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Cofree embeddings of algebraic tori preserving canonical sheaves
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Abstract: Let � : G → GL(V ) be a finite dimensional rational representation of a diag-
onalizable algebraic group G over an algebraically closed field K of characteristic zero. Using a
minimal paralleled linear hull (W,w) of � defined in [N4], we show the existence of a cofree repre-
sentation G̃w ↪→ GL(W ) such that �(Gw) ⊆ G̃w and W//Gw → W//G̃w is divisorially unramified
is equivalent to the Gorensteinness of V//G.
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1. Introduction. Without specifying, G

will always stand for a reductive affine algebraic
group whose identity component is an algebraic torus
over an algebraically closed field K of characteristic
zero. Let X(G) stand for the rational character group
of G over K which is regarded as an additive group.
For an affine varietyX overK, O(X) denotes the K-
algebra of all regular functions onX . When a regular
action of G on an affine variety X (abbr. (X,G)) is
given, we denote by X//G the algebraic quotient of
X under the action of G and by πX,G the quotient
map X → X//G. For ψ ∈ X(G), let O(X)ψ be the
set {f ∈ O(X) | σ(f) = ψ(σ) · f (∀σ ∈ G)}, which
is regarded as an O(X)G-module. A regular action
(X,G) is said to be stable, if X contains a nonempty
open subset consisting of closedG-orbits. LetXst de-
note the affine variety defined by O(Xst) = O(X)st,
where O(X)st is the K-subalgebra of O(X) gener-
ated by O(X)χ’s such that O(X)χ · O(X)−χ �= {0},
χ ∈ X(G0) (cf. [N1]). Then the induced action
(Xst, G) is stable, for any (X,G). Consider a finite
dimensional rational G-module V . A pair (W,w) is
defined to be a paralleled linear hull of (V,G), if W is
a G-submodule of Vst such that G is diagonalizable
on the quotient module Vst/W , w is a nonzero vector
of Vst satisfying the condition W∩ < G ·w >K= {0}
and the Gw-equivariant morphism

(• + w) : W � x �→ x+ w ∈ Vst

induces the isomorphism

πVst//Gw,V//G ◦ (• + w)//Gw : W//Gw
∼→ Vst//G.
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Here (• + w)//Gw : W//Gw −→ Vst//Gw is the
quotient of (• + w) modulo Gw and πVst//Gw,V//G :
Vst//Gw −→ Vst//G is associated with the inclu-
sion O(Vst)G ↪→ O(Vst)Gw . A paralleled linear hull
(W0, wo) of (V,G) is said to be minimal, if W0 is
minimal with respect to inclusions in the set consist-
ing of all subspaces W ’s of Vst such that (W,w)’s are
paralleled linear hulls of (V,G) for some w ’s. An el-
ement σ ∈ G is said to be a pseudo-reflection on V , if
dim(σ−1)(V ∨) = ht((σ−1)(V ∨) ·O(V )∩O(V )G) ≤
1, where V ∨ is the dual space of V over K. We have
the following fundamental result for minimal paral-
leled hulls:

Theorem 1.1 (cf. [N4]). Suppose that G

equals to the centralizer ZG(G0) of G0 in G. Let
(W,w) be a minimal paralleled linear hull of (V,G).
Then
(1) πW,Gw is no-blowing-up of codimension one (for

definition, cf. [F] ) and Gw acts transitively on
the set of irreducible components of codimension
one in W of the fibre of each irreducible closed
subvariety of W//Gw of codimension one under
the morphism πW,Gw .

(2) X(Gw/RW (Gw)) ∼= Cl(O(V )G), where RW

(Gw) denotes the subgroup of Gw generated by
all pseudo-reflections of Gw on W .
Conversely, the conclusion (1) of (1.1) character-

izes minimality of the paralleled linear full (W,Gw)
of (V,G) under the condition ZG(G0) = G. For a
diagonalizable G, the following results are obtained.
In Sect. 3, we will show the existence of a cofree rep-
resentation G̃w ↪→ GL(W ) such that Gw|W ⊆ G̃w
and W//Gw → W//G̃w is divisorially unramified is
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equivalent to the fact that V//G is Gorenstein. Some
examples of the main result (2.6) can be found in
Sect. 2.

The symbol �( ◦ ) stands for the cardinality of
the set ◦ and let Z0 denote the additive monoid of
non-negative integers. For a mapping ϕ : A → B

and a subset A′ ⊆ A, let ϕ|A′ denote the restriction
of ϕ to A′ and, for a set Ω of mappings ϕ : A → B,
let Ω|A′ be the set of restrictions ϕ|A′ ’s (ϕ ∈ Ω).

2. Cofree embeddings. If Λ is a subset of
X(G), let Z0 ·Λ (resp. Z+ ·Λ) denote the set of all lin-
ear combinations of any finite subset of Λ with coeffi-
cients in Z0 (resp. Z+) in X(G), where Z+ = N and
Z0 ·∅ means {0}. For any χ ∈ X(G) and a rational G-
module V , let Vχ = {x ∈ V | σ(x) = χ(σ) · x (∀σ ∈
G)} denote the subspace of χ-invariants or relative
invariants of G with respect to χ in V . For a rational
G-module V , let V ∨ be the dual module on which
G acts naturally and W(V,G) denote the set of all
weights of G on V (i.e., {χ ∈ X(G) | Vχ �= {0}}).

Definition 2.1. A subset Λ of W(Vst, G) of a
finite dimensional rational G-module V is said to be
G-removable on Vst, if dim(Vst)χ|G0 = 1 (∀χ ∈ Λ)
and

(Z+ · Λ′|G0)
⋂

(Z0 · (W(Vst, G
0)\Λ′|G0)) = ∅

for any non-empty subset Λ′ of Λ. Clearly any G-
removable subset does not contains the trivial char-
acter 0. We say Λ is a maximal G-removable sub-
set of W(Vst, G), if it is maximal with respect to
inclusions in the set of all G-removable subsets of
W(Vst, G).

Let Λ be a subset of W(Vst, G) and yχ a nonzero
element in ((Vst)∨)−χ for each χ ∈ Λ. The set {yχ |
χ ∈ Λ} is said to be (O(Vst), G)-free, if, for any aχ ∈
Z0, there exists a rational character ψ ∈ X(G) such
that

O(Vst)ψ = O(Vst)G ·
∏
χ∈Λ

yaχ
χ .

Then we have
Proposition 2.2. For any subset Λ of

W(Vst, G), it is G-removable on Vst if and only if
{yχ | χ ∈ Λ} is (O(Vst), G)-free.

Proof . We easily see that the set {yχ | χ ∈ Λ}
is (O(Vst), G)-free if and only if it is (O(Vst), G0)-
free (cf. [N4]). Suppose that Λ is G-removable in
W(Vst, G). As

((Vst)∨)−χ|G0 = K · yχ = ((Vst)∨)−χ,

we see that χ|GO , χ ∈ Λ, are different each other.
Let us denote by {z1, . . . , zl} a K-basis of the
K-subspace

∑
ψ∈W(Vst,G0)\Λ|G0

((Vst)∨)−ψ of (Vst)∨

consisting of relative invariants of G0. Let aχ, χ ∈ Λ,
be any nonnegative integers. For bχ ∈ Z0 (χ ∈ Λ)
and ci ∈ Z0 (1 ≤ i ≤ l), the condition that

∏
χ∈Λ

ybχ
χ ·

l∏
i=1

zci

i ∈ O(Vst)�
χ∈Λ aχ·χ|G0

is equivalent to

∑
χ∈Λ,bχ≥aχ

(bχ − aχ) · χ|G0 +
l∑

i=1

ci · ψi

=
∑

χ∈Λ,aχ>bχ

(aχ − bχ) · χ|G0 ,

where ψi ∈ W(Vst, G
0) such that zi ∈ ((Vst)∨)−ψi .

Thus (2.1) implies that bχ ≥ aχ for all χ ∈ Λ, which
implies

∏
χ∈Λ

ybχ
χ ·

l∏
i=1

zci

i ∈ O(Vst)G
0 ·

∏
χ∈Λ

yaχ
χ

and the equality

O(Vst)�
χ∈Λ aχ·χ|G0 = O(Vst)G

0 ·
∏
χ∈Λ

yaχ
χ .

The proof of “if part” of the assertion in Proposition
2.2 is left to the reader.

For a subset Ω of Vst or (Vst)∨, let Ω⊥ be the set
of all elements orthogonal to Ω under the canonical
pairing

Vst × (Vst)∨ → K.

Combining (2.2) with [N4], we immediately have
Corollary 2.3. For a G-submodule W of Vst

such that G is diagonalizable on V/W , there exists a
vector w ∈ Vst satisfying that (W,w) is a paralleled
linear hull if and only if

W =


∑
χ∈Λ

((Vst)∨)−χ




⊥

for a G-removable subset Λ of W(Vst, G) on Vst. Fur-
thermore, in this notation, (W,w) is a minimal par-
alleled linear hull of (V,G) if and only if Λ is a max-
imal G-removable subset of W(Vst, G) on Vst.

For a Cohen-Macaulay Z0-graded domain R de-
fined over K, the graded canonical module of R is
denoted by ωR.
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Theorem 2.4 (G. Kempf - R. P. Stanley - V.
I. Danilov (e.g., [D, S2, TE])). Let � : D → GL(V )
be a finite dimensional stable rational representa-
tion of a diagonalizable group D. Then the canoni-
cal module ωO(V )D of the Z0-graded Cohen-Macaulay
algebra O(V )D is isomorphic to the graded mod-
ule O(V )(detV )|D(− dimV ) of invariants relative to
detV |D in O(V ).

Definition 2.5. For a finite dimensional ra-
tional representation φ : H → GL(W ) of a diago-
nalizable group H , a faithful rational representation
φ̃ : H̃ → GL(W ) of a diagonalizable group H̃ is de-
fined to be a cofree embedding of φ : H → GL(W ) (or
of (W,H)), if the following conditions are satisfied:
(1) φ(H) (= H |W ) ⊆ φ̃(H̃) and φ(RW (H)) =

φ̃(RW (H̃)).

(2) The representation φ̃ is stable and cofree.
A cofree embedding φ̃ : H̃ → GL(W ) of φ : H →
GL(W ) is said to be canonical, if φ̃(H̃) is minimal in
ψ(L)’s for all cofree embeddings ψ : L → GL(W ) of
φ.

Theorem 2.6. Suppose that G is a diagonal-
izable group and (V,G) is a finite dimensional rep-
resentation of G. Then the following conditions are
equivalent:
(1) V//G is a Gorenstein variety.

(2) For a minimal paralleled linear hull (W,w) of
(V,G), there exists a canonical cofree embedding
(W, H̃) of (W,Gw).

If these conditions hold, then

ωO(W )�H
· O(W )Gw = ωO(W )Gw

and O(W ) �H is generated by a part of a minimal gen-
erating system of O(W )Gw consisting of monomials
of a K-basis of W∨ on which H̃ is represented as a
diagonal group.

2.7. Examples for (2.6). In order to ex-
plain the content of this theorem, we now give the
following examples, in which {Y1, . . . , Yn} denotes a
K-basis of V ∨ such that G is diagonal on this basis.

Example 2.7.1. For any N =
∏
Y ci

i ∈ O(V ),
we denote supp{Yi}(N) by the set {Yi | ci >

0}. Suppose that O(V )G has a homogeneous sys-
tem {N1, . . . , Nd} (d ≥ 1) of parameters consist-
ing of monomials of that basis (if dimO(V )G ≤ 2,
this condition always holds (e.g., [TE])). Then we
must have Vst = (

∑
Yk∈ΓK · Yk)∨, where Γ =

∪dj=1supp{Yi}(Nj). Put

W = {x ∈ Vst | Yj(x) = 0,

∀Yj ∈ ∪s�=t(supp{Yi}(Ns) ∩ supp{Yi}(Nt))}
and H = Ker(G → GL(Vst/W )). Then (W,w) is
a minimal paralleled linear full of (V,G) for some
w ∈ Vst and H = Gw.

Example 2.7.2. Let ξj (1 ≤ j ≤ n) denote
the character of G0 satisfying (V ∨)−ξj � Yj . Sup-
pose that dimG = 3 express ξj =

∑3
i=1 cijχi for

some cij ∈ Z, where {χ1, χ2, χ3} generates the addi-
tive group X(G0). For some (n >) m ∈ N, assume
that {j | 1 ≤ j ≤ m, c2j < 0} �= ∅,




c2j ≤ 0, c3j = 0 ; 1 ≤ j ≤ m

c1m+1 = c3m+1 = 0, c2m+1 = 1
c3j > 0 ; j > m+ 1

and �({j | 1 ≤ j ≤ m, c1j < 0}) · �({j | 1 ≤ j ≤
m, c1j > 0}) ≥ 2. Then the condition on c3j ’s implies
that

O(V )∩i=1,2Ker(χi) = K[Y1, . . . , Ym+1]∩i=1,2Ker(χi).

Since dim(G0|�m+1
i=1 KYi

) = 2, we easily have

Vst =


m+1∑
j=1

KYj




∨

.

Putting

W = {x ∈ Vst | Ym+1(x) = 0}
and H = GYm+1 , we see that (W,w) is a minimal
paralleled linear full of (V,G) for some w ∈ Vst and
H = Gw.

Remark 2.7.3. We apply (2.6) to these ex-
amples as follows:

For the decomposition

{1, . . . ,m} = J1 � · · · � Jl (disjoint union)

to non-empty subsets, put

H{Jk} = {diag(c1, . . . , cm) | ∀cj ∈ K

such that
∏
j∈Jk

cj = 1 (1 ≤ k ≤ l)}

defined on the the basis of W on which H is repre-
sented as a diagonal group. For a convenience sake,
suppose that RW (H)|W = {1}. Then O(V )G is
a Gorenstein ring if and only if H |W ⊆ H{Jk} for
some decomposition {1, . . . ,m} = J1 � · · · � Jl. In
this case, a minimal subgroup H̃ = H{Jk} such that
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H |W ⊆ H{Jk} defines a canonical cofree embedding
(W, H̃) of (W,H).

3. Existence of cofree embeddings. For
a homomorphism A → B of integral domains, let
Ht1(B, A) denote the set consisting of all prime ide-
als of B of height one whose restrictions to A are also
of height one.

3.1. Cofree representations. Let (W,w)
be a minimal paralleled linear hull of a finite dimen-
sional representation (V,G) of a diagonalizable G.
Let {X1, . . . , Xm} be a K-basis of the dual W∨ of
W on which H is represented as a diagonal group,
where H denotes Gw.

Let D{Xi}(W ) be the subgroup of GL(W ) con-
sisting of all elements which induces diagonal matri-
ces on the K-basis {X1, . . . , Xm} of the dual module
W∨. For a closed subgroup L of GL(W ) which is di-
agonal on {X1, . . . , Xm} such that (W,L) is stable,
we note the following two facts:

Remark 3.1.1. For a prime ideal P ∈
Ht1(O(W ), O(W )L), let IL(P) denote the inertia
group at P and e(P,P ∩ O(W )L) the ramification
index of P over P ∩ O(W )L (cf. [N2]). Then we see
that IL(P)|W is a finite group,

e(P,P ∩O(W )L) = �(IL(P)|W )

(e.g., [N2]) and there exists an element Xi in the
set {X1, . . . , Xm} which principally generates P, for
P which is ramified over P ∩O(W )L (i.e., e(P,P ∩
O(W )L) > 1).

Lemma 3.1.2. The following conditions (1)
and (2) are equivalent for (W,L):
(1) The representation (W,L) is cofree.

(2) There exist the decomposition {1, . . . ,m} = J1�
· · · � Jl (disjoint union) to nonempty subsets Ji
and integers ai ∈ N (1 ≤ i ≤ m) such that

l⊗
j=1


K


∏
i∈Ij

Xai

i




 = O(W )L.

In case where L is connected, the conditions (1)
and (2) are equivalent to

(3) (W,L) is equidimensional.
Proof . In fact, suppose that (1) holds. Then

(W,L0) is equidimensional, which implies that
(W,L0) is cofree (cf. [W]). Thus there are a sum

{1, . . . ,m} = J1 � · · · � Jl (disjoint union)

of non-empty subsets Ji and bi ∈ Z0 (1 ≤ i ≤ m)
satisfying

O(W )L
0

=
l⊗

j=1


K


 ∏
i∈Jj

Xbi

i






(cf. [W, N1]). By the complete reducibility, we see
that (W//L0, L/L0) is cofree. Since W//L0 ∼= Al

and L/L0 is finite, the action of L/L0 on the local
ring of W//L0 at the vertex induces an action of a
finite group generated by pseudo-reflections on its
Zariski tangent space (cf. [S1]). Hence the condition
(2) holds. The implication (2) ⇒ (1) can be easily
shown. For the last assertion, see [W].

Lemma 3.1.3. For any closed subgroups Di

of D{Xi}(W ) (i = 1, 2), if O(W )D1 = O(W )D2 and
(W,D1) is stable, then D1 = D2.

Proof . By the stability of (W,D1), we see that
m∏
i=1

Xci ∈ O(W )D1

for some ci ∈ N (1 ≤ i ≤ m), which implies that
(W,D2) is also stable. Then, since Q(O(W )Di ) =
Q(O(W ))Di , the assertion follows from the character
theory of diagonalizable groups over the field K of
characteristic zero.

Lemma 3.1.4. Let {1, . . . ,m} = J1 � · · · � Jl
(disjoint union) be the decomposition to non-empty
subsets Ji and bi ∈ N (1 ≤ i ≤ m) any inte-
gers. Then there is a unique closed subgroup D in
D{Xi}(W ) such that

O(W )D =
l⊗

j=1


K


 ∏
i∈Jj

Xbi

i





 ⊆ O(W ).

Proof . Let D denote the stabilizer of D{Xi}(W )
at the set {∏i∈Jj

Xbi

i | 1 ≤ j ≤ l} under the natural
action of D{Xi}(W ) on O(W ). As

K


 ∏
i∈Jj

Xbi

i ,

∣∣∣∣∣∣ 1 ≤ j ≤ l




= K


 ∏
i∈Jj

Xbi

i , 1/
∏
i∈Jj

Xbi

i

∣∣∣∣∣∣ 1 ≤ j ≤ l


 ∩O(W ),

we must have

O(W )D =
l⊗

j=1


K


 ∏
i∈Jj

Xbi

i





 ⊆ O(W ).

On the other hand, denoting by Dj the stabilizer of
D{Xi}(W ) at the set {Xi | i �∈ Jj}, we have



No. 9] Cofree embeddings of algebraic tori preserving canonical sheaves 159

K[Xi | i ∈ Jj ]Dj∩D = K


 ∏
i∈Jj

Xbi

i


 .

Thus we must have

O(W )(
�l

j=1Dj)∩D =
l⊗

j=1


K


 ∏
i∈Jj

Xbi

i





 ,

which implies D = (
∏l
j=1Dj) ∩ D. Consequently

(W,D) is stable. The uniqueness of D follows from
this and (3.1.3).

Lemma 3.2. Under the same circumstances
as in the first paragraph in (2.8), let φ̃ : H̃ → GL(W )
be a faithful representation of a diagonalizable group
H̃ such that H |W ⊆ H̃ |W . In the case where the
condition (2) in (2.5) holds, the last equality in (1)
in (2.5) holds if and only if the canonical quotient
morphism

πW//H, �H/H : W//H →W//H̃

is divisorially unramified (for definition, cf. [N2]).
Proof . Since W → W//H is no-blowing-up of

codimension one (cf. (1.1)), we see

Ht1(O(W ),O(W ) �H ) ⊆ Ht1(O(W ),O(W )H ).

On the other hand, for any Q ∈ Ht1(O(W ),O(W )H )
such that IH(Q)|W �= {1}, as in (2.8.1), we see that
Q is generated by the element of W∨ which is a rela-
tive invariant of H̃ . Thus, since (W, H̃) is stable, the
restriction Q∩O(W ) �H is non-zero. The cofreeness of
(W, H̃) implies that W →W//H̃ is equidimensional,
and so is W//H → W//H̃. Consequently, Q is a
member of Ht1(O(W ),O(W ) �H ). The equivalence in
the assertion in (3.2) easily follows from the above
observation and [N3].

Proof of (2.6). We use the notation in (3.1).
The character

µπO(W )·Xi
: IH(O(W ) ·Xi) � σ �→ σ(Xi)/Xi ∈ U(K)

can be identified with the restriction of detW∨ . So,
using the notation in (1.4) of [N3], we see

tO(W )·Xi
(detW |H) = ei − 1,

where ei = �(IH(O(W ) · Xi)|W ). As O(W )H ↪→
O(W ) is no-blowing-up of codimension one (for def-
inition, cf. [F]), we see that

O(W )detW |H ∼= O(W )H

if and only if

l∏
i=1

Xei−1
i ∈ O(W )detW |H

(e.g., [N3]). If these conditions are satisfied, then

O(W )detW |H = O(W )H ·
l∏
i=1

Xei−1
i .

Clearly, since
∏l
i=1Xi ∈ O(W )detW∨ |H , the affine

variety W//H is Gorenstein if and only if

l∏
i=1

Xei

i ∈ O(W )H .

Suppose that the condition (2) holds, i.e.,
(W, H̃) is a canonical cofree embedding of (W,H).
Then, by (3.1.2), we have

l⊗
j=1


K


 ∏
i∈Jj

Xai

i




 = O(W ) �H

for some decomposition

{1, . . . ,m = dimW} = J1 � · · · � Jl (disjoint union)

to nonempty subsets and ai ∈ N. Since

e(O(W ) ·Xi,O(W ) ·Xi ∩ O(W ) �H) = ai,

by (2.5) and (3.1.1), we must have

ai = ei(= �(IH(O(W ) ·Xi)|W )),

which implies
∏m
i=1X

ei

i ∈ O(W ) �H . From this and
the observation of the former paragraph, we have
just shown the condition (1) is satisfied.

Conversely, suppose that the condition (1)
holds. Then

m∏
i=1

Xei

i ∈ O(W )H ⊆ O(W )RW (H)

= K[Xe1
1 , . . . , Xem

l ].

We can uniquely express this monomial as a prod-
uct

∏l
j=1Mj of elements Mj’s which are members of

the unique minimal system of generators of O(W )H

consisting of monomials of {X1, . . . , Xm}. Obviously
there exists the decomposition

{1, . . . ,m} = J1 � · · · � Jl (disjoint union)

to nonempty subsets Jj such that
∏
i∈Jj

Xei

i = Mj

(1 ≤ j ≤ l). Let H̃ be the stabilizer of D{Xi}(W )
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at {Mj | 1 ≤ j ≤ l}. By (3.1.4), the representa-
tion (W, H̃) is stable and cofree. Since O(W )H ↪→
O(W ) is no-blowing-up of codimension one, applying
(3.1.1) to (W,H) and (W, H̃), we see that W//H →
W//H̃ is divisorially unramified, which proves (2).

The remainder of the assertions in this theorem
follows from (3.2) and the property of H̃.
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