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Abstract:

We show that the notion of zeta functions over the field of one element Fy, as

given in special cases by Soulé, extends naturally to all F;-schemes as defined by the author in
an earlier paper. We further give two constructions of K-theory for affine schemes or Fy-rings, we
show that these coincide in the group case, but not in general.
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Introduction. Soulé [10], inspired by
Manin [7], gave a definition of zeta functions over
the field of one element F;. We describe this
definition as follows. Let X be a scheme of finite
type over Z. For a prime number p one sets after
Weil,

Zx(p,T) = exp (Z %#X(Fpn)> :

n=1

where Fp» denotes the field of p™ elements. This is
the local zeta function over p, and the global zeta
function of X is given as

Cx|z(s) ) H Zx(p,p—*)" L.

Soulé considered in [10] the following condition:
Suppose there exists a polynomial N (z) with integer
coefficients such that #X (Fyn) = N(p™) for every
prime p and every n € N. Then Zx(p,p %) !is a
rational function in p and p~®. The vanishing order
at p=11is N(1). One may thus define

Zx(p,p*)~*

CX‘F1 (S) = lim (p — 1)]\](1)

p—1
One computes that if N(z) = ag + a1z + - + apa”™,
then

Cxpp, () = (s — 1) - (s — n)*.

In the paper [1] there is given a definition of
a scheme over F; as well as an ascent functor - ® Z
from F';-schemes to Z-schemes. An affine Fi-scheme
is given by a commutative monoid and its lift to Z
is given by the corresponding monoidal ring. This
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procedure extends to general schemes as it respects
gluing. We say that a Z-scheme is defined over F1,
if it comes by ascent from a scheme over F;. The
natural question arising is whether schemes defined
over F satisfy Soulé’s condition.

Simple examples show that this is not the case.
However, schemes defined over F; satisfy a slightly
weaker condition which serves the purpose of defin-
ing Fi-zeta functions as well, and which we give in
the following theorem.

Theorem 1. Let X be a Z-scheme of finite type
defined over Fy. Then there exists a natural num-
ber e and a polynomial N(x) with integer coefficients
such that for every prime power q one has

(¢-Le=1 = #X(F,) = N(g).

This condition determines the polynomial N uniquely
(independent of the choice of e). We call it the zeta-
polynomial of X.

With this theorem, we can define the zeta func-
tion of an arbitrary Fi-scheme X as

Cxpey (s) = 8% (s = 1) -

if Nx(z) = ap+ai1x+-- - anx™ is its zeta-polynomial.
We also define its Fuler characteristic as

an

'(s—n) )

X(X) = Nx(1) = a1+ +an.

This definition is due to Soulé [10]. We repeat the
justification given in [6], which is based on the Weil
conjectures.

Suppose that X/F, = Xz xz F,, is a smooth
projective variety over the finite field F),. Then the
WEeil conjectures, as proven by Deligne, say that

m

i+

ZXz(va) = HB(T)( 2 )
=0
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with
b

R(r) = T[(~a1y),
j=1
satisfying |oy, ;| = p'/2, where b; is the I-th Betti-
number.
On the other hand, suppose that #X (Fpn) =
N(p™) holds for every n € N, where N(x) = ap +
a1x+---+aya™ is the zeta-polynomial, then one gets

n

Zx,(p,T) = [[(1—pT)~ .
k=0

Comparing these two expressions, one gets

b = {aU?
0

So Y i _gar = > jmy(—1)'b; is the Euler characteris-
tic.

[ even,

[ odd.

For explicit computations of zeta functions and
Euler numbers over F; as defined above, see [6],
where there are given examples of varieties satisfy-
ing Soulé’s condition. Not all of them, though, come
from F.

Next for K-theory. Based on the idea of Tits,
that GL,(F;) should be the permutation group
Per(n), Soulé also suggested that

Kl‘(Fl) = Wi(B(Pel"(OO))+),

which is known to coincide with the stable homotopy
group of the spheres, 75 = limg_ o0 74 £(S*). (The
+ refers to Quillen’s + construction.) More gener-
ally, for a monoid A, or an F-ring F 4, one has

GLy(A) = GL,(F4) = (AX)" x Per(n),

where A* is the group of units in A.
GL(A) = lim,,—, GL,,(4), one lets

Setting

K (4) = m(BGL(AY*).

On the other hand, one considers the category P of
all finitely generated projective modules over A and
defines
K2(A) = 741 (BQP),

where Q means Quillen’s @-construction. It turns
out that 71 (BQP) coincides with the Grothendieck
group Ko(P) of P. If A is a group, these two defini-
tions of K-theory agree, but not in general.

A calculation shows, that if A is an abelian
group, then
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ZxA i=0,
v 1> 0.

Ki(A) = {
3

So, for general A, since one has K+ (A4) = K+(A4%),

this identity completely computes K+. Further-

more, for every A one has a canonical homomor-

phism K;(A) — KZQ(A).

I thank Jeff Lagarias for his remarks on an ear-
lier version of this paper.

1. Fi-schemes.
we refer to [1].

In this paper, a ring will always be commutative
with unit and a monoid will always be commutative.
An ideal a of a monoid A is a subset with Aa C a. A
prime ideal is an ideal p such that S, = A > pis a
submonoid of A. For a prime ideal p let A, = S, 1A
be the localisation at p. The spectrum of a monoid A
is the set of all prime ideals with the obvious Zariski-
topology (see [1]). Similar to the theory of rings,
one defines a structure sheaf Ox on X = spec(A4),
and one defines a scheme over Fy to be a topolog-
ical space together with a sheaf of monoids, locally
isomorphic to spectra of monoids.

A Fi-scheme X is of finite type, if it has a finite
covering by affine schemes U; = spec(A;) such that
each A; is finitely generated.

For a monoid A we let A ® Z be the monoidal
ring Z[A]. This defines a functor from monoids to
rings which is left adjoint to the forgetful functor
that sends a ring R to the multiplicative monoid
(R, x). This construction is compatible with glu-
ing, so one gets a functor X — Xz from F;-schemes
to Z-schemes.

Lemma 2. X is of finite type if and only if Xz
is a Z-scheme of finite type.

Proof.  If X is of finite type, it is covered by
finitely many affines spec(A;), where A; is finitely
generated, hence Z[A;] is finitely generated as a Z-
algebra and so it follows that Xz is of finite type.

Now suppose that Xz is of finite type. Con-
sider a covering of X by open sets of the form
U; = spec(A;). then one gets an open covering of
Xz by sets of the form spec(Z[A;]), with the spec-
trum in the ring-sense. Since Xz is compact, we may
assume this covering finite. As Xz is of finite type,
each Z[A;] is a finitely generated Z-algebra. Let S
be a generating set of A;. Then it generates Z[A;],
and hence it contains a finite generating set T of
Z[A;]. Then T also generates A; as a monoid, so A;
is finitely generated. O

For basics on Fi-schemes
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2. Proof of Theorem 1.
iqueness first.

We will show un-

Lemma 3. For ecvery natural number e there
are infinitely many prime powers q with (¢—1,e) = 1.

Proof.  Write e = 2¥m where m is odd. Let
n € N. The number 2" is a unit modulo m and
hence there are infinitely many n such that 2™ = 1
modulo m. Replacing n by n + 1 we see that there
are infinitely many n such that 2" = 2 modulo m
and hence 2" — 1 = 1 modulo m. As 2™ — 1 is odd,

it follows (2" — 1,e) = 1 for every such n. O

Now for the uniqueness of N. Suppose that the
pairs (e, N) and (e’, N') both satisfy the theorem.
Then for every prime power ¢ one has

(g—1lee’) =1 = N(q) = #X(F;) = N'(q).

As there are infinitely many such prime powers ¢, it
follows that N(z) = N'(x), as claimed.

We start on the existence of N. For a finite
abelian group F define its exponent m = exp(FE) to
be the smallest number m such that 2™ = 1 for every
x € (. The exponent is the least common multiple
of the orders of elements of G. A finitely generated
abelian group G is of the form Z" x E for a finite
group E. Then r is called the rank of G and the
exponent of F is called the exponent of G.

For a finitely generated monoid A we denote by
Quot(A) its quotient group. This group comes about
by inverting every element in A. It has a natural
morphism A — Quot(A) and the universal property
that every morphism from A to a group factorizes
uniquely over A — Quot(A4). In the language of [1],
Quot(A) coincides with the stalk O, = A, at the
generic point 1 of spec(A).

We define the rank and exponent to be the rank
and exponent of Quot(A). Note that for a finitely
generated monoid A the spectrum spec(A4) is a finite
set. Hence the underlying space of a scheme X over
F; of finite type is a finite set. We then define the
exponent of X to be the least common multiple of the
numbers exp(Oy ), where p runs through the finite set
X.

Let X be a scheme over F; of finite type. We
may assume that X is connected. Let e be its ex-
ponent. Let ¢ be a prime power and let D, be the
monoid (Fg, x). Then #Xz(F,) = #X(D,), where
X(D) = Hom(D, X) as usual. For an integer k > 2
let Ciy—1 denote the cyclic group of k — 1 elements
and let Dy, be the monoid C_1U{0}, where -0 = 0.
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Note that if ¢ is a prime power, then D, = (F, x),
where F, is the field of ¢ elements.

Fix a covering of X by affines U; = specA;.
Since spec(Dy) consists of two points, the generic,
which always maps to the generic point and the
closed point, it follows that

X (spec(Dy)) = UUi(spec(Dk)),

and thus the cardinality of the right hand side may
be written as an alternating sum of terms of the form

#U;, N---NU;, (spec(Dy)).

Now U;, N--- N U, is itself a union of affines and
so this term again becomes an alternating sum of
similar terms. This process stops as X is a finite set.
Therefore, to prove the theorem, it suffices to assume
that X is affine.

So we assume that X = spec(A) for a finitely
generated monoid A. In this case X (spec(Dy)) =
Hom(A, Dy,). For a given monoid morphism ¢ : A —
Dy, we have that ¢=1({0}) is a prime ideal in A,
call it p. Then ¢ maps S, = A >~ p to the group
Ck—1. So Hom(A, Dy) may be identified with the dis-
joint union of the sets Hom(S,, Cx—1) where p ranges
over spec(A). Now Cj_1 is a group, so every homo-
morphism from S, to Cr_;1 factorises over the quo-
tient group Quot(Sy,) and one gets Hom(S,, Cr—1) =
Hom(Quot(Sy),Cr—1). Note that Quot(Sy) is the
group of units in the stalk Ox , of the structure
sheaf, therefore does not depend on the choice of
the affine neighbourhood. The group Quot(Sy) is a
finitely generated abelian group. Let r be its rank
and e its exponent. If e is coprime to & — 1, then
there is no non-trivial homomorphism from the tor-
sion part of Quot(Sy) to Cix—1 and so in that case
#Hom(S,, Cx—1) = (k —1)". This proves the exis-
tence of e and NV and finishes the proof of Theorem
1. O

Remark 1. We have indeed proved more than
Theorem 1. For an Fi-scheme X of finite type we
define X (F,;) = Hom(spec(Fy), X), where the Hom
takes place in the category of Fi-schemes, and F,
stands for the multiplicative monoid of the finite
field. It follows that

X(Fq) = XZ(Fq)-

Further, for k € N one sets F;, = Dy, then this nota-
tion is consistent and we have proved above,

(k—1,e) =1 = #X(Fix) = N(k),
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where e now is a well defined number, the exponent
of X. Further it follows from the proof, that the
degree of N is at most equal to the rank of X, which
is defined as the maximum of the ranks of the local
monoids O, for p € X.

Remark 2. As the proof of Theorem 1 shows,
the zeta-polynomial Nx of X, does actually not de-
pend on the structure sheaf Ox, but on the subsheaf
of units O%, where for every open set U in X the set
0% (U) is defined to be the set of sections s € Ox (U)
such that s(p) lies in O)X(’p for every p € U. We there-
fore call O% the zeta sheaf of X.

3. K-theory. In this section we give two
definitions of K-theory over F; and we show that
they do coincide for groups, but not in general. This
approach follows Quillen [9].

3.1. The +-construction. Let A be a
monoid. Recall from [1] that GL,(A) is the group of
all n» x n matrices with exactly one non-zero entry
in each row and each column, and this entry being
an element of the unit group A*. We also write A*
as the stalk A. at the closed point ¢ of spec(A). In
other words, we have

GL,(A) = A7 x Per(n),

where Per(n) is the permutation group in n letters,
acting on A by permuting the co-ordinates.

There is a natural embedding GL,(4) —
GL,+1(A) by setting the last co-ordinate equal to
1. We define the group

GL(A) & 1im GL,(A).

Similar to the K-theory of rings [9] for 7 > 0 we
define

K7 (4) = m(BAL(A)Y),

where BGL(A) is the classifying space of GL(A), the
+ means the +-construction, and ; is the j-th ho-
motopy group. For instance, K;“ (F1) is the j-th sta-
ble homotopy group of the spheres [8].

3.2. The Q-construction. A category is
called balanced, if every morphism which is epi and
mono, already has an inverse, i.e., is an isomorphism.

Let C be a category. An object I € C is called
injective if for every monomorphism M < N the
induced map Mor (N, I) — Mor(M,I) is surjective.
Conversely, an object P € C is called projective if
for every epimorphism M — N the induced map
Mor(P, M) — Mor(P, N) is surjective. We say that

[Vol. 82(A),

C has enough injectives if for every A € C there exists
a monomorphism A — I, where [ is an injective ob-
ject. Likewise, we say that C has enough projectives
if for every A € C there is an epimorphism P — A
with P projective.

A category C is pointed if it has an object 0
such that for every object X the sets Mor(X,0) and
Mor(0, X) have exactly one element each. The zero
object is uniquely determined up to unique isomor-
phy. In every set Mor(X,Y’) there exists a unique
morphism which factorises over the zero object, this
is called the zero morphism. In a pointed category it
makes sense to speak of kernels and cokernels. Ker-
nels are always mono and cokernels are always epi-
morphisms. A sequence

Ly L5z 0

0 X

is called strong exact, if i is the kernel of j and j is
the cokernel of i. We say that the sequence splits, if
it is isomorphic to the natural sequence

0 —- X - XoZ - Z — 0.

Assume that kernels and cokernels always ex-
ist. Then every kernel is the kernel of its coker-
nel and every cokernel is the cokernel of its kernel.
For a morphism f let im(f) = ker(coker(f)) and
coim(f) = coker(ker(f)). If C has enough projec-
tives, then the canonical map im(f) — coim(f) has
zero kernel and if C has enough injectives, then this
map has zero cokernel.

Let C be a pointed category and £ a class of
strong exact sequences. The class £ is called closed
under isomorphism, or simply closed if every se-
quence isomorphic to one in &, lies in £. Every
morphism occurring in a sequence in £ is called an
E-morphism.

A balanced pointed category C, together with a
closed class &€ of strong exact sequences is called a
quasi-ezxact category if

e for any two objects X,Y the natural sequence

0 X—-XapY—-Y —0

belongs to &,

e the class of E-kernels is closed under composi-
tion and base-change by &-cokernels, likewise,
the class of £-cokernels is closed under compo-
sition and base change by £-kernels.

Let (C,&) be a quasi-exact category. We define
the category QC to have the same objects as C, but
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a morphism from X to Y in QC is an isomorphism
class of diagrams of the form

S—— Y

|

X

)

where the horizontal map is a £-kernel in C and the
vertical map is a £-cokernel. The composition of two
Q-morphisms

S——Y T—— 7
X, Y,

is given by the base change S xy T as follows:

SXyT( T( A4
SC—— Y
X.

Every &-kernel i: X ———— YV gives rise to
a morphism 4 in @QC, and every &-cokernel
p: Z —» X givesrisetoamorphismp': X — Z
in @QC. By definition, every morphism in QC fac-
torises as 4,p' uniquely up to isomorphism.

Let (C, £) be a small quasi-exact category. Then
the classifying space BQC is defined. Note that for
every object X in QC there is a morphism from 0 to
X, so that BQC is path-connected. We consider the
fundamental group 71 (BQC) as based at a zero 0 of
C.

Theorem 4. The fundamental group m (BQC)
is canonically isomorphic to the Grothendieck group
Ky(C) = Ko(C,€).

Proof.  This proof is taken from [9], where it
is done for exact categories, we repeat it for the
convenience of the reader. The Grothendieck group
Ko (C, &) is the abelian group with one generator [X]
for each object X of C and a relation [X] = [Y][Z]
for every strong exact sequence
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0 Yy ¢ X

\\Z \0

in £ According to Proposition 1 of [9], it suf-
fices to show that for a morphism-inverting functor
F : QC — Sets the group Ky(C) acts naturally on
F(0) and that the resulting functor from the cate-
gory F of all such F to Ko(C)-sets is an equivalence
of categories.

For X € C let ix denote the zero kernel 0 — X,
and let jx be the zero cokernel X — 0. Let F’ be
the full subcategory of F consisting of all F' such that
F(X) = F(0) and F(ix1) = idp() for every X. Any
F € F is isomorphic to an object of F’, so it suffices
to show that F’ is equivalent to Ko(C)-sets. So let
F e F' forakernel i : X — Y we have iix =iy, so
that F(i)) = idp(g). Given a strong exact sequence

i J

0 X——Y A 0,

we have j'iz = dj, hence F(j') = F(ji) €

Aut(F(0)). Also,

F(jy) = F(i'iy) = F(x)F(iz).
So by the universal property of Ky(C), there is a
unique homomorphism from Ky(C) to Aut(F(0))
such that [X] — F(j%). So we have a natural ac-
tion of Ko(C) on F(0), hence a functor from F’ to
Ky (C)-sets given by F +— F(0).

The other way around let S be a Ky(C)-set,
and let Fg : QC — Sets be the functor defined by
Fs(X) = S, Fs(irj') = multiplication by [kerj] on
S. To see that this is indeed a functor, it suffices to
show that Fs(j'i)) = Fs(j'). It holds j', = iyj},
where 47 and j; are given by the cartesian diagram

]

7y

It follows Fs(j') = Fs(i1j}) = [kerj;]. Using the
cartesian diagram one sees that ker j; is isomorphic
to kerj. It is easy to verify that the two functors
given are inverse to each other up to isomorphism,
whence the theorem. g

This theorem motivates the following definition,

def
Ki(C,&) = mi1(BQC).
For a monoid A we let P be the category of finitely
generated pointed projective A-modules, or rather a
small category equivalent to it, and we set
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K2(A) ¥ K, (P,€),

3

where £ is the class of sequences in P which are
strong exact in the category of all modules. These
sequences all split, which establishes the axioms for
a quasi-exact category.

The two K-theories we have defined, do not co-
incide. For instance for the monoid of one generator
A ={1,a} with a® = a one has

Kf(A) =127, KZ(A) =17ZxZ.

The reason for this discrepancy is that K;"(A) only
depends on the group of units A%, but K?(A) is
sensible to the whole structure of A. So these two
K-theories are unlikely to coincide except when A is
a group, in which case they do, as the last theorem
of this paper shows,

Theorem 5. If A is an abelian group, then
K (A) = KiQ(A) for every i > 0.

K3

Proof.  For a group each projective module is
free, hence the proof of Grayson [3] of the corre-
sponding fact for rings goes through. O

So, if A is a group, this defines K;(A) unam-
biguously. In particular, computations of Priddy [8]
show that K;(F;) = 7' is the i-th stable homotopy
group of the spheres. If A is a group, then every
projective module is free. Based on this, one can use
the Q-construction to show that if A is an abelian

group, then
Zx A
s

This is proved as follows: As A is a group, a mod-
ule over A is projective iff it is free. Therefore the
category P is the product of the category Sety of
pointed sets and A (considered as a category with
one object). So BQP is the product of BQSety and
BQA = BA, the classifying space of the group A.
This implies the above result for K;(A).

For an arbitrary monoid A we conclude that
K (A) = K (A*) = K;(A*), which we now can
express in terms of the stable homotopy groups ;.

Further, for every A one has a canonical ho-
momorphism K (A) — K?(A) given by the map

i=0,

Ki(4) = i>0
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K®Q(A*) — K?(A). The latter comes about by the
fact that every projective A*-module is free. Note
that general functoriality under monoid homomor-
phism is granted for K+, but not for K<. This con-
trasts the situation of rings, and has its reason in the
fact that not every projective is a direct summand
of a free module.
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