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Abstract: In the previous paper [N3], we introduced a cofree embedding of a finite di-
mensional rational representation of a diagonalizable algebraic group over an algebraically closed
field of characteristic zero. Using this, we show inductive characterization of toric locally com-
plete intersection singularities in terms of group representation theory. Consequently we obtain a
classification of affine monomial normal hypersurfaces.
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1. Introduction. Let G always denote a di-
agonalizable affine algebraic group over an alge-
braically closed field K of characteristic zero. Let
X(G) denote the rational character group of G over
K which is regarded as an additive group. For an
affine variety X over K, O(X) stands for the K-
algebra of all polynomial functions on X . More-
over, for a regular action of G on an affine vari-
ety X (abbr. (X,G)), we denote by X//G the al-
gebraic quotient of X under the action of G with
the quotient map πX,G : X → X//G. The ac-
tion (X,G) is said to be cofree (resp. stable), if
O(X) is free as an O(X)G-module (resp. X con-
tains a non-empty open subset consisting of closed
G-orbits). Let Xst denote the affine variety de-
fined by O(Xst) = O(X)st, where O(X)st denote
the K-subalgebra of O(X) generated by O(X)χ’s,
χ ∈ X(G0), satisfying O(X)χ · O(X)−χ �= {0}. In
the case where X is normal, for a prime ideal P such
that ht(P) = ht(P ∩ O(X)G) = 1 let IG(P) denote
the inertia group at P and e(P,P∩O(X)L) the ram-
ification index of P over P ∩ O(X)G (cf. [N2]).

If Λ is a subset of X(G), let Z0 · Λ (resp. Z ·
Λ) denote the set of all linear combinations of any
finite subset of Λ with coefficients in Z0 (resp. Z) in
X(G), where Z0 denotes the additive semigroup of
nonnegative integers and Z0 · ∅ means {0}. Consider
a finite dimensional rational G-module V . Let V ∨

be the dual module of V on which G acts naturally
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and W(V,G) denote the set of all weights of G on V
(i.e., {χ ∈ X(G) | Vχ �= {0}}). We say that σ ∈ G

is a pseudo-reflection on V , if dim(σ − 1)(V ∨) =
ht((σ − 1)(V ∨) · O(V ) ∩ O(V )G) ≤ 1. Let RV (G)
denote the subgroup of G generated by all pseudo-
reflections of G on V .

Definition 1.1. A pair (W,w) is defined to
be a paralleled linear hull of (V,G), if W is a G-
submodule of Vst and 0 �= w ∈ Vst such that W∩ <

G · w >K= {0} and the Gw-equivariant morphism

(• + w) : W � x �→ x+ w ∈ Vst

induces the isomorphism πVst//Gw,V//G◦(•+w)//Gw :
W//Gw

∼−→ Vst//G. Here (•+w)//Gw : W//Gw −→
Vst//Gw is the quotient of (• + w) modulo Gw and
πVst//Gw,V//G : Vst//Gw −→ Vst//G is defined by the
inclusion O(Vst)G ↪→ O(Vst)Gw . A paralleled linear
hull (W0, wo) of (V,G) is said to be minimal, if W0

is minimal with respect to inclusions in the set con-
sisting of all subspaces W ’s of Vst such that (W,w)’s
are paralleled linear hulls of (V,G) for some w’s.

1.2. Toric singularities. Let Uσ =
Spec(K[M ∩ σ∨]) be an affine toric variety associ-
ated to a rational strongly convex polyhedral cone
σ. Then there exists a diagonalizable G and a finite
dimensional rational representation ρ : G → GL(V )
such that

K[M ∩ σ∨] ∼= K[V ]G

which preserves homogeneous parts. For any Uσ, let
R(Uσ) denote the set consisting of all pairs (V,G) as
above. We put

d((V,G)) = (dimV, rk(ρ(G)), |ρ(G)/ρ(G0)|) ∈ Z3
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and define the lexicographical order in Z3 on the
subset d(R(Uσ)) = {d((V,G)) | (V,G) ∈ R(Uσ)}.
By (2) of (1.1) of [N3], we see that, for (V,G) ∈
R(Uσ), a minimal paralleled hull (W,w) of (V,G) is
characterized by

d((W//RW (Gw), Gw/RW (Gw))) = min (d(R(Uσ))).

Here (W//RW (Gw), Gw/RW (Gw)) is the natural
representation, because RW (Gw) acts as a finite
group on W (cf. [N2]) and W//RW (Gw) is an affine
space (cf. [S]). So the ring theoretical properties on
toric singularities should be described in terms of
representation theory of (W,Gw)’s which are mini-
mal in R(Uσ) modulo pseudo-reflection parts.

Definition 1.3 (cf. [N3]). For a finite dimen-
sional representation φ : H → GL(W ) of a diago-
nalizable group H , a faithful rational representation
φ̃ : H̃ → GL(W ) of a diagonalizable group H̃ is said
to be a cofree embedding of φ : H → GL(W ) (or
of (W,H)), if the following conditions (1), (2) are
satisfied:
(1) φ(H) (= H |W ) ⊆ φ̃(H̃) and φ(RW (H)) =

φ̃(RW (H̃)).

(2) The representation φ̃ is stable and cofree.
A cofree embedding φ̃ : H̃ → GL(W ) of φ : H →
GL(W ) is said to be canonical, if φ̃(H̃) is minimal in
all ψ(L)’s, where ψ : L→ GL(W ) are cofree embed-
dings φ.

In Sect. 2, we will show the ladder of subgroups
between Gw and its cofree embedding G̃w under the
assumption that V//G are complete intersections.
We finally in Sect. 3 give a criterion for V//G to
be a hypersurface in terms of character groups of G,
which can be regarded as a generalization of D. L.
Wehlau’s criterion (cf. [W]) for V//G to be an affine
space.

The symbol �( ◦ ) stands for the cardinality of
the set ◦ and, for n ∈ N, let Zn0 denote the additive
submonoid {(a1, . . . , an) | ∀ai ∈ Z0} of Zn. For
a mapping ϕ : A → B and a subset A′ ⊆ A, let
ϕ|A′ denote the restriction of ϕ to A′ and, for a set
Ω of mappings ϕ : A → B, let Ω|A′ be the set of
restrictions ϕ|A′ ’s (ϕ ∈ Ω).

2. Ladder of subgoups of cofree embed-
dings and complete intersection singularities.
In this section, we study on the relation between
V//G and X(G) under the following circumstances:
Let V be a finite dimensional rationalG-module. Fix
a minimal paralleled linear hull (W,w) of (V,G) with
H = Gw and let {X1, . . . , Xm} be a K-basis of the

dual space W∨ of W on which H is diagonal. For a
monomial M in O(W ) of {Xk}, let supp(M) be the
set

{Xi | 1 ≤ i ≤ m,O(W ) ·Xi �M}.
Let D{Xk}(W ) denote the subgroup of GL(W ) con-
sisting of all diagonal matrices on the K-basis {X1,
. . . , Xm} of W .

In the case where V//G is a complete intersec-
tions, we show in [N3] that there exists a cofree em-
bedding of (W,H) and will construct a ladder of sub-
groups of GL(W ) from H to its cofree embeddings
as follows:

Theorem 2.1. Suppose that V//G is a com-
plete intersection. For a minimal paralleled linear
hull (W, w) of (V,G), let {X1, . . . , Xm} be a K-basis
of W∨ on which H = Gw is diagonal. Then, for any
canonical cofree embedding (W, H̃) of (W,H) diago-
nal on this basis, there exists a descending chain of
closed subgroups

H̃ = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hd = H |W
of GL(W ) such that each O(W )Hi , 0 ≤ i < d, is
generated by a part of the unique minimal system
of generators of O(W )Hi+1 consisting of monomials
of {X1, . . . , Xm} as a K-algebra and is a complete
intersection of codim(O(W )Hi ) = i.

2.2. Semigroup rings. For an affine addi-
tive monoid S, we denote by K[S] the affine semi-
group ring associated with S over K, i.e., K[S] is the
K-vector space with the basis {e(s) | s ∈ S} whose
K-algebra structure is induced by e(s)·e(t) = e(s+t)
s, t ∈ S (e.g., [TE]). Let FUND(S) denote the mini-
mal system of generators of S as a monoid and put
S� = S\({0} ∪ FUND(S)). For any n ∈ Z0 and
nonzero x ∈ S, let S ∫n x denote the submonoid

S +
n∑
i=1

Z0 · ei + Z0 ·
(
x−

n∑
i=1

ei

)
of S⊕Zn, where ei, 1 ≤ i ≤ n, form the canonical ba-
sis of Zn. In the case where n = 0, the monoid S ∫0 x
is regarded as S. It should be noted that S is normal
if and only if so is S ∫n x. Clearly FUND(S ∫n x) =
FUND(S) ∪ {ei | 1 ≤ i ≤ n} ∪ {x−∑n

i=1 ei}.
Theorem 2.2.1 ([N1]). For an affine normal

monoid S, the semigroup ring K[S] is a complete
intersection of codimension d if and only if S is iso-
morphic to (· · · ((Zn0

0

∫
n1
x1)
∫
n2
x2)
∫
n3

· · · ) ∫nd
xd ⊕

Zu, where ni ∈ N, u ∈ Z0 and xi ∈
((· · · ((Zn0

0

∫
n1
x1)
∫
n2
x2)
∫
n3

· · · ) ∫
ni−1

xi−1)�.
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Suppose that V//G is a complete intersection of
codim(O(V )G) = d. Since O(W )H is regarded as an
affine semigroup ring K[S] without non-trivial units
induced by the multiplicative monoid {∏m

i=1X
ci

i ∈
O(W )H | ∃ci ∈ Z0} of monomials isomorphic to the
additive monoid S. Let K[T ] be the polynomial ring
K[Tij | 0 ≤ i ≤ d, 0 ≤ j ≤ ni (i ≥ 1), 1 ≤ j ≤
n0 (i = 0)] with indeterminate {Tij} over K. Then
let

Φ : K[T ] → K[S]
be a K-epimorphism defined by {Φ(Ti′j) | 0 ≤ i′ ≤
i, 0 ≤ j ≤ ni′ (i′ ≥ 1), 1 ≤ j ≤ n0 (i′ = 0)} =
FUND((· · · ((Zn0

0

∫
n1
x1)
∫
n2
x2)
∫
n3

· · · ) ∫ni
xi) (0 ≤

i ≤ d). By Proposition 4.1 of [N1], the element∏n0
j=1 Φ(T0j) principally generates ωK[S] as an ideal.

The restriction of Φ induces the K-epimorphism
Φi : K[Ti′j | 0 ≤ i′ ≤ i, 0 ≤ j ≤ n′

i (i′ ≥
1), 1 ≤ j ≤ n0 (i′ = 0)] → K[(· · · ((Zn0

0

∫
n1

x1)
∫
n2
x2)
∫
n3

· · · ) ∫ni
xi] whose kernel is generated

by 
ni′∏
j=0

Ti′j − ξi′

∣∣∣∣∣∣ 1 ≤ i′ ≤ i


for 1 ≤ i ≤ d, where ξi′ is a monomial of {Ti′′j | 0 ≤
i′′ < i′, 0 ≤ j ≤ ni′′ (i′′ ≥ 1), 1 ≤ j ≤ n0 (i′′ = 0)}
such that Φ(ξi′ ) = e(xi′). Denote by Mij the image
of Tij under the composite Θ◦Φ, where Θ stands for
the canonical isomorphism K[S] ∼→ O(W )H . By the
observation as above, we see that each

K[Mi′j | i′ ≤ i, ∀j]
is normal. Let Hi (0 ≤ i ≤ d) be the stabilizer of
D{Xk}(W ) at the set {Mi′j | 0 ≤ i′ ≤ i, ∀j}. Let
ei be the order of IH(O(W ) · Xi)|W , 1 ≤ i ≤ m

([N2]). Then, by the proof of (2.6) of [N3], we see
that (W,H0) is the canonical cofree embedding of
(W,H) diagonal on the K-basis {Xk} and must have

Lemma 2.2.2. supp(M0j) (1 ≤ j ≤ n0) are
disjoint and

∏n0
j=1M0j =

∏m
i=1X

ei

i .
Proof of (2.1). Since the ground field K is

of characteristic zero, character theory implies that
K[X1, X

−1
1 , . . . , Xm, X

−1
m ]Hi = K[Mi′j ,M

−1
i′j | 0 ≤

i′ ≤ i, ∀j]. Let N be a monomial in O(W )Hi of
{X1, . . . , Xm}. We can choose elements g, h from
K[Mi′j | 0 ≤ i′ ≤ i, ∀j] in such a way that N =
h

g
. Suppose that N �∈ K[Mi′j | i′ ≤ i, ∀j] and, as

N ∈ O(W )Hd = K[Mpq | ∀p, q], let i0 > i be the
smallest number in {u | N ∈ K[Mi′j | i′ ≤ u, ∀j]}.
Express N as a product N = N ′ ·N ′′ of monomials

N ′ ∈ K[Mi′j | i′ ≤ i0 − 1, ∀j] and N ′′ ∈ K[Mi′j |
i′ ≤ i0, ∀j] of {Xp}. We may assume that the total
degree of N ′ is large as possible, in this expression
N = N ′ · N ′′. Then N ′′ must be represented as a
monomial of {Mi0,0, . . . ,Mi0,ni0

}. If N ′′ is divisible
by
∏n0
j=0Mi0j in K[Mi0,j | ∀j], by (2.2), since

n0∏
j=0

Mi0j ∈ K[Mi′j | i′ ≤ i0 − 1, ∀j],

this conflicts with the assumption on the total degree
of N ′. Thus we may suppose that N ′′ =

∏ni0
j=1M

cj

i0j

for some cj ∈ Z0. Putting A = K[Mi′j | i′ ≤ i0 −
1, ∀j], we have an A-epimorphism

∆ : A⊗K K[Ti00, . . . , Ti0ni0
] → K[Mi′j | i′ ≤ i0, ∀j]

defined by ∆(Ti0j) = Mi0j . Clearly, as the elements
g, h and Θ ◦ Φ(ξi0 ) belong to A, we have Ker(∆) =
(
∏ni0
j=0 Ti0j − Θ ◦ Φ(ξi0 )) (cf. (2.2)) and

N ′g ·
ni0∏
j=1

T
cj

i0j
− h ∈

ni0∏
j=0

Ti0j − Θ ◦ Φ(ξi0 )

 ,

which is a contradiction. Consequently we must have

O(W )Hi = K[Mi′j | 0 ≤ i′ ≤ i, ∀j]
∼= K

[(
· · ·
((

Zn0
0

∫
n1

x1

)∫
n2

x2

)∫
n3

· · ·
)∫

ni

xi

]
,

which is a complete intersection and of codimension
i.

3. A classification of toric hypersuface
singularities. Under the notation in (2.2), we sup-
pose that V//G ∼= W//H is a singular hypersurface,
i.e., d = 1, except the definition in (3.4).

Lemma 3.1. supp(M1i), 0 ≤ i ≤ n1, are dis-
joint.

Proof. Suppose that

supp(M1i1) ∩ supp(M1i2) � Xk

for some 0 ≤ i1, i2 ≤ n1, 1 ≤ k ≤ m. Since there ex-
ists an index 1 ≤ u ≤ n0 such that Xk ∈ supp(M0u)
(cf. (2.2.1)), we see that the embedding dimension of
O(W )H/(O(W )·Xk)H is not exceeding n0+n1+1−3,
which conflicts with

ht(O(W ) ·Xk) = ht((O(W ) ·Xk)H) = 1.

Put HW = (∪i(supp(M1i)))⊥ and

WH = ({X1, . . . , Xm}\(∪i(supp(M1i))))⊥,

respectively, under the canonical pairing

W ×W∨ → K.
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Then W = HW ⊕WH as H-modules and, by this,
we identify (HW )∨ and (WH)∨ with the subspaces
of W∨ in a natural way. Put H(HW ) = Ker(H →
GL(HW )) and H(WH) = Ker(H → GL(WH)).

Lemma 3.2. For 1 ≤ i ≤ n0, the following
conditions are equivalent:
(1) �(supp(M0i) = 1

(2) supp(M0i) ∩ (∪n1
k=0supp(M1k)) = ∅

(3) supp(M0i) �⊆ (∪n1
j=0supp(M1j))].

Moreover, we identify O(HW )H = O(HW )H(WH ) =
K[{M0i | �(supp(M0i)) = 1}], O(WH)H = O(WH

)H(W H) = K[{M0i | �(supp(M0i)) > 1} ∪ {M1j |
∀j}] and O(W )H = O(HW )H(WH ) ⊗KO(WH )H(W H) ,
respectively.

Proof . According to the observation and nota-
tion in (2.2), we have

K[T0i, T1j | ∀i, j]/
 n1∏
j=0

T1j − ξ1

 ∼= O(W )H ,

which is induced by Φ. This isomorphism requires
that Φ(ξ1) is a monomial of ∪n1

j=0supp(M1j). Thus

O(W )H ∼= K[M0i | supp(M0i)(3.3)

∩(∪n1
j=0supp(M1j)) = ∅] ⊗K K[M0i,M1j |

supp(M0i) ∩ (∪n1
k=0supp(M1k)) �= ∅, ∀j]

∼= K[M0i | supp(M0i) �⊆ ∪n1
j=0supp(M1j)]

⊗KK[M0i,M1j | supp(M0i)

⊆ ∪n1
k=0supp(M1k), ∀j].

Since K[M0i | supp(M0i) ∩ (∪n1
j=0supp(M1j)) = ∅]

and

K[M0i | supp(M0i) �⊆ ∪n1
j=0supp(M1j)]

are polynomial rings over K, the ideal O(W )H ·M0i

satisfying

supp(M0i) ∩ (∪n1
j=0supp(M1j)) = ∅

or supp(M0i) �⊆ ∪n1
j=0supp(M1j) is a prime ideal

of height one. By the property of minimal par-
alleled linear hulls (cf. (1.1) of [N3]), we have
�(supp(M0i)) = 1 for these M0i’s. Conversely
if �(supp(M0i)) = 1, then M0i = Xek

k ∈
O(W )IH (O(W )·Xk) for some k (cf. (2.2.2) and [N2]),
which implies H |W = HXk

|W ×H{Xj |∀j �=k}|W ,

O(W )H = K[Xek

k ] ⊗K K[Xj | ∀j �= k]H

and Xk �∈ ∪n1
j=1supp(M1j) (cf. (2.2)). Here ek =

�(IH(O(W ) ·Xk)|W ) ([N2]). Consequently we have

H |HW = H(WH )|HW
=

∏
k∈{k|Xek

k ∈O(W )H}
(IG(O(W ) ·Xk)|HW ),

which implies H |W = H(WH)|W × H(HW )|W . The
last assertion follows from these remarks.

Definition 3.4. Let Γ be a subset of
{Xe1

1 , . . . , Xem
m } and p, q ∈ Z0. Recall ei =

�(IH(O(W ) ·Xi)|W ) (cf. [N2]). We say that a finite
set Λ of monomials of {Xe1

1 , . . . , X
em
m } has a (p, q)-

matrix structure of weight (a1, . . . , ap) ∈ Np on Γ, if
�(Γ) = p · q and

Λ =

{
q∏

v=1

Yiv,

p∏
u=1

Y au

uj

∣∣∣∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q

}
,

where {Yij | 1 ≤ i ≤ p, 1 ≤ j ≤ q} = Γ whose
elements are indexed doubly.

Lemma 3.5. The set

{M0i | �(supp(M0i)) > 1} ∪ {M1j | 0 ≤ j ≤ n1}
has a (p, q)-matrix structure of weight (a1, . . . , ap)
on Γ = {Xek

k | Xk ∈ Γ̃} for some p, q ∈ N such
that �(Γ) = p × q and (a1, . . . , ap) ∈ Np, where
Γ̃ = ∪n1

j=0supp(M1j). Moreover q = n1 + 1 and the
condition p ≥ 2 or a1 ≥ 2 holds.

Proof . Let i be any index such that
�(supp(M0i)) > 1. If there exists 0 ≤ j ≤ n1

such that supp(M0i) ∩ supp(M1j) = ∅, then we see

supp

∏
k �=j

M1k

 ⊇ supp(M0i),

which implies
∏
k �=j T1k − T0i · γ ∈ Ker(Φ) for some

γ ∈ K[T0u, T1v | ∀u, v]. This conflicts with (2.2).
Suppose that supp(M0i) ∩ supp(M1j) contains X1

andX2. Both O(W )H/O(W )·Xk∩O(W )H , k = 1, 2,
are of embedding dimension at most n0 +n1 +1− 2.
Hence, as ht(O(W ) · Xk ∩ O(W )H) = 1, we must
have

O(W ) ·X1 ∩ O(W )H = (M0i,M1j)

= O(W ) ·X2 ∩ O(W )H .

This also conflicts with the property of the mini-
mal paralleled linear hull (cf. (1.1) of [N3]). Conse-
quently, by (3.1) and (3.3), we index the set Γ doubly
as follows: Let Γ̃ be the set

{Zuv | 1 ≤ u ≤ p, 1 ≤ v ≤ q}
defined by

supp(M0ti) ∩ supp(M1j) = {Zij+1}
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for 1 ≤ i ≤ p and 0 ≤ j ≤ n1, where

{M0ti | 1 ≤ i ≤ p} = {M0k | �(supp(M0k)) > 1},
t1 < t2 < · · · < tp, and q = n1 + 1. For Zuv = Xk,
let euv denote ek, and put Yuv = Zeuv

uv (1 ≤ u ≤ p,
1 ≤ v ≤ q). Then M0ti =

∏q
v=1 Yiv (cf. (2.2.2)) and

M1j−1 =
∏p
u=1 Y

cuj

uj for some cuj ∈ N. By (3.2),
(3.3) and the observation in (2.2), there is a unique
relation

n1∏
j=0

M1j =
p∏
i=1

Mdi
0ti

with certain di ∈ N. Therefore we see that cuj ’s
are independent of j, and so denoted it by au. The
almost all assertions follow from these facts and
the last one is a consequence of non-regularity of
O(W )H .

Definition 3.6. For any weight χ ∈ W(W,H),
let e(χ) be the number �(χ(W(W/Wχ, H)⊥)), where
the orthogonal set is related to the pairing

H × X(H) → K×

(e(χ) = ∞, if χ(W(W/Wχ, H)⊥) is of infinite or-
der). In the case where dimWχ = 1, we have
e(χ) = �(IH(O(W ) · (W∨)−χ)|W ) <∞ (cf. [N3]).

For a finite subset Ξ of X(H) such that Z0 ·Ξ =
Z · Ξ, define the canonical epimorphism ν : ⊕λ∈ΞZ ·
λ → Z · Ξ such that ν(λ) = λ. We say that an
element

F ∈
∑
λ∈Ξ

Z0 · λ ⊆ ⊕λ∈ΞZ · λ

is a non-negative relation of Ξ, if λ(F ) = 0, and,
for a convenience sake, we denote the relation F by
F = 0. For

Fi ∈
∑
λ∈Ξ

Z0 · λ ⊆ ⊕λ∈ΞZ · λ (1 ≤ i ≤ l),

the set Ξ has the basic relations F1 = 0, . . . , Fl = 0,
if any non-negative relation F = 0 satisfies that

F ∈
l∑
i=1

Z0 · Fi ⊆
∑
λ∈Ξ

Z0 · λ ⊆ ⊕λ∈ΞZ · λ.

Theorem 3.7. Let (W,w) be a minimal par-
alleled linear hull of (V,G) and put H = Gw. Then
V//G is a singular hypersurface if and only if the
following conditions on W(W,H) are satisfied:
(1) �(W(W,H)\{0}) = dimW/WH = p · q + s for

some p, q ∈ N and s ∈ Z0.

(2) We can express W(W,H)\{0} = Ψ � {χij | 1 ≤
i ≤ p, 1 ≤ j ≤ q} (disjoint sum) with �(Ψ) = s

such that ∞ > �(ψ(H)) = e(ψ) > 1 for any
ψ ∈ Ψ and {e(χij) · χij | 1 ≤ i ≤ p, 1 ≤ j ≤ q}
has the non-negative basic relations

∑q
j=1 e(χij) · χij = 0 (1 ≤ i ≤ p)∑p
i=1 aie(χij) · χij = 0 (1 ≤ j ≤ q)

for some (a1, . . . , ap) ∈ Np. Here q > 1 holds
and, if p = 1, the inequality a1 > 1 is satisfied.
Combining the next lemma with (3.2) and (3.5),

we will give a paraphrase in terms of characters,
which completes the proof of this theorem.

Lemma 3.8. Let Γ be a subset of {Xe1
1 ,

. . . , Xem
m } for any ei ∈ N. Let Λ be a finite set of

monomials of {Xe1
1 , . . . , Xem

m } having a (p, q)-matrix
structure of weight (a1, . . . , ap) ∈ Np on Γ for any
p, q ∈ Z0 and (a1, . . . , ap) ∈ Np. Then there ex-
ists a unique closed subgroup L of GL(W ) such that
O(W )L = K[({Xe1

1 , . . . , Xem
m }\Γ) ∪ Λ].

Proof . Suppose that

Λ =

{
q∏

v=1

Yiv,

p∏
u=1

Y au

uj

∣∣∣∣∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q

}
,

where {Yij | 1 ≤ i ≤ p, 1 ≤ j ≤ q} denotes Γ. Put
Λ̃ = {(∏q

v=1 Yiv)
ai ,

∏p
u=1 Y

au

uj | 1 ≤ i ≤ p, 1 ≤
j ≤ q}. Let S denote the stabilizer of the diag-
onal group D{Y ai

ij }(
⊕

i,j K · Y ai

ij ) at the set Λ̃ un-
der the natural action of D{Y ai

ij }(
⊕

i,j K · Y ai

ij ) on
K[Y ai

ij | ∀i, j]. Then dimS = p · q − p − q + 1 and
K[Yij | 1 ≤ i ≤ p, 1 ≤ j ≤ q]ρ

−1(S) = K[Λ̃], where

ρ : D{Yij}

⊕
i,j

K · Yij
→ D{Y ai

ij }

⊕
i,j

K · Y ai

ij


is the canonical epimorphism. From this, we infer
that the kernel of the K-homomorphism

� : K[U01, . . . , U0p, U11, . . . , U1q] → K[Λ]

from the (p+q)-dimensional polynomial algebra over
K sending

U0i �→
p∏
j=1

Yij , U1j �→
q∏
i=1

Y ai

ij

is principal and contains the irreducible polynomial
q∏
j=1

U1j − γ

for some monomial γ ∈ K[U01, . . . , U0p]. As

K[Yij , Y −1
ij | i, j](D{Y

ai
ij

}(⊕∀i,jK·Y ai
ij ))Λ

= K[Λ ∪ {x−1 | ∀x ∈ Λ}],
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as in the proof of (3.1), we similarly have

K[Yij | i, j]
(D{Y

ai
ij

}(
�

i,j K·Y ai
ij ))Λ

= K[Λ].(3.8.1)

Here (•)Λ denotes the stabilizer of • at Λ. Since
K[Xe1

1 , . . . , Xem
m ] ∼= K[{Xe1

1 , . . . , X
em
m }\Γ] ⊗K K[Γ]

is a ring of invariants of a finite diagonal group gen-
erated by pseudo-reflections in GL(W) (cf. [S] ), by
(3.8.1), we have a closed subgroup L of GL(W ) sat-
isfying

O(W )L = K[({Xe1
1 , . . . , Xem

m }\Γ) ∪ Λ].

The uniqueness of L follows similarly from stability
of the action as in the proof of (3.3) of [N3].

Proof of (3.7). To prove (3.7), we may as-
sume that WH = {0}. By (3.5) and (3.8), W//H
is a hypersurface if and only if there exists a subset
Γ of {Xe1

1 , . . . , X
em
m } and a finite set of monomials

Λ of {Xe1
1 , . . . , X

em
m } having a (p, q)-matrix struc-

ture of weight (a1, . . . , ap) ∈ Np on Γ such that any
monomial in O(W )H is represented as a monomial
of the members of Λ ∪ ({Xe1

1 , . . . , Xem
m }\Γ). Here

ei = �(IH(O(W ) ·Xi)|W ) (cf. [N2]).
Suppose that the condition of the “only if” part

of the statement as above holds. Let Ψ denote the
set of ψ ∈ W(W,H) satisfying the both conditions
(W∨)−ψ � Xi and Xei

i ∈ {Xe1
1 , . . . , X

em
m }\Γ. Then,

as Xei

i ∈ O(W )H for Xei

i �∈ Γ, we have �(ψ(H)) =
e(ψ) = ei and (W∨)−ψ = K · Xi for the ψ ∈ Ψ
such that (W∨)−ψ � Xi. Moreover, we see �(Ψ) =
m− �(Γ). Let

θ : {1, . . . , p} × {1, . . . , q} → {1, . . . ,m}
be a map defined by X

eθ(i,j)

θ(i,j) = Yij . For 1 ≤
i ≤ p and 1 ≤ j ≤ q, let χij ∈ X (H) denote
the character such that (W∨)−χij � Xθ(ij). Then
(W∨)−χij = K ·Xθ(ij), e(χij) = eθ(i,j) and dimW =
p ·q+�(Ψ). Since the K-algebra O(W )H is generated
by Λ ∪ ({Xe1

1 , . . . , Xem
m }\Γ), the basic non-negative

relations of {e(χij) · χij} are identified with the re-
lations in (2) of (3.7).

Conversely, if the conditions (1) and (2) in (3.7)
hold, then we show that W//H is a hypersurface by
following reverse of the argument mentioned above.
It should be noted that the non-regularity of W//H
is related to the last condition in (2) in (3.7).

3.9. Examples for (3.7). In order to ex-
plain the content of (3.7), we give the following
examples. For a convenience sake, suppose that
RW (H)|W = {1} in the both examples.

Example 3.9.1. Under the same circum-
stances as in (2.7.1), V//G is a singular hypersurface
if and only if the conditions (1) and (2) in (3.7) in
the case where s = 0, p = 1 (a1 > 1) and e(χ1j) = 1
hold. In other word, this is equivalent to the condi-
tion that there exists a direct sum W = WH⊕WH of
KH-modules such that H |WH can be represented as
a subgroup < diag[ζa, ζ−1

a , 1, . . . , 1], diag[ζa, 1, ζ−1
a ,

1, . . . , 1], . . . ,diag[ζa, 1, . . . , 1, ζ−1
a ] > of GL(WH) on

some K-basis, where ζa ∈ K is a fixed primitive a-th
root of unity for some 1 < a = a1 ∈ N.

Example 3.9.2. Under the same circum-
stances as in (2.7.2), we suppose that WH = {0}.
Then V//G is a singular hypersurface if and only if
m = 4 and there exists a bijection

θ : {(1, 1), (1, 2), (2, 1), (2, 2)} → {1, 2, 3, 4}
such that the relations of {ξ1|H , . . . , ξm|H} are onlyξθ((i,1))|H + ξθ((i,2))|H = 0 (i = 1, 2)

a1 · ξθ((1,j))|H + a2 · ξθ((2,j))|H = 0 (j = 1, 2)

for some (a1, a2) ∈ N2. The character ξθ((i,j))|H is
regarded as χij in (3.7).
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