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Corestriction principle for non-abelian cohomology of reductive

group schemes over arithmetical rings
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Abstract: We prove some new results on Corestriction principle for non-abelian cohomology
of group schemes over local and global fields or the rings of integers thereof.
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1. Introduction. In [T1–T3] we proved
some results on Corestriction principle for connecting
maps of non-abelian Galois cohomology of reductive
groups over local and global fields. In [T3] there was
defined also a concept of Weak Corestriction princi-
ple for non-abelian Galois cohomology of such groups
over arbitrary fields of charateristic 0. It is apparent
and natural to consider similar notions for groups of
arithmetical types, i.e., consider group schemes over
arithmetical rings, which are either local or global
fields, or their ring of integers. Such a treatment
over rings is necessary for various arithmetic consid-
erations. For example, in [X], there has been proved
the validity of Corestriction principle, under some
restrictions, for spinor norms over the ring of p-adic
integers.

We consider in this paper the concept of Core-
striction principle (resp. Weak Corestriction princi-
ple) in a setting, more general than that of Galois
cohomology. The full proofs of results presented here
will appear elsewhere. The definitions are similar so
we only briefly recall it below (see [T1–T3] for more
details). For arithmetical applications, we consider
only the case of Dedekind rings (or their localiza-
tions or completions with respect to discrete valua-
tions) and their quotient fields. We call such rings in
this paper by arithmetical rings. For such a ring A

and a group scheme G over A (i.e. over Spec(A)), we
denote as usual Hi

r(A, G) := Hi
r(Spec(A), G), where

r stands either for Zariski, étale, or flat (i.e., fppf)
topology, whenever it makes sense. We assume once
for all that, for all smooth commutative A-group
schemes involved, there is a notion of corestriction
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homomorphism, that is, for any smooth commuta-
tive A-group scheme T and each extension A′/A (and
also their localizations at finite sets of primes) be-
longing to certain category CA of faithfully flat, étale
extensions of finite type over A, there is a functorial
homomorphism

CoresA′/A,T : Hi
et(A

′, TA′) → Hi
et(A, T ).

Here TA′ = T ×A A′ denotes the A′-group scheme
obtained by base change from A to A′. In general,
one may not expect such homomorphism to exist and
there is a general theory of trace handling this ques-
tion in Deligne [SGA 4], Exp. 17 (cf. also Gille [Gi]).
One may then consider the concept of (Weak) Core-
striction principle for images or kernels of connecting
maps in a long exact sequence of cohomology.

Assume that we have a map which is functorial
in B, B ∈ CA:

αB : Hp
et(B, GB) → Hq

et(B, TB),

i. e., a map of functors α = (αB) : (B �→
Hp

et(B, GB)) → (B �→ Hq
et(B, TB)) where B runs

over all CA, T is a commutative algebraic A-group
scheme. It is natural to ask whether or not the fol-
lowing inclusion holds

CoresB/A,T (Im (αB)) ⊂ Im (αA).

If it is the case for B ∈ CA, then we say that
the Corestriction principle holds for the image of
the map αA : Hp

et(A, G) → Hq
et(A, T ) with respect

to CoresB/A,T . We say that Weak Corestriction
principle holds for the image of αA with respect to
CoresB/A,T , if

CoresB/A,T (Im (αB)) ⊂ 〈Im (αA)〉,
where 〈Im(αA)〉 denotes the subgroup generated in
the cohomology group by Im (αA). We may also
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consider similar notions for kernel of αA, when G is
commutative and T may be not.

2. Main Results. In this paper we prove
the following analogs of the results proved in the case
of local and global fields.

Theorem 1 (Local Corestriction principle).
Let A be a ring of integers of a non-archimedean
local field k, A′ is the integral closure of A in a
separable finite extension k′ of k, belonging to CA.
Let G, T be reductive A-group schemes with T an A-
torus, and let αA : Hp

et(A, G) → Hq
et(A, T ), (resp.

αA : H1
et(A, T ) → H1

et(A, G)) be a connecting map
induced by exact sequences of A-group schemes in-
volving G and T (resp. induced by A-morphism T →
G). Then Corestriction Principle holds for the image
(resp. kernel) of αA with respect to CoresA′/A,T .

Examples. 1) Let Ov be the ring of integers of
a local non-archimedean field k, G, T reductive Ov-
group schemes, where T is a torus, and let π : G → T

be a morphism of Ov-group schemes. For any finite
separable unramified extension k′/k with the ring of
integers Ow there is a natural norm homomorphism

N := NOw/Ov
: T (Ow) → T (Ov),

and in the following diagram

G(Ow)
β′
→ T (Ow)

↓ N

G(Ov)
β→ T (Ov)

we have

N(β′(G(Ow))) ⊂ β(G(Ov)).

2) Let α : T → G be an A-homomorphism as in
Theorem 1, K = Ker (α), T ′ = Im (α). Then α

induces exact sequences 1 → K → T → T ′ → 1,
and 1 → T ′ → G → G/T ′ → 1, and therefore long
exact sequences of cohomologies. The induced map
αA : H1

et(A, T ) → H1
et(A, G) is the composition of

H1
et(A, T ) → H1

etA, T ′) and H1
et(A, T ′) → H1

et(A, G).
Thus the study of Ker (αA) is reduced to that of
H1

et(A, T ′) → H1
et(A, G), and we may assume that

T is an A-subtorus of G. Then Ker (H1
et(A, T ) →

H1
et(A, G)) = Im (H0

et(A, (G/T )) → H1
et(A, T )).

Here H0
et(A, (G/T )) = (G/T )(A) may not be a

group.
In the global case, we have a similar (but less

satisfactory) results as follows:

Theorem 2 (Global Corestriction principle).
Let A be the ring of integers1) of a global field
k, αA : Hp

et(A, G) → Hq
et(A, T ) (resp. αA :

H1
et(A, T ) → H1

et(A, G)) a connecting map induced
by an exact sequence of cohomologies of reductive A-
group schemes (resp. an A-morphism), with T an
A-torus. Then for any finite separable extension
k′/k with the ring of integers A′ belonging to CA,
there is a finite set S ⊂ V such that the Core-
striction Principle holds for the image (resp. ker-
nel) of αAS : Hp

et(AS , GAS ) → Hq
et(AS , TAS) (resp.

αAS : H1
et(AS , TAS) → H1

et(AS , GAS )) with respect to
CoresA′

S/AS ,T .
While in the case of étale cohomology it is possi-

ble to define the corestriction maps due to an analog
of Shapiro lemma (cf. [SGA 3], Exp. XXIV, Sec. 8,
Prop. 8.4), it is not in general the case if we consider
the case of flat cohomology. However, if the base
scheme is the spectrum of a local or global field then
we can prove the Corestriction principle for algebraic
groups and we have the following

Theorem 3. Let k be a local or global field of
characteristic > 0.
a) Let αk : Hp

fppf (k, G) → Hq
fppf (k, T ) be a con-

necting map induced by an exact sequence involving
k-groups. Assume that G is connected, reductive and
T is a torus. Then the Corestriction Principle holds
for the image of αk with respect to Cores k′/k, T .
b) Let αk : Hp

fppf (k, T ) → Hq
fppf (k, G) be a con-

necting map induced by an exact sequence involving
k-groups. Assume that G is connected, reductive and
T is a torus. Then the Corestriction Principle holds
for the kernel of αk with respect to Cores k′/k, T .

In the case of characteristic 0, Theorem 3 was
known earlier (cf. [T2]). In next sections we indicate
the main ingredients and results used in the proofs
of our theorems.

3. z-extensions. As in the case of fields, for
a ring A as above, and an exact sequence 1 → Z →
H → G → 1 of reductive A-group schemes, with Z

an A-torus, we say that H is a z-extension of G if
Z is an induced A-torus and the derived subgroup
of H is simply connected (cf. [SGA 3], Exp. XXII,
Sec. 4.3.3, [Ha] for the corresponding notions). If
x ∈ H1

et(A
′, G), we say that a z-extension H → G

(over A) is x-lifting if x ∈ Im (H1
et(A′, HA′) →

H1
et(A

′, GA′)). We need the following assertion,

1) By convention, in the case of global function field k, we
call the ring of regular functions of a smooth projective curve
with function field k also the ring of integers of k.
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whose proof is similar to the case of fields.
Proposition 1. a) ([Ha], Lemma 1.4.1) With nota-
tion as above we have

H1
fppf (A, T ) = H1

fppf (A1,Gr
m).

b) With notations as above, for any given reductive
A-group scheme G, there exist z-extensions of G.
c) Given an exact sequence 1 → G0 → G1 → G2 →
1 of reductive A-group schemes, there exists a z-
extension of this sequence, i.e., an exact sequence
1 → H0 → H1 → H2 → 1 of reductive A-group
schemes and a commutative diagram

1 → H0 → H1 → H2 → 1

↓ ↓ ↓
1 → G0 → G1 → G2 → 1

of reductive A-group schemes such that each A-group
scheme Hi is a z-extension of Gi, i = 0, 1, 2.
d) Let A′ belong to CA, G a reductive A-group
scheme. Then for any element x ∈ H1

et(A
′, GA′)

there exists a x-lifting z-extension H of G.
e) Let A′ be as above and let π : G1 → G2 be a mor-
phism of reductive A-group schemes. Then for any
given x ∈ H1

et(A′, G1A′) there exists a z-extension
π′ : H1 → H2 of π : G1 → G2, such that H1 is
x-lifting z-extension of G1.

Notice that b) above is an extension of a “cross
diagram” lemma due to Ono [O] (cf. [Ha]), and
c), d), e) extend some results due to Borovoi and Kot-
twitz (cf. [Bo1, Bo2] and references there).

4. Deligne hypercohomology and abelia-
nized cohomology. In [De], Sec. 2.4, Deligne has
associated to each pair f : G1 → G2 of alge-
braic groups defined over a field k, where f is a
k-morphism, a category [G1 → G2] of G2-trivialized
G1-torsors, and certain hypercohomology sets, which
can be done for sheafs of groups over any topos
(loc.cit., p. 276). We denote them by Hi

r(G1 → G2)
for i = −1, 0, where r stands for étale or flat topol-
ogy, which agrees with the notations of [Bo3] and
[Br] (while in [De], the degree of the hypercohomol-
ogy sets corresponding to G1 → G2 is shifted). Then
Borovoi in [Bo3] and Breen in [Br] gave a detailed ex-
position and extension of such hypercohomology and
in [Bo3] (resp. [Br]), there was defined also the set
H1(G1 → G2) (resp. H1

r(G1 → G2)), where the set-
ting in [Br] works over any topos Tr. In the case
of a field of characteristic 0, the theory coincides

with the one given by Borovoi ([Bo3]). As in [Bo3],
by using [Br], we may also define the abelianization
map abG : Hi

r(A, G) → Hi(G̃ → G), for a reductive
A-group scheme, where G̃ is the simply connected
semisimple A-group scheme, which is the universal
covering of G′ = [G, G], the semisimple part of G,
and i = 0, 1. In fact, it has been proved that if Z̃

(resp. Z) is the center of G̃ (resp. of G), then there
are an equivalence of categories [Z̃ → Z] � [G̃ → G],
and quasi-isomorphisms of complexes

(Z̃ → Z) � (T̃ → T ) � (G̃ → G),

where T̃ (resp. T ) is a maximal A-torus of G̃ (resp.
G), with f−1(T ) = T̃ . One defines Hi

ab,r(A, G) :=
Hi

r(G̃ → G) and call it the abelianized cohomology
of degree i of G (in the corresponding topos; here r

stands for “ét” or “fppf” (if Z̃ is not smooth)).
5. Equivalent conditions for Corestric-

tion principle. Let G be a reductive A-group
scheme. Denote by G′ the derived subgroup scheme
of G, G̃ the simply connected covering of G′, and
Ad(G) the adjoint group scheme of G (see [SGA 3],
Exp. XXII, 4.3.3). Let F̃ := Ker (G̃ → Ad(G)),
F := Ker (G̃ → G′) and let Z̃, Z be as above.
Since Z̃ and Z are commutative, the resulting co-
homology sets Hi

r(Z̃ → Z) have natural structure
of abelian groups. In the case of fields, it is known
that there exists functorial corestriction homomor-
phisms for Hi

ab,r(A, G) (cf. [Pe, T2]). However, in
the general case, it is not clear whether such func-
torial homomorphisms always exist. Thus we make
the following assumption.
(HypA) For A′ ∈ CA, for any G as above, with
Z̃ smooth, there exist functorial corestriction ho-
momorphisms CoresA′/A,ab : Hi

ab,et(A
′, GA′) →

Hi
ab,et(A, G), i = 0, 1.

Let α : Hp
et(A, G) → Hq

et(A, T ) be a connecting
map of cohomologies and assume that an extension
A′/A, A′ ∈ CA, is fixed. Under the assumption of
(HypA), we consider the following statements.
a) The (Weak) Corestriction principle holds for the
image of any connecting map α : Hp

et(A, G) →
Hq

et(A, T ) for reductive A-group schemes G, T, with
T an A-torus, 0 ≤ p ≤ 1, p ≤ q ≤ 2, with respect to
CoresA′/A,T .
b) For any reductive A-group scheme, the (Weak)
Corestriction principle holds for the image of functo-
rial map abG : Hp

et(A, G) → Hp
ab,et(A, G), 0 ≤ p ≤ 1,

with respect to CoresA′/A,ab.
c) The (Weak) Corestriction principle holds for
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the image of any connecting (coboundary) map
Hp

et(A, G) → Hp+1
et (A, T ), 0 ≤ p ≤ 1, with respect to

CoresA′/A,T , where 1 → T → G1 → G → 1 is any
exact sequence of reductive A-group schemes, and T
is a central smooth A-subgroup scheme.
d) The same statement as in c), but G1, G are
semisimple.
e) The (Weak) Corestriction principle holds for
the image of any connecting (coboundary) map
Hp

et(A, Ad(G)) → Hp+1
et (A, F ) with respect to

CoresA′/A,F , where 1 → F → G → Ad(G) → 1
is any exact sequence of A-group schemes, with F a
central smooth A-subgroup of semisimple A-group G.
f) The (Weak) Corestriction principle holds for
the image of any connecting (coboundary) map
Hp

et(A, Ad(G)) → Hp+1
et (A, F ) with respect to

CoresA′/A,F , where 1 → F → G → Ad(G) → 1
is any exact sequence of A-group schemes, with F a
central smooth A-subgroup of semisimple simply con-
nected A-group G.
Notice that we always have obvious implications
c) ⇒ d) ⇒ e) ⇒ f). For the statements above, de-
note by x(p) (resp. x(p, q)) the corresponding state-
ment evaluated at p (resp. at p, q). For example
a(0, 1) means the statement a) with p = 0, q = 1.
We have the following theorem, the proof of which is
similar to that of Theorem 2.10 in [T3].

Theorem 4. a) Assuming (HypA), there are
the following equivalence relations

a) ⇔ b), c) ⇔ d), e) ⇔ f).

b) The following relations between above statements
for certain values of p,q hold. For low dimension we
have

a(0, 1) ⇐ a(0, 0) ⇔ b(0) ⇔ c(0) ⇔ d(0) ⇔ e(0) ⇔ f(0).

For higher dimension we have

a(1, 2) ⇐ a(1, 1) ⇔ b(1),

c(1) ⇔ d(1) ⇒ e(1) ⇔ f(1),

and if A is a ring such that H1
et(A′, TA′) = 0 for

any induced A′-torus T, A′ ∈ CA, then the following
implications

a(1, 2) ⇐ a(1, 1) ⇔ b(1) ⇒ c(1) ⇔ d(1) ⇒ e(1) ⇔ f(1)

hold true.
c) In general, without assuming (HypA), by ignoring
conditions b(i), all above implications hold true.

6. Analogs of results of Kneser. The
proof of Theorems 1, 2, and 3 makes use of results

of [T2, T3] and, among other things, the following
result, which is an analog of some results of Kneser
[Kn] in the p-adic and number fields case.

Proposition 2. a) Let G be a semisimple
group over a local or global function field k, π : G̃ →
G the universal covering of G, F = Ker (π). Then
the coboundary map ∆k : H1

fppf (k, G) → H2
fppf (k, F )

is bijective.
b) Let A be the ring of integers of a local non-
archimedean field k, G a semisimple A-group, G̃ the
simply connected A-group scheme which is covering
G, F the kernel of canonical morphism G̃ → G. Then
the coboundary map ∆ : H1

fppf (A, G) → H2
fppf (A, F )

is bijective.
c) ([Do]) Assume that A is a ring of integers of a
global field k, G a semisimple A-group scheme, G̃ the
simply connected A-group scheme which is covering
G, F the kernel of canonical morphism G̃ → G. Then
the coboundary map ∆ : H1

fppf (A, G) → H2
fppf (A, F )

is surjective.
d) With notation as in c), assume further that A is
the ring of integers of global function field k. Then
∆ is bijective.

In the case of any local (resp. global field), the
bijectivity (resp. surjectivity) of ∆k has been proved
in [Do], which makes use of theory of bands (gerbes).

7. Serre - Grothendieck conjecture. Be-
sides, we make also use of some results of Tits and
Nisnevich related with Grothendieck - Serre con-
jecture. Let S be an integral, regular, Noethe-
rian scheme with function field K, G a reductive
group scheme over S. The Serre - Grothendieck con-
jecture (according to a version presented in [Ni]),
stated that the sequence of (pointed) cohomology
sets 1 → H1

Zar(S, G) → H1
et(S, G) → H1(K, GK) is

exact. Equivalently, it says that
If S, G are as above, η is the generic point of S

and A = Ox is any local ring at x ∈ S \{η}, then the
natural map of cohomology H1

et(A, G) → H1(K, GK)
has trivial kernel.
The results we need are due to Tits (unpublished,
but see [Ni], Theorem 4.1) and to Nisnevich [Ni]
(Theorem 4.5), which confirm Serre - Grothendieck
conjecture for Dedekind and local henselian rings.

8. Applications. With k, A, G, T as in The-
orem 2, assume π : G → T is a morphism of A-
group schemes. Denote by G′ the derived subgroup
of G, k∞ =

∏
v∈∞ kv, A and A(∞) the adèle ring

of k and the subring of integral adèles of A, respec-
tively. Let ClA(G) = G(A(∞)) \ G(A)/G(k) be the
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set of double classes of the adèle group G(A), which
is an important arithmetic invariant of G (see, e.g.,
[De, Gi, Ha, KS, O]). As an application of above
results and, among other things, some results due to
Nisnevich, Kato and Saito [KS], we have

Theorem 5. The Corestriction principle
holds for the image of the induced map of class
sets πA : ClA(G) → ClA(T ) with respect to norm
N : ClA′(T ) → ClA(T ). If, moreover, G′(k∞)
is non-compact, then ClA(G) has a natural finite
abelian group structure and there is a norm homo-
morphism

NA′/A : ClA′(GA′) → ClA(G)

for any A′ ∈ CA, which is functorial in A′.
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