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Abstract:

In the previous paper [N3], we introduced a cofree embedding of a finite di-

mensional rational representation of a diagonalizable algebraic group over an algebraically closed
field of characteristic zero. Using this, we show inductive characterization of toric locally com-
plete intersection singularities in terms of group representation theory. Consequently we obtain a
classification of affine monomial normal hypersurfaces.
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1. Introduction. Let G always denote a di-
agonalizable affine algebraic group over an alge-
braically closed field K of characteristic zero. Let
X(G) denote the rational character group of G over
K which is regarded as an additive group. For an
affine variety X over K, O(X) stands for the K-
algebra of all polynomial functions on X. More-
over, for a regular action of G on an affine vari-
ety X (abbr. (X,G)), we denote by X//G the al-
gebraic quotient of X under the action of G with
the quotient map nx ¢ : X — X//G. The ac-
tion (X,G) is said to be cofree (resp. stable), if
O(X) is free as an O(X)%module (resp. X con-
tains a non-empty open subset consisting of closed
G-orbits). Let Xy denote the affine variety de-
fined by O(Xy) = O(X)g, where O(X)g denote
the K-subalgebra of O(X) generated by O(X),’s,
X € X(GY), satisfying O(X), - O(X)_y # {0}. In
the case where X is normal, for a prime ideal 3 such
that ht(P) = ht(P N O(X)%) = 1 let I¢(P) denote
the inertia group at P and e(B, PNO(X)T) the ram-
ification index of B over PN O(X)Y (cf. [N2]).

If A is a subset of X(G), let Zg - A (resp. Z -
A) denote the set of all linear combinations of any
finite subset of A with coefficients in Zg (resp. Z) in
X(G), where Zj denotes the additive semigroup of
nonnegative integers and Zg - ) means {0}. Consider
a finite dimensional rational G-module V. Let VV
be the dual module of V' on which G acts naturally
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and W(V, G) denote the set of all weights of G on V
(ie, {x € X(G) | Vi # {0}}). We say that 0 € G
is a pseudo-reflection on V, if dim(c — 1)(VVY) =
ht((c — 1)(VY) - O(V) N O(V)¥) < 1. Let Ry(G)
denote the subgroup of G generated by all pseudo-
reflections of G on V.

Definition 1.1. A pair (W,w) is defined to
be a paralleled linear hull of (V,G), if W is a G-
submodule of Vi and 0 # w € Vi such that WnN <
G - w >g= {0} and the G-equivariant morphism

(o+w):Wozx—ax+we Vy

induces the isomorphism 7y, /¢, v/ qo(e4+w)//Gy
W//Gw — Vit //G. Here (e +w)//Gy : W//Gry —
Vit // Gy is the quotient of (e + w) modulo G,, and
TV, //Gu, V)G - Vat//Gw — Vit //G is defined by the
inclusion O(Vi)¥ < O(Vi)®». A paralleled linear
hull (Wo, w,) of (V,G) is said to be minimal, if Wy
is minimal with respect to inclusions in the set con-
sisting of all subspaces W’s of Vi such that (W, w)’s
are paralleled linear hulls of (V, G) for some w’s.

1.2. Toric singularities. Let U, =
Spec(K[M N ¢V]) be an affine toric variety associ-
ated to a rational strongly convex polyhedral cone
0. Then there exists a diagonalizable G and a finite
dimensional rational representation p : G — GL(V)
such that

KMno']= K[V]¢

which preserves homogeneous parts. For any U,, let
MR(U,) denote the set consisting of all pairs (V, G) as
above. We put

2((V,G)) = (dim V,rk(p(G)), [p(G)/p(G°)|) € Z°
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and define the lexicographical order in Z3 on the
subset 9(R(U,)) = {2((V,Q)) | (V,G) € R(U,)}.
By (2) of (1.1) of [N3], we see that, for (V,G) €
R(Us), a minimal paralleled hull (W, w) of (V,G) is
characterized by

o((W//Rw (Guw), Guw/Rw (Gw))) = min (R(Us))).

Here (W//Rw(Gy),Gw/Rw(Gyw)) is the natural
representation, because Rw (Gy) acts as a finite
group on W (cf. [N2]) and W//Rw (G,,) is an affine
space (cf. [S]). So the ring theoretical properties on
toric singularities should be described in terms of
representation theory of (W, G,,)’s which are mini-
mal in R(U,) modulo pseudo-reflection parts.

Definition 1.3 (cf. [N3]). For a finite dimen-
sional representation ¢ : H — GL(W) of a diago-
nalizable group H, a faithful rational representation
¢ : H— GL(W) of a diagonalizable group H is said
to be a cofree embedding of ¢ : H — GL(W) (or
of (W, H)), if the following conditions (1), (2) are
satisfied: o
(1) ¢(H) (= Hlw) S ¢(H) and ¢(Rw(H)) =

¢(Rw (H)).

(2) The representation 25 is stable and cofree.

A cofree embedding 5 c H — GL(W) of ¢ : H —
GL(W) is said to be canonical, if ¢(H) is minimal in
all ¥(L)’s, where ¢ : L — GL(W) are cofree embed-
dings ¢.

In Sect. 2, we will show the ladder of subgroups
between G, and its cofree embedding G,, under the
assumption that V//G are complete intersections.
We finally in Sect. 3 give a criterion for V//G to
be a hypersurface in terms of character groups of G,
which can be regarded as a generalization of D. L.
Wehlau’s criterion (cf. [W]) for V//G to be an affine
space.

The symbol #( o ) stands for the cardinality of
the set o and, for n € N, let Z7 denote the additive
submonoid {(a1,...,a,) | Va; € Zo} of Z™. For
a mapping ¢ : A — B and a subset A C A, let
©|as denote the restriction of ¢ to A" and, for a set
Q of mappings ¢ : A — B, let Q|4 be the set of
restrictions ¢|a:’s (¢ € Q).

2. Ladder of subgoups of cofree embed-
dings and complete intersection singularities.
In this section, we study on the relation between
V//G and X(G) under the following circumstances:
Let V be a finite dimensional rational G-module. Fix
a minimal paralleled linear hull (W, w) of (V, G) with
H =G, and let {X1,...,X,,} be a K-basis of the
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dual space WV of W on which H is diagonal. For a
monomial M in O(W) of {X}}, let supp(M) be the
set

{X;11<i<m,OW)-X; > M}.

Let Dyx,1(W) denote the subgroup of GL(W) con-
sisting of all diagonal matrices on the K-basis {X7,
ooy X} of W.

In the case where V//G is a complete intersec-
tions, we show in [N3] that there exists a cofree em-
bedding of (W, H) and will construct a ladder of sub-
groups of GL(W) from H to its cofree embeddings
as follows:

Theorem 2.1. Suppose that V//G is a com-
plete intersection. For a minimal paralleled linear
hull (W, w) of (V,G), let {X1,...,Xm} be a K-basis
of WY on which H = G, is diagonal. Then, for any
canonical cofree embedding (W, fI) of (W, H) diago-
nal on this basis, there exists a descending chain of
closed subgroups

H=Hy2H DHy2---2Hy=Hlw

of GL(W) such that each OW)Hi, 0 < i < d, is
generated by a part of the unique minimal system
of generators of O(W)Hi+1 consisting of monomials
of {X1,...,Xm} as a K-algebra and is a complete
intersection of codim(O(W)Hi) = .

2.2. Semigroup rings. For an affine addi-
tive monoid S, we denote by K|S] the affine semi-
group ring associated with S over K, i.e., K[S] is the
K-vector space with the basis {e(s) | s € S} whose
K-algebra structure is induced by e(s)-e(t) = e(s+t)
s, t €S8 (e.g., [TE]). Let FUND(S) denote the mini-
mal system of generators of S as a monoid and put
St = S\({0} U FUND(S)). For any n € Zg and
nonzero z € S, let S fn x denote the submonoid

n n
S+ZZO'ei+ZO' <$—Z€i>
i=1 i=1
of S&Z", where e¢;, 1 < i < n, form the canonical ba-
sis of Z™. In the case where n = 0, the monoid S fo T
is regarded as S. It should be noted that S is normal
if and only if so is § [ x. Clearly FUND(S [ z) =
FUND(S)U{e; |1 <i<n}U{z—>", e}
Theorem 2.2.1 ([N1]). For an affine normal
monoid S, the semigroup ring KI[S] is a complete
intersection of codimension d if and only if S is iso-
morphic to (---((Zg° [,,, =1) [, #2) [, ) J,, 2a®
7", where n; € N, u € Zy and x; €

((--((Zg° ny 1) na z2) an ) fmﬂ zi1)*
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Suppose that V//G is a complete intersection of
codim(O(V)¥) = d. Since O(W)# is regarded as an
affine semigroup ring K[S] without non-trivial units
induced by the multiplicative monoid {[]/", X7 €
OW)H | 3¢; € Zo} of monomials isomorphic to the
additive monoid S. Let K[T] be the polynomial ring
KTij|0<i<d 0<j<mn(i>1),1<j<
no (i = 0)] with indeterminate {7};} over K. Then
let

& K[T] — KI[S]

be a K-epimorphism defined by {®(Ty;) | 0 < ' <
i, 0<j<ny (i >1),1<j<n (i =0)} =
FUND((--- ((Zg° [, #1) [, 2) [, =) [, @) (0 <
i < d). By Proposition 4.1 of [N1], the element
H?il O(To;) principally generates wi(s) as an ideal.
The restriction of ® induces the K-epimorphism
<I>ZK[Tz/J|0§z’§z,0§]§n;(z/2
), 1 <j <mn (! =0] — K[ ((Z° [,
1) [, @) [,
by

1
) [, xi] whose kernel is generated

ni/

HTi’j — |1 <7 <

j=0
for 1 < i < d, where & is a monomial of {T;~; | 0 <
i<l 0<j<mp (i >1), 1<j<ng (i =0)}
such that ®(¢;) = e(zy). Denote by M;; the image
of T;; under the composite © o ®, where © stands for
the canonical isomorphism K[S] = O(W)#. By the
observation as above, we see that each

K([Myj |i" < i, Vj]

is normal. Let H; (0 < ¢ < d) be the stabilizer of
Dix,;(W) at the set {My; | 0 < 4" < 4,Vj}. Let
e; be the order of Ig(OW) - X))lw, 1 < i < m
([N2]). Then, by the proof of (2.6) of [N3], we see
that (W, Hy) is the canonical cofree embedding of
(W, H) diagonal on the K-basis { X} and must have

Lemma 2.2.2. supp(My;) (1 < j < ng) are
disjoint and [;2, Mo; = [[;=, X{". O

Proof of (2.1). Since the ground field K is
of characteristic zero, character theory implies that
KXy, X' X, X = KMy, M, | 0 <
i’ < i, Vj]. Let N be a monomial in O(W)Hi of
{X1,..., X;n}. We can choose elements g, h from
K[M,;; | 0 <4 <4, Vj] in such a way that N =

h
—. Suppose that N & K[M;; | i' < i, Vj] and, as
g

N € OW)He = K[M,, | Yp,q], let ig > i be the
smallest number in {u | N € K[M;; | i < u, Vj]}.
Express N as a product N = N’ - N” of monomials
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N’ € K[Mi/j | 7! <9 —1, Vj] and N” € K[Mi/j |
i" <ig, Vj] of {X,}. We may assume that the total
degree of N’ is large as possible, in this expression
N = N’- N”. Then N” must be represented as a
monomial of {M;, o, ..., Mg ni, }. If N” is divisible
by [T Mi,; in K[M,, ; | Vj], by (2.2), since

no

H Mioj S K[Milj | il < io — 1,Vj],

§=0
this conflicts with the assumption on the total degree
of N’. Thus we may suppose that N” = H;L:O1 Mfojj
for some ¢; € Zo. Putting A = K[M;; | i < iy —
1, V], we have an A-epimorphism

A:AQK K[Tioo, - 7Ti0m‘0] — K[Mi/j | i’ <10, Vj]

defined by A(T;,;) = M;,;. Clearly, as the elements
g, h and © o ®(¢;,) belong to A, we have Ker(A) =
( im0 Tipj —© o0 ®(&;,)) (cf. (2.2)) and
nio ‘ n,;o
Ng-T1725 —he [ [ Tis — 00 (&) | »
j=1 §=0
which is a contradiction. Consequently we must have

OW)Hi = KM | 0 <i' <i, Vj]

o[- o) ) ) =]

which is a complete intersection and of codimension
i. O

3. A classification of toric hypersuface
singularities. Under the notation in (2.2), we sup-
pose that V//G = W//H is a singular hypersurface,
i.e., d =1, except the definition in (3.4).

Lemma 3.1. supp(My;), 0 < i < ny, are dis-
joint.

Proof. Suppose that

supp (M, ) O supp(Mii,) 3 X

for some 0 < i1,i2 < np, 1 <k < m. Since there ex-
ists an index 1 < u < ng such that X, € supp(Mo,,)
(cf. (2.2.1)), we see that the embedding dimension of
OW)H /(O(W)-X)H is not exceeding ng+nq+1-3,
which conflicts with
ht(O(W) - X3,) = ht(O(W) - Xp)H) =1. O

Put g W = (U;(supp(My;)))* and

Wy = ({X1,.... X }\(Ui(supp(My,)))) ™,
respectively, under the canonical pairing

W x WY - K.
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Then W = gW @& Wy as H-modules and, by this,
we identify (gW)Y and (Wg)Y with the subspaces
of WY in a natural way. Put H(,w) = Ker(H —
GL(zW)) and Hw,,) = Ker(H — GL(Wx)).
Lemma 3.2. For 1 < i < ng, the following
conditions are equivalent:
(1) #(supp(Mo;) =1
(2) supp(Moi) N (UgZgsupp(Mix)) = 0
(3) supp(Mo;) € (ULosupp(Mi;))].
Moreover, we identify O(gW)" = O(gW)Hwm =
K[{Mo; | 4(supp(Mo;)) = 1}], OWg)" = O(Wx
Yl = K[{Mo; | #(supp(Mo;)) > 1} U {My; |
Vi}] and OW)T = O(gW)HWm @ O(Wg)Howm |
respectively.
Proof. According to the observation and nota-
tion in (2.2), we have

ni

K([Toi, To; | Vi, )/ | [T — & | = o),
=0

which is induced by ®. This isomorphism requires
that ®(&1) is a monomial of U;Z,supp(Mi;). Thus

(3.3)  OW)™ = K[Mo; | supp(Mp:)
N(UjLgsupp(Mi;)) = 0] @ x K [Moi, Ma; |
supp(Moi) N (UpLosupp(Mix)) # 0, V5]
= K [Mo; | supp(Mo;) € UL gsupp(Mi;)]
Qr K[Mo;, Mi; | supp(Mo;)
C UpLgsupp(Mik), Vjl.

Since K[Mo; | supp(Mo;) N (UjLsupp(Mi)) = 0]
and

K[Moy; | supp(Mo;) € UjLgsupp(Mi;)]
are polynomial rings over K, the ideal O(W)H - My,
satisfying

supp(Mo;) N (UjLgsupp(My;)) = 0

or supp(Mo;) & U?;()supp(Mlj) is a prime ideal
of height one. By the property of minimal par-
alleled linear hulls (cf. (1.1) of [N3]), we have
f(supp(Mp;)) = 1 for these Mpy;’s.  Conversely
if f(supp(Mo;)) = 1, then My = X;* €
O(W)1u(©W)-Xe) for some k (cf. (2.2.2) and [N2]),
which implies H|W = HXk|W X H{Xj|Vj;ék}|W7

OW)" = K[Xp*] @k K[X; | Vj # k"

and Xj, ¢ UL supp(Mi;) (cf. (2.2)). Here ey =
f(Ig (O(W) - Xi)|w) ([N2]). Consequently we have
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H|HW = H(WH)|HW

- I

ke{k| X, FeO(W)H}

(I (OW) - Xi)|yw),

which implies H|W = H(WH)|W X H(HW)|W The
last assertion follows from these remarks. O

Definition 3.4. Let I' be a subset of
{X7{,..., Xen} and p, ¢ € Zo. Recall ¢, =
f(Ig (O(W) - X)|lw) (cf. [N2]). We say that a finite
set A of monomials of {X7*,..., X%} has a (p,q)-
matrix structure of weight (a1,...,a,) € NP on T, if
§(I') =p-qand

q P
A= {HY;MHY@?]V
v=1 u=1

where {Y;; | 1 < i < p,1 < j < ¢} =T whose
elements are indexed doubly.
Lemma 3.5. The set

{Mo; | 4(supp(Mo;)) > 1} U{M1; |0 <j <ni}

1<i<p,1<j<q}7

has a (p,q)-matriz structure of weight (a1,...,ap)
on T = {X* | X}, € f} for some p, ¢ € N such
that (') = p x ¢ and (a1,...,ap) € NP, where
r = U?;()supp(Mlj). Moreover ¢ = ny + 1 and the
condition p > 2 or a1 > 2 holds.

Proof. Let i be any index such that
f(supp(Mp;)) > 1. TIf there exists 0 < j < ny
such that supp(Mo;) Nsupp(Mi;) = 0, then we see

supp | [ [ Mux | 2 supp(Moi),
k#j

which implies Hk# Tk — Toi - v € Ker(®) for some
v € K[Tou,T1v | Yu,v]. This conflicts with (2.2).
Suppose that supp(My;) N supp(Mi;) contains X
and Xo. Both O(W)H JO(W)-XxnO(W)H  k = 1,2,
are of embedding dimension at most ng+mn; +1— 2.
Hence, as ht(O(W) - X N O(W)H) = 1, we must
have

OW) - X1 NOW)H = (Mo, My;)
=0O(W)- X, NOW)H.

This also conflicts with the property of the mini-
mal paralleled linear hull (cf. (1.1) of [N3]). Conse-
quently, by (3.1) and (3.3), we index the set I doubly

as follows: Let I' be the set
{Zuw |1<u<p1<v<g}
defined by

supp(Moy,) Nsupp(Mi;) = {Zij41}
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for 1 <i<pand0<j<ni, where
{Mos, | 1 <i < p} = {Mox | §(supp(Mox)) > 1},

1 <ty <---<tp, and ¢ =ny + 1. For Z,,, = Xy,
let e, denote ek, and put Y,, = Z&» (1 < u < p,
1 <wv <gq). Then My, = []?_, Yi, (cf. (2.2.2)) and
My =11, YUC/ for some ¢,; € N. By (3.2),
(3.3) and the observation in (2.2), there is a unique

relation
n1 p
_ d;
11 a0, =15
§=0 i=1

with certain d; € N. Therefore we see that c,;’s
are independent of j, and so denoted it by a,. The
almost all assertions follow from these facts and
the last one is a consequence of non-regularity of
ow)HH, O

Definition 3.6. For any weight y € W(W, H),
let e(x) be the number §(x(W(W/W,, H)*)), where
the orthogonal set is related to the pairing

H x X(H) = K*

(e(x) = oo, if x\(W(W /Wy, H)t) is of infinite or-
der). In the case where dimW, = 1, we have
e(x) = HI (O(W) - (WY)_)lw) < o0 (cf. [N3]).

For a finite subset = of X(H) such that Zy-=Z =
Z - =, define the canonical epimorphism v : ®ye=Z -
A — Z - = such that v(\) = A. We say that an
element

Fey Zy-AC@xesZ- )
A€E

is a non-negative relation of Z, if A(F') = 0, and,
for a convenience sake, we denote the relation F' by
F =0. For

Fie) Zo-AC@re=Z-A(1<i<l),
A€E
the set = has the basic relations F1 =0, ..., F; =0,
if any non-negative relation F' = 0 satisfies that

!

FeY Zy-F,CY Zo-AC @rezZ- A

i=1 AEE

Theorem 3.7. Let (W,w) be a minimal par-
alleled linear hull of (V,G) and put H = G,,. Then
V//G is a singular hypersurface if and only if the
following conditions on W(W, H) are satisfied:
(1) $OV(W, H)\{0}) = dimW/W! =p-q+s for

some p, g € N and s € Zy.

(2) We can express WW, H)\{0} = ¥ U {x;; | 1 <
i <p,1<j<q} (disjoint sum) with §(¥) = s
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such that oo > #(¢(H)) = e(y) > 1 for any
Y eV and {e(xij) - xij | 1 <i<p1<j<q}
has the non-negative basic relations
Y elxig) - xij =0 (1<i<p)
Y aie(xig) xiy =0 (1<j<q)
for some (a1,...,ap) € NP. Here ¢ > 1 holds
and, if p =1, the inequality ay > 1 is satisfied.
Combining the next lemma with (3.2) and (3.5),
we will give a paraphrase in terms of characters,
which completes the proof of this theorem.
Lemma 3.8. Let T' be a subset of {X{',
oo, XemY for any e; € N. Let A be a finite set of
monomials of {X{*,..., Xt} having a (p, q)-matric
structure of weight (a1,...,ap) € NP on T for any
p, ¢ € Zo and (a1,...,ap) € NP. Then there ex-
ists a unique closed subgroup L of GL(W) such that
OW)E = K[({X{, ..., Xem I\T) UA].
Proof. Suppose that
q P
= {1 D
v=1 u=1
where {Y;; | 1 <i <p,1 <j < g} denotes I'. Put
A = (T Ya)*, Ty Y | 1< i < pl <
j < gq}. Let S denote the stabilizer of the diag-
onal group D{}Q‘}i}(@i,j K -Yj") at the set A un-
der the natural action of D{Ysi}(®i7j K -YZ) on
K[YZ;‘ Vi, j]. Then dimS =p-q—p—q+ 1 and
K[Yy |1<i<p1<j<ql ' = K[A], where

1<i<p,1<j<(J},

P Dy | DK Yis | = Doy | DKV
,J .7
is the canonical epimorphism. From this, we infer
that the kernel of the K-homomorphism
Q:K[U()l,...,Uop,Ull,...,Ulq] —>K[A]

from the (p+¢)-dimensional polynomial algebra over
K sending

P q
Uy; — HYz‘j,Ulj — HYZ?
j=1 i=1
is principal and contains the irreducible polynomial

q
HUU -
j=1

for some monomial v € K [Upq, ..., Upp. As

D, a; (Bvi ; K-V
K[y Y5 [, g) o e ron

70 T ag
=K[AU{z™! |Vz € A}],
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as in the proof of (3.1), we similarly have

ij

(3.8.1) K[V |4,]] = K[AL.

Here (e)p denotes the stabilizer of e at A. Since
KX, Xem] = K[{X®,..., X N\ @k KT
is a ring of invariants of a finite diagonal group gen-
erated by pseudo-reflections in GL(W) (cf. [S] ), by
(3.8.1), we have a closed subgroup L of GL(W) sat-
isfying

O(W)* = K[({X{",.... X5 \T) U A

The uniqueness of L follows similarly from stability
of the action as in the proof of (3.3) of [N3]. O

Proof of (3.7). To prove (3.7), we may as-
sume that WH = {0}. By (3.5) and (3.8), W//H
is a hypersurface if and only if there exists a subset

I of {X7*,..., X%} and a finite set of monomials
A of {X7',..., X%} having a (p,q)-matrix struc-

ture of weight (a1, ...,ap) € NP on I' such that any
monomial in O(W)# is represented as a monomial
of the members of A U ({X{*,..., X5 \I'). Here
e = H(In (O(W) - X;)|w) (cf. [N2]).

Suppose that the condition of the “only if” part
of the statement as above holds. Let ¥ denote the
set of v € W(W, H) satisfying the both conditions
(WY)_yp > X; and X" € {X7',..., Xg }\I'. Then,
as X' € OW)H for X7 ¢ T, we have §()(H)) =
e() = e; and (WY)_y = K - X, for the ) € ¥
such that (WV)_, > X;. Moreover, we see #(¥) =
m — #(T"). Let

0:{1,....p} x{1,...,q} = {1,...,m}
be a map defined by ng;;; =Y. Forl <

i <pand 1l < j < g, let x5 € X(H) denote
the character such that (W")_y,. > Xp¢;). Then
(WY)—y.; = K- Xo@j), e(xij) = €o(,j) and dim W =
p-q+4(¥). Since the K-algebra O(W)# is generated
by AU ({X7, ..., X \I), the basic non-negative
relations of {e(xi;) - xi;} are identified with the re-
lations in (2) of (3.7).

Conversely, if the conditions (1) and (2) in (3.7)
hold, then we show that W//H is a hypersurface by
following reverse of the argument mentioned above.
It should be noted that the non-regularity of W//H
is related to the last condition in (2) in (3.7). O
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3.9. Examples for (3.7). In order to ex-
plain the content of (3.7), we give the following
examples. For a convenience sake, suppose that
Rw (H)|w = {1} in the both examples.

Example 3.9.1. Under the same circum-
stances as in (2.7.1), V//G is a singular hypersurface
if and only if the conditions (1) and (2) in (3.7) in
the case where s =0, p=1 (a1 > 1) and e(x1;) =1
hold. In other word, this is equivalent to the condi-
tion that there exists a direct sum W = WH Wy of
K H-modules such that H|w,, can be represented as
a subgroup < diag[(,, ¢ 11, ..., 1], diag[¢, 1, ¢ 0,
1,...,1],...,diag[¢s, 1,...,1,¢( Y] > of GL(Wg) on
some K-basis, where (, € K is a fixed primitive a-th
root of unity for some 1 < a =a; € N.

Example 3.9.2. Under the same circum-
stances as in (2.7.2), we suppose that W = {0}.
Then V//G is a singular hypersurface if and only if
m = 4 and there exists a bijection

6:{(1,1),(1,2), (2.1), (2,2)} — {1,2,3,4}

such that the relations of {{1]m, ..., &m|n} are only

o la + oo la =0 (i=12)

ar - &g le +az - & nla =0 (j=1,2)

for some (a1,as) € N2. The character So((ig))lm 18
regarded as x;; in (3.7).
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