0,03
+ (7 + B) (1 aO)) (z—1)(z—1) Therefore a fundamental system of solutions
19 1 of (4.7) is
“-3)
2/ (z=1)(z—y) (4.10)
n (17 @) 1 _ _tt=1)Hy (z((C0m0a)/2=1(5 _ 1y=aa/2
2/ (x=t)(x—y) z(e-1)(z-1)
y(y—1)z X 2Fi(a0 + a1 + az, a0 + a2, 1+ ag — au; ),
z(z—1)(z—y)’ gllea=a0)/D=1(p _ 1)=as/2
The Riemann scheme of (4.1) is X oFy(on 4 g + o, 0 4 g, 1+ oy — ag; ).
(4.4) @ 0petzelze B The linear monodromy of (4.7) is equivalent to
S 19”—00 {M; Mo, My, Moo }.
P oS 9y B+ ) The exponent matrices of (4.7) at = 0,1 and
2 2 2 ? x oo are given by
QY (67} Qs _
2 "2 o2 ol WM
We will calculate the linear monodromy {Mj, M, To = 0 _Go— a7
My, My} of (4.1) for the solution (0-I) by the (4.11) 2
method in [5]. By
Here M; (j = 0,t,1,00) is the monodromy ma- T = 02 az |
trix along the path around = = j, and 2
(4.5) Moo My MMy = I Sta
.. . (4'12) T = 2 3 —
4.2. The limit of (4.1). 4.2.1) We will 0 a1
take the limit ¢ — 0 after substituting the solution 2
(0-I) into (4.1). The limit We may assume
(4.6) Yo(z) = lim ¢ (x, 1) (4.13)
= 27T, erilan=as) 0
satisfies MMy =e¢ 0= ( 0 e—m’(ao—m)) )
4.7
(quZ)) 3 1 i (4.14)
s <x e 1) rr My =TT, Moo = T = Toce,
' a0 — o 2\ 4 sy 2 1 where
T2 2 (7) (r —1)2 (4.15)
1 N T(14 ag - ag)l{ag) T(14 ag - ag)l{ag)
+ (2(Oéo + Qs + 044) — ?3(040 + 044) +1 F01: F(l—al—ag—m)l“(l—ag—ag F(l—ao—al—ag)l“(l—ao—ag)

— ooy + Ozg(Ozl + Ot2)> (x

F(l +ap - 054)11(*(13)
F(Oco +a+ OQ)F(Q() + OL‘Q)

F(l +ay - OL‘O)F(*OLS)
T + a9+ ag)T (00 4 0g)
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Fig. 2.
the linear monodromies M;.

The paths used to calculate

(4.16)

looterta)m( 4 g — g )T(=ay) e 4 0y - ag)T(-0y)
T(ogtagl(l-a1-ag—ay)  Tlag+ay)l(1-ag-0ap-ay)
dootmD(1 4 g ag)l(g) €M1 40y - 0g)T(a)
T(ogtar+agl(l-a9—ay)  Tlag+ag+ay)l(1-ag-ay)

lﬂ()oo =

We should separate the monodromy data M; M.
4.2.2) In the following, we consider the confluence
of z =1and x = oo in (4.1). We take the limit

(4.17) r(€) = lim (1€, 1).

Then ), (€) satisfies

(4.18)
2, (1 1 1 \dir
ae? +(£+£1+£s)d§
e (Y ey
+<1_%)g(;—s)+(%+%(l_ 0))5(5 )
o 1 ag(ag—1) oy ~
(- eEy e £<£—s)}wl
—0
where
(4.19) s=—4
oy — Qg

This is a Heun’s type equation with an apparent sin-
gularity at £ = s. The singularities £ = 0,1 and oo
correspond to x = 0,t and 1 - 0o, respectively. The
Riemann scheme of (4.18) is

§=0¢=1¢=s £=oc
e R . .
S 1+0407a4’

2 2 2
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o-t
MM, M,

Mo

Fig. 3. The paths used to calculate
the linear monodromies of (4.7).

A fundamental system of solutions of (4.18) is
(4.21)

(€/2(g = 1)700/2(g = ), €700/ (g — 102 - ) ).

The linear monodromy {Lg, L1, Lo} of (4.18) is
equivalent to { My, My, Moo M }.

My =P 'LyP, M,=P 'LP
MoM; = P 'Ly P
for a matrix P € SL(2,C).

The linear monodromy{Lg, L1, Lo} is given by
(4.23)

e—‘n’ioz4 0 ewiao 0
LO = ( 0 eﬂ—ia4> ) Ll = ( 0 e—ﬂ'iao) )

(4.24)

—Tri(()no—(l4) 0
€
Loo = ( 0 ewi(o«,cm)) :

Comparing (4.13) and (4.23), we have

(4.25)
MMy =P 'L{LyP,

wi(oo—ag)
MMy = L1 Lo = (e 0 )

O e—Tr’i(ao—(l4)

(4.22)

Thefore P is a diagonal matrix, since ag — oy ¢ Z
for the solution (0-I).

Theorem 5. The linear monodromy of (4.1)
for the solution (0-1) is as follows:

(4.26)

e—ﬂia4 0 eﬂiag 0
Mo=< 0 e”“‘*)’ Mt:< 0 e—m%),
_ [e T
M, =T} ( : em3> Tor,

(4.27) ,
_y (€m0
MOO = F()oo ( O e*ﬂ'ial > FOOO'
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Mt-l

Fig. 4. The paths use to calculate the linear
monodromies of (4.18).

To1 and Ty are given in (4.15) and (4.16). We
remark that ag — oy ¢ Z if the solution (0-1) ewists.
In a similar way, we can calculate the linear mon-
odromy explicitly for all of the twelve solutions in
Theorem 1 and Theorem 3.

Theorem 6. The twelve solutions in Theo-
rem 1 and Theorem 3 are all monodromy solvable.

5. Comparison with classical solutions.
Umemura studied special solutions of the Painlevé
equations [10]. Umemura’s classical solutions are ei-
ther rational solutions or the Riccati solutions. We
show that some of the twelve solutions of the sixth
Painlevé equation include an algebraic solution and
one of the Riccati solutions.

1) In the case of a3 = a4 and ap = a3 (e + 8 =
0, v+ ¢ = 1/2), the sixth Painlevé equation
has an algebraic solution
(5.1)

1 1 -1

() =vi=1+5(t-D+5

The solution (5.1) is a special case of the solution
(1—11) for a1 = 04, g = (3.

2) In the case of ag = 0, the system (2.8) has the
Riccati solution
(5.2)

z(t) =0,

y(t) = —

(t—1)%4---.

tt—1)
e51
[(t — 1) 5 Fy (s, 1 — as, 00 + au;t)]
(t — 1)0‘42F1(a4, 1— a3, ap + ag;t)

Il

|

|
+
2
—

|

This is obtained by putting as = 0 in the solu-
tion (1-I11).

3) In the case of ay = 0 (8 = 0), the system (2.8)
has the Riccati solution

[Vol. 82(A),
(5.3)
(t) =0,
[(t—=1)*29F1 (ag,00 + 03,1 — av3t)]’
t)=(t—1
A =0-1) (t—=1)225F (2,2 + 3,1 — agst)
:a2+0(1—t).

This is obtained by putting cy = 0 in the solu-

tion (1-III).
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