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Abstract:

Let o : G — GL(V) be a finite dimensional rational representation of a diag-

onalizable algebraic group G over an algebraically closed field K of characteristic zero. Using a
minimal paralleled linear hull (W, w) of ¢ defined in [N4], we show the existence of a cofree repre-
sentation G, — GL(W) such that o(G,) C Gy and W//G,, — W//G,, is divisorially unramified

is equivalent to the Gorensteinness of V//G.
Key words:
Gorenstein rings.

1. Introduction. Without specifying, G
will always stand for a reductive affine algebraic
group whose identity component is an algebraic torus
over an algebraically closed field K of characteristic
zero. Let X(G) stand for the rational character group
of G over K which is regarded as an additive group.
For an affine variety X over K, O(X) denotes the K-
algebra of all regular functions on X. When a regular
action of G on an affine variety X (abbr. (X,G)) is
given, we denote by X//G the algebraic quotient of
X under the action of G and by 7x ¢ the quotient
map X — X//G. For ¢ € X(G), let O(X), be the
set {f € O(X) | o(f) =v(o)-f (Yo € G)}, which
is regarded as an O(X)%module. A regular action
(X, G) is said to be stable, if X contains a nonempty
open subset consisting of closed G-orbits. Let X de-
note the affine variety defined by O(Xg) = O(X)st,
where O(X)g is the K-subalgebra of O(X) gener-
ated by O(X),’s such that O(X), - O(X)_, # {0},
X € X(GY) (cf. [N1]). Then the induced action
(Xst, G) is stable, for any (X,G). Consider a finite
dimensional rational G-module V. A pair (W, w) is
defined to be a paralleled linear hull of (V, G), if W is
a G-submodule of V; such that G is diagonalizable
on the quotient module Vi /W, w is a nonzero vector
of Vi satisfying the condition WN < G-w >k= {0}
and the G,-equivariant morphism

(o+w): Woz—a+we Vy
induces the isomorphism

TVt /)G V)G O (@ + W) /[ Gy s WGy = Vit /]G
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Here (o + w)//Gy @ W//Gy — Vi//Gy is the
quotient of (e + w) modulo G, and 7y, /q, v/G
Vet //Gw — Vat//G is associated with the inclu-
sion O(Vi)¥ < O(Vi)%w. A paralleled linear hull
(Wo,w,) of (V,G) is said to be minimal, if Wy is
minimal with respect to inclusions in the set consist-
ing of all subspaces W’s of Vit such that (W, w)’s are
paralleled linear hulls of (V, G) for some w ’s. An el-
ement o € G is said to be a pseudo-reflection on V, if
dim(c—1)(VY) = ht((c—1)(VV)-O(V)NO(V)¥) <
1, where V'V is the dual space of V over K. We have
the following fundamental result for minimal paral-
leled hulls:

Theorem 1.1 (cf. [N4]). Suppose that G
equals to the centralizer Zg(G°) of G° in G. Let
(W, w) be a minimal paralleled linear hull of (V,G).
Then
(1) 7w, is no-blowing-up of codimension one (for

definition, cf. [F]) and G, acts transitively on

the set of irreducible components of codimension
one in W of the fibre of each irreducible closed
subvariety of W//G., of codimension one under
the morphism mw.q,, -

(2) X(Gw/Rw(Gw)) = CHOV)Y), where Rw

(Gw) denotes the subgroup of G, generated by

all pseudo-reflections of Gy, on W.

Conversely, the conclusion (1) of (1.1) character-
izes minimality of the paralleled linear full (W, G,,)
of (V,G) under the condition Zg(G") = G. For a
diagonalizable G, the following results are obtained.
In Sect. 3, we will show the existence of a cofree rep-
resentation G, — GL(W) such that G,|lw C G
and W//G — W//G,, is divisorially unramified is
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equivalent to the fact that V//G is Gorenstein. Some
examples of the main result (2.6) can be found in
Sect. 2.

The symbol #( o ) stands for the cardinality of
the set o and let Zy denote the additive monoid of
non-negative integers. For a mapping ¢ : A — B
and a subset A’ C A, let ¢|4s denote the restriction
of p to A" and, for a set Q of mappings o : A — B,
let ©2| 4+ be the set of restrictions p|a/’s (¢ € ).

2. Cofree embeddings. If A is a subset of
X(@G), let Zg-A (resp. Z-A) denote the set of all lin-
ear combinations of any finite subset of A with coeffi-
cients in Zg (resp. Z4) in X(G), where Z4 = N and
Zo -0 means {0}. For any x € X(G) and a rational G-
module V, let V), = {x € V| o(z) = x(0) -z (Vo €
G)} denote the subspace of x-invariants or relative
invariants of G with respect to x in V. For a rational
G-module V, let VV be the dual module on which
G acts naturally and W(V, G) denote the set of all
weights of G on V' (i.e., {x € X(G) | Vi # {0}}).

Definition 2.1. A subset A of W(V,G) of a
finite dimensional rational G-module V is said to be
G-removable on Vg, if dim(Vy) =1 (Vx € A)
and

(Zy - N|go) n(ZO : (W(‘/;taGO)\A/|G0)) =0

X‘GO

for any non-empty subset A’ of A. Clearly any G-
removable subset does not contains the trivial char-
acter 0. We say A is a maximal G-removable sub-
set of W(Vi,G), if it is maximal with respect to
inclusions in the set of all G-removable subsets of
W(Vy, G).

Let A be a subset of W(Vy, G) and y,, a nonzero
element in ((Vi)Y)—y for each x € A. The set {y, |
X € A} is said to be (O(Vy), G)-free, if, for any a,, €
Zo, there exists a rational character ¢ € X(G) such
that

O(Var)y = O(Va)? - TT .
XEA

Then we have

Proposition 2.2. For any subset A of
W( Vi, G), it is G-removable on Vi if and only if
{yx | x € A} is (O(Vi), G)-free.

Proof. We easily see that the set {y, | x € A}
is (O(Vi), G)-free if and only if it is (O(Vy), GO)-
free (cf. [N4]). Suppose that A is G-removable in
W( Vi, G). As

((Vat)")=xlgo = K -y = ((Var) )=

[Vol. 82(A),

we see that x|go, x € A, are different each other.
Let us denote by {z1,...,2z} a K-basis of the

K-subspace >, cpyv, gopa)o (Vst) )=y of (Var)”
consisting of relative invariants of G°. Let ay, x € A,
be any nonnegative integers. For b, € Zy (x € A)
and ¢; € Zo (1 < i <1), the condition that

l
b i
| I yXX . | sz S O(Vst)zxe,\ axXlgo
YEA =1

is equivalent to

!
Z (bx_ax)'X|G0+ZCr¢1:

XEA,by >ay i=1

- ¥

XEN,a>by

where 1; € W(Va, G°) such that z; € ((Vat)Y)—y;-
Thus (2.1) implies that b, > a, for all x € A, which
implies

(G‘X - bX) : X|G07

l
1o - TI= o)™ - T wp
=1

XEA XEA

and the equality

O(Va)y: = O(Va)" - I w2

XEA

XEA axXlgo

The proof of “if part” of the assertion in Proposition
2.2 is left to the reader. O

For a subset  of Vi, or (Vi)Y, let Q-+ be the set
of all elements orthogonal to 2 under the canonical
pairing

Vie x (Vi)Y — K.

Combining (2.2) with [N4], we immediately have

Corollary 2.3. For a G-submodule W of Vg
such that G is diagonalizable on V//W , there exists a
vector w € Vi satisfying that (W, w) is a paralleled
linear hull if and only if

1
W= ((Va))—x
XEA
for a G-removable subset A of W(Vi, G) on V. Fur-
thermore, in this notation, (W, w) is a minimal par-
alleled linear hull of (V,G) if and only if A is a maz-
imal G-removable subset of W(Vyt, G) on V. O
For a Cohen-Macaulay Zg-graded domain R de-

fined over K, the graded canonical module of R is
denoted by wg.
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Theorem 2.4 (G. Kempf - R. P. Stanley - V.
I. Danilov (e.g., [D, S2, TE])). Leto:D — GL(V)
be a finite dimensional stable rational representa-
tion of a diagonalizable group D. Then the canoni-
cal module wo(vyp of the Zo-graded Cohen-Macaulay
algebra O(V)P is isomorphic to the graded mod-
ule O(V)(dety)|» (—dim V') of invariants relative to
dety|p in O(V).

Definition 2.5. For a finite dimensional ra-
tional representation ¢ : H — GL(W) of a diago-
nalizable group H, a faithful rational representation
o : H — GL(W) of a diagonalizable group H is de-
fined to be a cofree embedding of ¢ : H — GL(W) (or
of (W, H)), if the following conditions are satisfied:

(1) ¢(H) (= Hlw) S ¢(H) and ¢(Rw(H)) =

P(Rw (H)).
(2) The representation ¢ is stable and cofree.
A cofree embedding ¢ : H — GL(W) of ¢ : H —
GL(W) is said to be canonical, if ¢(H) is minimal in
¥(L)’s for all cofree embeddings v : L — GL(W) of
o.

Theorem 2.6. Suppose that G is a diagonal-
izable group and (V,QG) is a finite dimensional rep-
resentation of G. Then the following conditions are
equivalent:

(1) V//G is a Gorenstein variety.

(2) For a minimal paralleled linear hull (W, w) of
(V. G), there exists a canonical cofree embedding
(W, H) of (W, G).

If these conditions hold, then

w o —

. O(W)G = wO(W)Gw

Yow) T
and O(W)H is generated by a part of a minimal gen-
erating system of O(W)%w consisting of monomials
of a K-basis of WY on which H is represented as a
diagonal group.

2.7. Examples for (2.6).
plain the content of this theorem, we now give the
following examples, in which {Y7,...,Y¥,} denotes a
K-basis of V'V such that G is diagonal on this basis.

Example 2.7.1. Forany N =[[Y" € O(V),
we denote supp{yi}(N) by the set {Y; | ¢ >

In order to ex-

0}. Suppose that O(V)¢ has a homogeneous sys-
tem {Ni,...,Ng} (d > 1) of parameters consist-
ing of monomials of that basis (if dim O(V)¢ < 2,
this condition always holds (e.g., [TE])). Then we
must have Vie = Oy, op K - Y;)Y, where ' =
U?zlsupp{yi}(Nj). Put
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W ={z € Vy |Y;(z) =0,
VY € Ut (Suppyy,3 (Ns) Nsuppyy, 3 (Vi) }

and H = Ker(G — GL(Vg/W)). Then (W, w) is
a minimal paralleled linear full of (V,G) for some
w € Vi, and H = Gy,.

Example 2.7.2. Let & (1 < j < n) denote
the character of G° satisfying (VV)_¢, 2 Y;. Sup-
pose that dimG = 3 express §; = Zf’zl cijxi for
some ¢;; € Z, where {x1, x2, x3} generates the addi-
tive group X(G°). For some (n >) m € N, assume
that {j |1 <j <m,co; <0} #0,

c2j <0, ¢c3;,=0; 1<j57<m
Clm+1 = C3m+1 = Oa Com+41 = 1

03j>0; j>m+1

and §({j | 1 < j < mye; <0})-4({j [1 <5 <
m,c1; > 0}) > 2. Then the condition on c3;’s implies
that

O(V)m:LQKer(Xi) = K[Y1,...

Ni=1,2K i
Fy ] Temn2Kert),

. . 0 _ .
Since dim(G |E:El Ky,) = 2, we easily have

m+1 v
v (3
j=1
Putting
W = {iC S V;t | Ym+1($) — 0}
and H = Gy, ,, we see that (W, w) is a minimal

paralleled linear full of (V,G) for some w € Vg and
H=G,.

Remark 2.7.3. We apply (2.6) to these ex-
amples as follows:

For the decomposition

{1,...,m}=JiU---UJ; (disjoint union)

to non-empty subsets, put

H{Jk} = {dia’g(clv' . '7Cm) | VCJ e K
such that H c;=101<k<I)}
Jj€Jk

defined on the the basis of W on which H is repre-
sented as a diagonal group. For a convenience sake,
suppose that Ry (H)lw = {1}. Then O(V)% is
a Gorenstein ring if and only if H|w C Hy;,y for
some decomposition {1,...,m} = JyU---U.J;. In
this case, a minimal subgroup H= Hy .y such that
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Hl|w C Hyj,y defines a canonical cofree embedding
(W, H) of (W, H).

3. Existence of cofree embeddings. For
a homomorphism A — B of integral domains, let
Hty (B, A) denote the set consisting of all prime ide-
als of B of height one whose restrictions to A are also
of height one.

3.1. Cofree representations. Let (W, w)
be a minimal paralleled linear hull of a finite dimen-
sional representation (V,G) of a diagonalizable G.
Let {X1,...,X;n} be a K-basis of the dual WV of
W on which H is represented as a diagonal group,
where H denotes G,.

Let Dyx,; (W) be the subgroup of GL(W) con-
sisting of all elements which induces diagonal matri-
ces on the K-basis {X1,..., X,,} of the dual module
WVY. For a closed subgroup L of GL(W) which is di-
agonal on {X1,...,X,,} such that (W, L) is stable,
we note the following two facts:

Remark 3.1.1. For a prime ideal P €
Ht (O(W), O(W)E), let I1(*B) denote the inertia
group at B and e(P, P N O(W)E) the ramification
index of P over PN O(W)L (cf. [N2]). Then we see
that I, (P)|w is a finite group,

(P, BNOW)E) = 4(IL(F)lw)
(e.g., [N2]) and there exists an element X; in the
set {X1,...,X,,} which principally generates 3, for
B which is ramified over N O(W)E (i.e., e(P, BN
oOW)E) > 1).
Lemma 3.1.2. The following conditions (1)
and (2) are equivalent for (W, L):
(1) The representation (W, L) is cofree.
(2) There exist the decomposition {1,...,m} = J; U
<~ U J; (disjoint union) to nonempty subsets J;
and integers a; € N (1 < i <'m) such that

l
Q| K [T x| | =0~

7j=1 i€l;
In case where L is connected, the conditions (1)
and (2) are equivalent to
(3) (W, L) is equidimensional.
Proof. In fact, suppose that (1) holds. Then
(W, L% is equidimensional, which implies that
(W, L?) is cofree (cf. [W]). Thus there are a sum

{1,...,m} = JyU---UJ; (disjoint union)

of non-empty subsets J; and b; € Zg (1 < i < m)
satisfying

[Vol. 82(A),

l
o =R (K | [] xV"

j=1 i€J;

(cf. [W, N1]). By the complete reducibility, we see
that (W//L° L/L°) is cofree. Since W//L° = A!
and L/L is finite, the action of L/L° on the local
ring of W//L at the vertex induces an action of a
finite group generated by pseudo-reflections on its
Zariski tangent space (cf. [S1]). Hence the condition
(2) holds. The implication (2) = (1) can be easily
shown. For the last assertion, see [W]. O

Lemma 3.1.3. For any closed subgroups D;
of Dix,y(W) (i =1,2), if O(W)Pr = O(W)P2 and
(W, D) is stable, then D1 = Ds.

Proof. By the stability of (W, D), we see that

ﬁX“f cO(W)P
=1

for some ¢; € N (1 < i < m), which implies that
(W, D3) is also stable. Then, since Q(O(W)Pi) =
Q(O(W))Pi | the assertion follows from the character
theory of diagonalizable groups over the field K of
characteristic zero. O

Lemma 3.1.4. Let{1,...,m}=JyU---UJ
(disjoint union) be the decomposition to non-empty
subsets J; and b; € N (1 < i < m) any inte-
gers. Then there is a unique closed subgroup D in
Dyx,y (W) such that

l
oWy = | K [ xV'| | com).
j=1 i€ J;
Proof. Let D denote the stabilizer of Dyx, (W)

at the set {J[;c ;. X! |1 <j <1} under the natural
action of Dyx,3(W) on O(W). As

K| J[x|1<i<t
i€J;

=K | [[ X\ 1/ ] xP|1<j<ifnow),
iEJj iGJj

we must have

l
ow)P =R |k [ x| | com).

j=1 i€ J;

On the other hand, denoting by D; the stabilizer of
Dyx,3 (W) at the set {X; |i ¢ J;}, we have
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K[X;|ie J)P"P =K | [] X}
iEJj

Thus we must have

l
O(W)(H_ljzl D;)ND _ ® K H Xfi ,

j=1 i€ J;

which implies D = (Hé.:l D;) N D. Consequently
(W, D) is stable. The uniqueness of D follows from
this and (3.1.3). O

Lemma 3.2. Under the same circumstances
as in the first paragraph in (2.8), let ¢ : H— GL(W)
be a faithful representation of a diagonalizable group
H such that Hlw C Hl|w. In the case where the
condition (2) in (2.5) holds, the last equality in (1)
n (2.5) holds if and only if the canonical quotient
morphism

Ty W/ H — W//H

is divisorially unramified (for definition, cf. [N2]).
Proof. Since W — W//H is no-blowing-up of
codimension one (cf. (1.1)), we see

Ht, (O(W), O(W)H) C Hey (O(W), O(W)H).

On the other hand, for any Q € Ht; (O(W), O(W)H)
such that Iy (Q)|w # {1}, as in (2.8.1), we see that
0 is generated by the element of WV which is a rela-
tive invariant of H. Thus, since (W, H) is stable, the
restriction QNO(W)* is non-zero. The cofreeness of
(W, H) implies that W — W//H is equidimensional,
and so is W//H — W//H. Consequently, 9 is a
member of Ht;(O(W), O(W)H). The equivalence in
the assertion in (3.2) easily follows from the above
observation and [N3]. O

Proof of (2.6). We use the notation in (3.1).
The character

IH(O(W)Xl) S0+ O'(Xl)/Xl S U(K)

Hrow).x;
can be identified with the restriction of detyv. So,
using the notation in (1.4) of [N3], we see

tow).x; (detw|m) = e; — 1,

where e; = #(Ig(O(W) - X;)|lw). As OW)H —
O(W) is no-blowing-up of codimension one (for def-
inition, cf. [F]), we see that

OW )detyy |r = O(W)H
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if and only if

l
[1X5" € OW)detry
i=1
(e.g., [N3]). If these conditions are satisfied, then
l
OW) ety | = O - T X7

i=1

Clearly, since Hfﬁ:l Xi € O(W)detyv|n» the affine
variety W//H is Gorenstein if and only if

l
[[ x5 e o)™,
=1

Suppose that the condition (2) holds, i.e.,
(W, H) is a canonical cofree embedding of (W, H).
Then, by (3.1.2), we have
l -~
K| I] X1 ) =om)
=1 i€ J;

J

for some decomposition
{1,....om=dimW} =J, U---UJ; (disjoint union)
to nonempty subsets and a; € N. Since
(O(W) - X, 0(W) - X; nOW)) = a,
by (2.5) and (3.1.1), we must have
a; = ei(= 1(Ia (O(W) - Xi)[w)),

which implies [[/~, X{* € O(W)®. From this and
the observation of the former paragraph, we have
just shown the condition (1) is satisfied.

Conversely, suppose that the condition (1)
holds. Then

HX:‘7 c O(W)H C O(W)RW(H)
=1

= K[X&,... X,

We can uniquely express this monomial as a prod-
uct H§'=1 M; of elements M;’s which are members of
the unique minimal system of generators of O(W)#
consisting of monomials of { X7, ..., X,,}. Obviously

there exists the decomposition
{1,...,m}=JiU---UJ; (disjoint union)

to nonempty subsets J; such that [],. 7, X7 = M;

(1 <j <1). Let H be the stabilizer of Dyx (W)
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at {M; | 1 < j <1}. By (3.1.4), the representa-
tion (W, H) is stable and cofree. Since O(W)H# —
O(W) is no-blowing-up of codimension one, applying
(3.1.1) to (W, H) and (W, H), we see that W//H —
W//H is divisorially unramified, which proves (2).
The remainder of the assertions in this theorem
follows from (3.2) and the property of H. O
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