Cofree embeddings of algebraic tori preserving canonical sheaves

By Haruhisa Nakajima

Department of Mathematics, Faculty of Science, Josai University, 1–1 Keyakidai, Sakado, Saitama 350–0295, Japan

(Communicated by Shigefumi Mori, M.J.A., Nov. 13, 2006)

Abstract: Let $\varrho: G \to GL(V)$ be a finite dimensional rational representation of a diagonalizable algebraic group G over an algebraically closed field K of characteristic zero. Using a minimal paralleled linear hull (W, w) of ϱ defined in [N4], we show the existence of a cofree representation $\widetilde{G_w} \hookrightarrow GL(W)$ such that $\varrho(G_w) \subseteq \widetilde{G_w}$ and $W//G_w \to W//\widetilde{G_w}$ is divisorially unramified is equivalent to the Gorensteinness of V//G.

Key words: Cofree representations; algebraic tori; character groups; canonical modules; Gorenstein rings.

1. Introduction. Without specifying, will always stand for a reductive affine algebraic group whose identity component is an algebraic torus over an algebraically closed field K of characteristic zero. Let $\mathfrak{X}(G)$ stand for the rational character group of G over K which is regarded as an additive group. For an affine variety X over K, $\mathcal{O}(X)$ denotes the Kalgebra of all regular functions on X. When a regular action of G on an affine variety X (abbr. (X,G)) is given, we denote by X//G the algebraic quotient of X under the action of G and by $\pi_{X,G}$ the quotient map $X \to X//G$. For $\psi \in \mathfrak{X}(G)$, let $\mathcal{O}(X)_{\psi}$ be the set $\{f \in \mathcal{O}(X) \mid \sigma(f) = \psi(\sigma) \cdot f \ (\forall \sigma \in G)\}$, which is regarded as an $\mathcal{O}(X)^G$ -module. A regular action (X,G) is said to be *stable*, if X contains a nonempty open subset consisting of closed G-orbits. Let $X_{\rm st}$ denote the affine variety defined by $\mathcal{O}(X_{\rm st}) = \mathcal{O}(X)_{\rm st}$, where $\mathcal{O}(X)_{\mathrm{st}}$ is the K-subalgebra of $\mathcal{O}(X)$ generated by $\mathcal{O}(X)_{\chi}$'s such that $\mathcal{O}(X)_{\chi} \cdot \mathcal{O}(X)_{-\chi} \neq \{0\},\$ $\chi \in \mathfrak{X}(G^0)$ (cf. [N1]). Then the induced action $(X_{\rm st},G)$ is stable, for any (X,G). Consider a finite dimensional rational G-module V. A pair (W, w) is defined to be a paralleled linear hull of (V, G), if W is a G-submodule of $V_{\rm st}$ such that G is diagonalizable on the quotient module $V_{\rm st}/W,\,w$ is a nonzero vector of V_{st} satisfying the condition $W \cap \langle G \cdot w \rangle_K = \{0\}$ and the G_w -equivariant morphism

$$(\bullet + w): W \ni x \mapsto x + w \in V_{\text{st}}$$

induces the isomorphism

$$\pi_{V_{\rm st}//G_w,V//G} \circ (\bullet + w)//G_w : W//G_w \xrightarrow{\sim} V_{\rm st}//G.$$
 2000 Mathematics Subject Classification. 20G05, 13A50,

2000 Mathematics Subject Classification. 20G05, 13A50 14L30.

Here $(\bullet + w)//G_w : W//G_w \longrightarrow V_{\rm st}//G_w$ is the quotient of $(\bullet + w)$ modulo G_w and $\pi_{V_{\rm st}//G_w,V//G} : V_{\rm st}//G_w \longrightarrow V_{\rm st}//G$ is associated with the inclusion $\mathcal{O}(V_{\rm st})^G \hookrightarrow \mathcal{O}(V_{\rm st})^{G_w}$. A paralleled linear hull (W_0, w_o) of (V, G) is said to be minimal, if W_0 is minimal with respect to inclusions in the set consisting of all subspaces W's of $V_{\rm st}$ such that (W, w)'s are paralleled linear hulls of (V, G) for some w 's. An element $\sigma \in G$ is said to be a pseudo-reflection on V, if $\dim(\sigma-1)(V^\vee) = \operatorname{ht}((\sigma-1)(V^\vee) \cdot \mathcal{O}(V) \cap \mathcal{O}(V)^G) \leq 1$, where V^\vee is the dual space of V over K. We have the following fundamental result for minimal paralleled hulls:

Theorem 1.1 (cf. [N4]). Suppose that G equals to the centralizer $Z_G(G^0)$ of G^0 in G. Let (W, w) be a minimal paralleled linear hull of (V, G). Then

- (1) \(\pi_{W,G_w}\) is no-blowing-up of codimension one (for definition, cf. [F]) and \(G_w\) acts transitively on the set of irreducible components of codimension one in \(W\) of the fibre of each irreducible closed subvariety of \(W//G_w\) of codimension one under the morphism \(\pi_{W,G_w}\).
- (2) $\mathfrak{X}(G_w/\mathcal{R}_W(G_w)) \cong \mathrm{Cl}(\mathcal{O}(V)^G)$, where \mathcal{R}_W (G_w) denotes the subgroup of G_w generated by all pseudo-reflections of G_w on W.

Conversely, the conclusion (1) of (1.1) characterizes minimality of the paralleled linear full (W, G_w) of (V, G) under the condition $Z_G(G^0) = G$. For a diagonalizable G, the following results are obtained. In Sect. 3, we will show the existence of a cofree representation $\widetilde{G}_w \hookrightarrow GL(W)$ such that $G_w|_W \subseteq \widetilde{G}_w$ and $W//G_w \to W//\widetilde{G}_w$ is divisorially unramified is

equivalent to the fact that V//G is Gorenstein. Some examples of the main result (2.6) can be found in Sect. 2.

The symbol $\sharp(\circ)$ stands for the cardinality of the set \circ and let \mathbf{Z}_0 denote the additive monoid of non-negative integers. For a mapping $\varphi:A\to B$ and a subset $A'\subseteq A$, let $\varphi|_{A'}$ denote the restriction of φ to A' and, for a set Ω of mappings $\varphi:A\to B$, let $\Omega|_{A'}$ be the set of restrictions $\varphi|_{A'}$'s $(\varphi\in\Omega)$.

2. Cofree embeddings. If Λ is a subset of $\mathfrak{X}(G)$, let $\mathbf{Z}_0 \cdot \Lambda$ (resp. $\mathbf{Z}_+ \cdot \Lambda$) denote the set of all linear combinations of any finite subset of Λ with coefficients in \mathbf{Z}_0 (resp. \mathbf{Z}_+) in $\mathfrak{X}(G)$, where $\mathbf{Z}_+ = \mathbf{N}$ and $\mathbf{Z}_0 \cdot \emptyset$ means $\{0\}$. For any $\chi \in \mathfrak{X}(G)$ and a rational G-module V, let $V_\chi = \{x \in V \mid \sigma(x) = \chi(\sigma) \cdot x \ (\forall \sigma \in G)\}$ denote the subspace of χ -invariants or relative invariants of G with respect to χ in V. For a rational G-module V, let V^\vee be the dual module on which G acts naturally and $\mathcal{W}(V,G)$ denote the set of all weights of G on V (i.e., $\{\chi \in \mathfrak{X}(G) \mid V_\chi \neq \{0\}\}$).

Definition 2.1. A subset Λ of $\mathcal{W}(V_{\mathrm{st}}, G)$ of a finite dimensional rational G-module V is said to be G-removable on V_{st} , if $\dim(V_{\mathrm{st}})_{\chi|_{G^0}} = 1 \ (\forall \chi \in \Lambda)$ and

$$(\mathbf{Z}_{+}\cdot\Lambda'|_{G^{0}})\bigcap(\mathbf{Z}_{0}\cdot(\mathcal{W}(V_{\mathrm{st}},G^{0})\backslash\Lambda'|_{G^{0}}))=\emptyset$$

for any non-empty subset Λ' of Λ . Clearly any G-removable subset does not contains the trivial character 0. We say Λ is a maximal G-removable subset of $\mathcal{W}(V_{\rm st}, G)$, if it is maximal with respect to inclusions in the set of all G-removable subsets of $\mathcal{W}(V_{\rm st}, G)$.

Let Λ be a subset of $\mathcal{W}(V_{\mathrm{st}}, G)$ and y_{χ} a nonzero element in $((V_{\mathrm{st}})^{\vee})_{-\chi}$ for each $\chi \in \Lambda$. The set $\{y_{\chi} \mid \chi \in \Lambda\}$ is said to be $(\mathcal{O}(V_{\mathrm{st}}), G)$ -free, if, for any $a_{\chi} \in \mathbf{Z}_0$, there exists a rational character $\psi \in \mathfrak{X}(G)$ such that

$$\mathcal{O}(V_{\mathrm{st}})_{\psi} = \mathcal{O}(V_{\mathrm{st}})^G \cdot \prod_{\chi \in \Lambda} y_{\chi}^{a_{\chi}}.$$

Then we have

Proposition 2.2. For any subset Λ of $W(V_{st}, G)$, it is G-removable on V_{st} if and only if $\{y_{\chi} \mid \chi \in \Lambda\}$ is $(\mathcal{O}(V_{st}), G)$ -free.

Proof. We easily see that the set $\{y_{\chi} \mid \chi \in \Lambda\}$ is $(\mathcal{O}(V_{\rm st}), G)$ -free if and only if it is $(\mathcal{O}(V_{\rm st}), G^0)$ -free (cf. [N4]). Suppose that Λ is G-removable in $\mathcal{W}(V_{\rm st}, G)$. As

$$((V_{\rm st})^{\vee})_{-\chi|_{C^0}} = K \cdot y_{\chi} = ((V_{\rm st})^{\vee})_{-\chi},$$

we see that $\chi|_{G^O}$, $\chi \in \Lambda$, are different each other. Let us denote by $\{z_1, \ldots, z_l\}$ a K-basis of the K-subspace $\sum_{\psi \in \mathcal{W}(V_{\mathrm{st}}, G^0) \setminus \Lambda|_{G^0}} ((V_{\mathrm{st}})^{\vee})_{-\psi}$ of $(V_{\mathrm{st}})^{\vee}$ consisting of relative invariants of G^0 . Let $a_{\chi}, \chi \in \Lambda$, be any nonnegative integers. For $b_{\chi} \in \mathbf{Z}_0$ ($\chi \in \Lambda$) and $c_i \in \mathbf{Z}_0$ ($1 \leq i \leq l$), the condition that

$$\prod_{\chi \in \Lambda} y_\chi^{b_\chi} \cdot \prod_{i=1}^l z_i^{c_i} \in \mathcal{O}(V_{\mathrm{st}})_{\sum_{\chi \in \Lambda} a_\chi \cdot \chi|_{G^0}}$$

is equivalent to

$$\sum_{\chi \in \Lambda, b_{\chi} \ge a_{\chi}} (b_{\chi} - a_{\chi}) \cdot \chi|_{G^{0}} + \sum_{i=1}^{l} c_{i} \cdot \psi_{i}$$

$$= \sum_{\chi \in \Lambda, a_{\chi} > b_{\chi}} (a_{\chi} - b_{\chi}) \cdot \chi|_{G^{0}},$$

where $\psi_i \in \mathcal{W}(V_{\mathrm{st}}, G^0)$ such that $z_i \in ((V_{\mathrm{st}})^{\vee})_{-\psi_i}$. Thus (2.1) implies that $b_{\chi} \geq a_{\chi}$ for all $\chi \in \Lambda$, which implies

$$\prod_{\chi \in \Lambda} y_{\chi}^{b_{\chi}} \cdot \prod_{i=1}^{l} z_{i}^{c_{i}} \in \mathcal{O}(V_{\mathrm{st}})^{G^{0}} \cdot \prod_{\chi \in \Lambda} y_{\chi}^{a_{\chi}}$$

and the equality

$$\mathcal{O}(V_{\mathrm{st}})_{\sum_{\chi \in \Lambda} a_{\chi} \cdot \chi|_{G^0}} = \mathcal{O}(V_{\mathrm{st}})^{G^0} \cdot \prod_{\chi \in \Lambda} y_{\chi}^{a_{\chi}}.$$

The proof of "if part" of the assertion in Proposition 2.2 is left to the reader. \Box

For a subset Ω of $V_{\rm st}$ or $(V_{\rm st})^{\vee}$, let Ω^{\perp} be the set of all elements orthogonal to Ω under the canonical pairing

$$V_{\rm st} \times (V_{\rm st})^{\vee} \to K.$$

Combining (2.2) with [N4], we immediately have Corollary 2.3. For a G-submodule W of $V_{\rm st}$ such that G is diagonalizable on V/W, there exists a vector $w \in V_{\rm st}$ satisfying that (W,w) is a paralleled linear hull if and only if

$$W = \left(\sum_{\chi \in \Lambda} ((V_{\rm st})^{\vee})_{-\chi}\right)^{\perp}$$

for a G-removable subset Λ of $\mathcal{W}(V_{\mathrm{st}}, G)$ on V_{st} . Furthermore, in this notation, (W, w) is a minimal paralleled linear hull of (V, G) if and only if Λ is a maximal G-removable subset of $\mathcal{W}(V_{\mathrm{st}}, G)$ on V_{st} .

For a Cohen-Macaulay \mathbf{Z}_0 -graded domain R defined over K, the graded canonical module of R is denoted by ω_R .

Theorem 2.4 (G. Kempf - R. P. Stanley - V. I. Danilov (e.g., [D, S2, TE])). Let $\varrho: D \to GL(V)$ be a finite dimensional stable rational representation of a diagonalizable group D. Then the canonical module $\omega_{\mathcal{O}(V)^D}$ of the \mathbf{Z}_0 -graded Cohen-Macaulay algebra $\mathcal{O}(V)^D$ is isomorphic to the graded module $\mathcal{O}(V)_{(\det V)|_D}(-\dim V)$ of invariants relative to $\det_{V|_D}$ in $\mathcal{O}(V)$.

Definition 2.5. For a finite dimensional rational representation $\phi: H \to GL(W)$ of a diagonalizable group H, a faithful rational representation $\widetilde{\phi}: \widetilde{H} \to GL(W)$ of a diagonalizable group \widetilde{H} is defined to be a *cofree embedding of* $\phi: H \to GL(W)$ (or of (W,H)), if the following conditions are satisfied:

(1) $\phi(H) = H|_W \subseteq \widetilde{\phi}(\widetilde{H})$ and $\phi(\mathcal{R}_W(H)) = \widetilde{\phi}(\mathcal{R}_W(\widetilde{H}))$.

(2) The representation $\widetilde{\phi}$ is stable and cofree. A cofree embedding $\widetilde{\phi}:\widetilde{H}\to GL(W)$ of $\phi:H\to GL(W)$ is said to be *canonical*, if $\widetilde{\phi}(\widetilde{H})$ is minimal in $\psi(L)$'s for all cofree embeddings $\psi:L\to GL(W)$ of ϕ .

Theorem 2.6. Suppose that G is a diagonalizable group and (V, G) is a finite dimensional representation of G. Then the following conditions are equivalent:

- (1) V//G is a Gorenstein variety.
- (2) For a minimal paralleled linear hull (W, w) of (V, G), there exists a canonical cofree embedding (W, \widetilde{H}) of (W, G_w) .

If these conditions hold, then

$$\omega_{\mathcal{O}(W)^{\widetilde{H}}} \cdot \mathcal{O}(W)^{G_w} = \omega_{\mathcal{O}(W)^{G_w}}$$

and $\mathcal{O}(W)^{\widetilde{H}}$ is generated by a part of a minimal generating system of $\mathcal{O}(W)^{G_w}$ consisting of monomials of a K-basis of W^{\vee} on which \widetilde{H} is represented as a diagonal group.

2.7. Examples for (2.6). In order to explain the content of this theorem, we now give the following examples, in which $\{Y_1, \ldots, Y_n\}$ denotes a K-basis of V^{\vee} such that G is diagonal on this basis.

Example 2.7.1. For any $N = \prod Y_i^{c_i} \in \mathcal{O}(V)$, we denote $\sup_{\{Y_i\}}(N)$ by the set $\{Y_i \mid c_i > 0\}$. Suppose that $\mathcal{O}(V)^G$ has a homogeneous system $\{N_1, \ldots, N_d\}$ $(d \geq 1)$ of parameters consisting of monomials of that basis (if $\dim \mathcal{O}(V)^G \leq 2$, this condition always holds (e.g., [TE])). Then we must have $V_{\mathrm{st}} = (\sum_{Y_k \in \Gamma} K \cdot Y_k)^{\vee}$, where $\Gamma = \bigcup_{i=1}^d \sup_{\{Y_i\}}(N_j)$. Put

$$W = \{ x \in V_{\text{st}} \mid Y_j(x) = 0, \\ \forall Y_j \in \bigcup_{s \neq t} (\sup_{\{Y_i\}} (N_s) \cap \sup_{\{Y_i\}} (N_t)) \}$$

and $H = \text{Ker}(G \to GL(V_{\text{st}}/W))$. Then (W, w) is a minimal paralleled linear full of (V, G) for some $w \in V_{\text{st}}$ and $H = G_w$.

Example 2.7.2. Let ξ_j $(1 \leq j \leq n)$ denote the character of G^0 satisfying $(V^{\vee})_{-\xi_j} \ni Y_j$. Suppose that dim G=3 express $\xi_j = \sum_{i=1}^3 c_{ij}\chi_i$ for some $c_{ij} \in \mathbf{Z}$, where $\{\chi_1, \chi_2, \chi_3\}$ generates the additive group $\mathfrak{X}(G^0)$. For some (n >) $m \in \mathbf{N}$, assume that $\{j \mid 1 \leq j \leq m, c_{2j} < 0\} \neq \emptyset$,

$$\begin{cases} c_{2j} \le 0, \ c_{3j} = 0 \ ; \quad 1 \le j \le m \\ c_{1m+1} = c_{3m+1} = 0, \ c_{2m+1} = 1 \\ c_{3j} > 0 \ ; \quad j > m+1 \end{cases}$$

and $\sharp(\{j \mid 1 \leq j \leq m, c_{1j} < 0\}) \cdot \sharp(\{j \mid 1 \leq j \leq m, c_{1j} > 0\}) \geq 2$. Then the condition on c_{3j} 's implies that

$$\mathcal{O}(V)^{\bigcap_{i=1,2}\mathrm{Ker}(\chi_i)} = K[Y_1,\ldots,Y_{m+1}]^{\bigcap_{i=1,2}\mathrm{Ker}(\chi_i)}.$$

Since $\dim(G^0|_{\sum_{i=1}^{m+1} KY_i}) = 2$, we easily have

$$V_{\rm st} = \left(\sum_{j=1}^{m+1} KY_j\right)^{\vee}.$$

Putting

$$W = \{x \in V_{\text{st}} \mid Y_{m+1}(x) = 0\}$$

and $H=G_{Y_{m+1}}$, we see that (W,w) is a minimal paralleled linear full of (V,G) for some $w\in V_{\mathrm{st}}$ and $H=G_w$.

Remark 2.7.3. We apply (2.6) to these examples as follows:

For the decomposition

$$\{1,\ldots,m\}=J_1\sqcup\cdots\sqcup J_l\ (\text{disjoint union})$$

to non-empty subsets, put

$$H_{\{J_k\}} = \{ \operatorname{diag}(c_1, \dots, c_m) \mid \forall c_j \in K$$
 such that
$$\prod_{j \in J_k} c_j = 1 \ (1 \le k \le l) \}$$

defined on the the basis of W on which H is represented as a diagonal group. For a convenience sake, suppose that $\mathcal{R}_W(H)|_W = \{1\}$. Then $\mathcal{O}(V)^G$ is a Gorenstein ring if and only if $H|_W \subseteq H_{\{J_k\}}$ for some decomposition $\{1,\ldots,m\} = J_1 \sqcup \cdots \sqcup J_l$. In this case, a minimal subgroup $\widetilde{H} = H_{\{J_k\}}$ such that

 $H|_W \subseteq H_{\{J_k\}}$ defines a canonical cofree embedding (W, \widetilde{H}) of (W, H).

- 3. Existence of cofree embeddings. For a homomorphism $A \to B$ of integral domains, let $\operatorname{Ht}_1(B, A)$ denote the set consisting of all prime ideals of B of height one whose restrictions to A are also of height one.
- **3.1.** Cofree representations. Let (W, w) be a minimal paralleled linear hull of a finite dimensional representation (V, G) of a diagonalizable G. Let $\{X_1, \ldots, X_m\}$ be a K-basis of the dual W^{\vee} of W on which H is represented as a diagonal group, where H denotes G_w .

Let $D_{\{X_i\}}(W)$ be the subgroup of GL(W) consisting of all elements which induces diagonal matrices on the K-basis $\{X_1, \ldots, X_m\}$ of the dual module W^{\vee} . For a closed subgroup L of GL(W) which is diagonal on $\{X_1, \ldots, X_m\}$ such that (W, L) is stable, we note the following two facts:

Remark 3.1.1. For a prime ideal $\mathfrak{P} \in \operatorname{Ht}_1(\mathcal{O}(W), \mathcal{O}(W)^L)$, let $I_L(\mathfrak{P})$ denote the inertial group at \mathfrak{P} and $e(\mathfrak{P}, \mathfrak{P} \cap \mathcal{O}(W)^L)$ the ramification index of \mathfrak{P} over $\mathfrak{P} \cap \mathcal{O}(W)^L$ (cf. [N2]). Then we see that $I_L(\mathfrak{P})|_W$ is a finite group,

$$e(\mathfrak{P}, \mathfrak{P} \cap \mathcal{O}(W)^L) = \sharp (I_L(\mathfrak{P})|_W)$$

(e.g., [N2]) and there exists an element X_i in the set $\{X_1, \ldots, X_m\}$ which principally generates \mathfrak{P} , for \mathfrak{P} which is ramified over $\mathfrak{P} \cap \mathcal{O}(W)^L$ (i.e., $e(\mathfrak{P}, \mathfrak{P} \cap \mathcal{O}(W)^L) > 1$).

Lemma 3.1.2. The following conditions (1) and (2) are equivalent for (W, L):

- (1) The representation (W, L) is cofree.
- (2) There exist the decomposition $\{1, ..., m\} = J_1 \sqcup ... \sqcup J_l$ (disjoint union) to nonempty subsets J_i and integers $a_i \in \mathbb{N}$ $(1 \leq i \leq m)$ such that

$$\bigotimes_{j=1}^{l} \left(K \left[\prod_{i \in I_j} X_i^{a_i} \right] \right) = \mathcal{O}(W)^L.$$

In case where L is connected, the conditions (1) and (2) are equivalent to

(3) (W, L) is equidimensional.

Proof. In fact, suppose that (1) holds. Then (W, L^0) is equidimensional, which implies that (W, L^0) is cofree (cf. [W]). Thus there are a sum

$$\{1,\ldots,m\}=J_1\sqcup\cdots\sqcup J_l\ (\text{disjoint union})$$

of non-empty subsets J_i and $b_i \in \mathbf{Z}_0$ $(1 \le i \le m)$ satisfying

$$\mathcal{O}(W)^{L^0} = \bigotimes_{j=1}^{l} \left(K \left[\prod_{i \in J_j} X_i^{b_i} \right] \right)$$

(cf. [W, N1]). By the complete reducibility, we see that $(W//L^0, L/L^0)$ is cofree. Since $W//L^0 \cong \mathbf{A}^l$ and L/L^0 is finite, the action of L/L^0 on the local ring of $W//L^0$ at the vertex induces an action of a finite group generated by pseudo-reflections on its Zariski tangent space (cf. [S1]). Hence the condition (2) holds. The implication (2) \Rightarrow (1) can be easily shown. For the last assertion, see [W].

Lemma 3.1.3. For any closed subgroups D_i of $D_{\{X_i\}}(W)$ (i = 1, 2), if $\mathcal{O}(W)^{D_1} = \mathcal{O}(W)^{D_2}$ and (W, D_1) is stable, then $D_1 = D_2$.

Proof. By the stability of (W, D_1) , we see that

$$\prod_{i=1}^{m} X^{c_i} \in \mathcal{O}(W)^{D_1}$$

for some $c_i \in \mathbf{N}$ $(1 \leq i \leq m)$, which implies that (W, D_2) is also stable. Then, since $\mathcal{Q}(\mathcal{O}(W)^{D_i}) = \mathcal{Q}(\mathcal{O}(W))^{D_i}$, the assertion follows from the character theory of diagonalizable groups over the field K of characteristic zero.

Lemma 3.1.4. Let $\{1, \ldots, m\} = J_1 \sqcup \cdots \sqcup J_l$ (disjoint union) be the decomposition to non-empty subsets J_i and $b_i \in \mathbf{N}$ $(1 \leq i \leq m)$ any integers. Then there is a unique closed subgroup D in $D_{\{X_i\}}(W)$ such that

$$\mathcal{O}(W)^D = \bigotimes_{j=1}^l \left(K \left[\prod_{i \in J_j} X_i^{b_i} \right] \right) \subseteq \mathcal{O}(W).$$

Proof. Let D denote the stabilizer of $D_{\{X_i\}}(W)$ at the set $\{\prod_{i\in J_j}X_i^{b_i}\mid 1\leq j\leq l\}$ under the natural action of $D_{\{X_i\}}(W)$ on $\mathcal{O}(W)$. As

$$\begin{split} K\left[\prod_{i\in J_j}X_i^{b_i}, \left|1\leq j\leq l\right] \\ &= K\left[\prod_{i\in J_j}X_i^{b_i}, 1/\prod_{i\in J_j}X_i^{b_i}\right| 1\leq j\leq l\right]\cap \mathcal{O}(W), \end{split}$$

we must have

$$\mathcal{O}(W)^D = \bigotimes_{j=1}^l \left(K \left[\prod_{i \in J_j} X_i^{b_i} \right] \right) \subseteq \mathcal{O}(W).$$

On the other hand, denoting by D_j the stabilizer of $D_{\{X_i\}}(W)$ at the set $\{X_i \mid i \notin J_j\}$, we have

$$K[X_i \mid i \in J_j]^{D_j \cap D} = K \left[\prod_{i \in J_j} X_i^{b_i} \right].$$

Thus we must have

$$\mathcal{O}(W)^{(\prod_{j=1}^{l} D_j) \cap D} = \bigotimes_{j=1}^{l} \left(K \left[\prod_{i \in J_j} X_i^{b_i} \right] \right),$$

which implies $D = (\prod_{j=1}^l D_j) \cap D$. Consequently (W, D) is stable. The uniqueness of D follows from this and (3.1.3).

Lemma 3.2. Under the same circumstances as in the first paragraph in (2.8), let $\widetilde{\phi}: \widetilde{H} \to GL(W)$ be a faithful representation of a diagonalizable group \widetilde{H} such that $H|_W \subseteq \widetilde{H}|_W$. In the case where the condition (2) in (2.5) holds, the last equality in (1) in (2.5) holds if and only if the canonical quotient morphism

$$\pi_{W//H,\widetilde{H}/H}:W//H\to W//\widetilde{H}$$

is divisorially unramified (for definition, cf. [N2]).

Proof. Since $W \to W//H$ is no-blowing-up of codimension one (cf. (1.1)), we see

$$\operatorname{Ht}_1(\mathcal{O}(W), \mathcal{O}(W)^{\widetilde{H}}) \subseteq \operatorname{Ht}_1(\mathcal{O}(W), \mathcal{O}(W)^H).$$

On the other hand, for any $\mathfrak{Q} \in \operatorname{Ht}_1(\mathcal{O}(W), \mathcal{O}(W)^H)$ such that $I_H(\mathfrak{Q})|_W \neq \{1\}$, as in (2.8.1), we see that \mathfrak{Q} is generated by the element of W^{\vee} which is a relative invariant of \widetilde{H} . Thus, since (W, \widetilde{H}) is stable, the restriction $\mathfrak{Q} \cap \mathcal{O}(W)^{\widetilde{H}}$ is non-zero. The cofreeness of (W, \widetilde{H}) implies that $W \to W//\widetilde{H}$ is equidimensional, and so is $W//H \to W//\widetilde{H}$. Consequently, \mathfrak{Q} is a member of $\operatorname{Ht}_1(\mathcal{O}(W), \mathcal{O}(W)^{\widetilde{H}})$. The equivalence in the assertion in (3.2) easily follows from the above observation and [N3].

Proof of (2.6). We use the notation in (3.1). The character

$$\mu_{\pi_{\mathcal{O}(W)} \cdot X_i} : I_H(\mathcal{O}(W) \cdot X_i) \ni \sigma \mapsto \sigma(X_i) / X_i \in \mathbf{U}(K)$$

can be identified with the restriction of $\det_{W^{\vee}}$. So, using the notation in (1.4) of [N3], we see

$$t_{\mathcal{O}(W), X_i}(\det_W|_H) = e_i - 1,$$

where $e_i = \sharp (I_H(\mathcal{O}(W) \cdot X_i)|_W)$. As $\mathcal{O}(W)^H \hookrightarrow \mathcal{O}(W)$ is no-blowing-up of codimension one (for definition, cf. [F]), we see that

$$\mathcal{O}(W)_{\det_W|_H} \cong \mathcal{O}(W)^H$$

if and only if

$$\prod_{i=1}^{l} X_i^{e_i - 1} \in \mathcal{O}(W)_{\det_W|_H}$$

(e.g., [N3]). If these conditions are satisfied, then

$$\mathcal{O}(W)_{\det_W|_H} = \mathcal{O}(W)^H \cdot \prod_{i=1}^l X_i^{e_i - 1}.$$

Clearly, since $\prod_{i=1}^{l} X_i \in \mathcal{O}(W)_{\det_{W^{\vee}|H}}$, the affine variety W//H is Gorenstein if and only if

$$\prod_{i=1}^{l} X_i^{e_i} \in \mathcal{O}(W)^H.$$

Suppose that the condition (2) holds, i.e., (W, \widetilde{H}) is a canonical cofree embedding of (W, H). Then, by (3.1.2), we have

$$\bigotimes_{j=1}^{l} \left(K \left[\prod_{i \in J_j} X_i^{a_i} \right] \right) = \mathcal{O}(W)^{\widetilde{H}}$$

for some decomposition

$$\{1,\ldots,m=\dim W\}=J_1\sqcup\cdots\sqcup J_l\ (\text{disjoint union})$$

to nonempty subsets and $a_i \in \mathbf{N}$. Since

$$e(\mathcal{O}(W) \cdot X_i, \mathcal{O}(W) \cdot X_i \cap \mathcal{O}(W)^{\widetilde{H}}) = a_i,$$

by (2.5) and (3.1.1), we must have

$$a_i = e_i (= \sharp (I_H(\mathcal{O}(W) \cdot X_i)|_W)),$$

which implies $\prod_{i=1}^m X_i^{e_i} \in \mathcal{O}(W)^{\widetilde{H}}$. From this and the observation of the former paragraph, we have just shown the condition (1) is satisfied.

Conversely, suppose that the condition (1) holds. Then

$$\prod_{i=1}^{m} X_i^{e_i} \in \mathcal{O}(W)^H \subseteq \mathcal{O}(W)^{\mathcal{R}_W(H)}$$
$$= K[X_1^{e_1}, \dots, X_l^{e_m}].$$

We can uniquely express this monomial as a product $\prod_{j=1}^{l} M_j$ of elements M_j 's which are members of the unique minimal system of generators of $\mathcal{O}(W)^H$ consisting of monomials of $\{X_1, \ldots, X_m\}$. Obviously there exists the decomposition

$$\{1,\ldots,m\}=J_1\sqcup\cdots\sqcup J_l\ (\text{disjoint union})$$

to nonempty subsets J_j such that $\prod_{i \in J_j} X_i^{e_i} = M_j$ $(1 \le j \le l)$. Let \widetilde{H} be the stabilizer of $D_{\{X_i\}}(W)$

at $\{M_j \mid 1 \leq j \leq l\}$. By (3.1.4), the representation (W, \widetilde{H}) is stable and cofree. Since $\mathcal{O}(W)^H \hookrightarrow \mathcal{O}(W)$ is no-blowing-up of codimension one, applying (3.1.1) to (W, H) and (W, \widetilde{H}) , we see that $W//H \to W//\widetilde{H}$ is divisorially unramified, which proves (2).

The remainder of the assertions in this theorem follows from (3.2) and the property of \widetilde{H} .

References

- [F] R. M. Fossum, The divisor class group of a Krull domain, Springer, New York, 1973.
- [D] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247.
- [N1] H. Nakajima, Equidimensional actions of algebraic tori, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 681–705.

[N2] H. Nakajima, Reduced ramification indices of quotient morphisms under torus actions, J. Algebra 242 (2001), no.2, 536–549.

- [N3] H. Nakajima, Divisorial free modules of relative invariants on Krull domains, J. Algebra 292 (2005), no. 2, 540–565.
- [N4] H. Nakajima, Minimal presentations of torus invariants in paralleled linear hulls. (to appear).
- [S1] J. -P. Serre, Groupes finis d'automorphismes d'anneaux locaux réguliers, in Colloq. d'Alg., E.N.S., Exp.8, Secrétariat math., Paris, 1967.
- [S2] R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83.
- [TE] G. Kempf et al., Toroidal embeddings. I, Lecture Notes in Math., 339, Springer, Berlin, 1973.
- [W] D. L. Wehlau, A proof of the Popov conjecture for tori, Proc. Amer. Math. Soc. 114 (1992), no. 3, 839–845.