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Abstract: In this paper, we give explicit formulae of certain higher annihilators of the ideal
class groups defined by V. Kolyvagin and K. Rubin, which come from Euler systems of Stickelberger
elements and cyclotomic units. Further, using these explicit formulae, we reformulate Kolyvagin-
Rubin’s structure theorem of the ideal class groups of abelian number fields.
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1. Introduction. Let K be an abelian num-
ber field, and for a fixed odd rational prime p, we
denote by AK the Sylow p-subgroup of the ideal
class group of K. In this paper, we will give ex-
plicit formulae of certain higher annihilators of AK
which were introduced by V. Kolyvagin and K. Ru-
bin. These higher annihilators are given by Euler
systems of cyclotomic units and Stickelberger el-
ements (or Gauss sums), and they annihilate the
ideal class groups except finitely many primes. By
using these explicit formulae, we will reformulate
Kolyvagin-Rubin’s structure theorem of AK in the
case p � [K : Q]. The contents of this paper are as fol-
lows. In Section 2, we recall the definition of higher
annihilators given by V. Kolyvagin and K. Rubin. In
Section 3, we give a Key proposition (Proposition 7)
and calculate higher annihilators (Theorem 9, 13).
In Section 4, we study the structure of AK in the
case p � [K : Q]. We reformulate Kolyvagin-Rubin’s
structure theorem of AK using the results of Sec-
tion 3 (Theorem 14, 15).

2. Higher annihilators. In this section, we
recall higher annihilators. For details, see [1, 3, 4].
Let K be an abelian number field and set G =
Gal(K/Q). We fix an odd rational prime p and
write G � ∆ × Gp with p � |∆| and p-group Gp.
For a character χ of ∆, we say an odd character
(resp. even character) if χ(−1) = −1 (resp. χ(−1) =
1). By embedding Q (the algebraic closure of Q)
to Qp, we think of χ as a Qp-valued character.
We define the idempotent eχ ∈ Zp[∆] by eχ =

2000 Mathematics Subject Classification. Primary 11R23;

Secondary 11R18, 11R29.

1
|∆|

∑
σ∈∆ Tr(χ−1(σ))σ, where Tr : Qp(χ(σ) | σ ∈

∆) → Qp is the trace map. Let Oχ denote the ex-
tension ring of Zp generated by the values of χ. For
any Zp[∆]-module Y , we define the χ-part Yχ of Y
by Yχ = eχY . If two characters χ1 and χ2 of ∆ sat-
isfy χ1 = χ2

σ for some σ ∈ Gal(Qp/Qp), we say χ1 is
conjugate to χ2 over Qp. The number of characters
that conjugate to χ is rankZp Oχ. The Zp[∆]-module
Y is decomposed as Y � ⊕

χ:rep. Yχ, where χ runs
over all representatives of Qp-conjugacy classes of
characters of ∆. Let AK be the Sylow p-subgroup
of the ideal class group of K, then AK is a Zp[∆]-
module and decomposed as AK � ⊕

χ:rep.AK,χ. We
define the higher annihilators of AK,χ for each char-
acter χ of ∆. The construction of these annihila-
tors are different according to odd characters or even
characters. For odd characters χ, we use the Euler
system of Stickeberger elements, and for even char-
acters χ, we use the Euler system of cyclotomic el-
ements. Let N be the conductor of K, then K is
a subfield of the cyclotomic field L = Q(µN). We
write N = ptN0 with t ≥ 0 and p � N0. Let M be a
power of p such that M > pt. For any integer i ≥ 0,
let Si = {n ∈ Z > 0 | squarefree, n = �1 · · · �i (prod-
uct of primes), �j ≡ 1 (mod MN0)}, and set S =⋃
i≥0 Si. For every integer n ∈ S and every prime

� ∈ S1, set GN = Gal(L/Q), G+
N = Gal(L+/Q),

G = Gal(K/Q), G+ = Gal(K+/Q), Gn =
Gal(L(µn)/L) � Gal(K(µn)/K) � Gal(Q(µn)/Q),
Nn =

∑
τ∈Gn

τ , D� =
∑�−2

i=0 iρ�
i, Dn =

∏
�|nD�,

where L+ (resp. K+) is the maximal real sub-
field of L (resp. K), and ρ� is a fixed generator
of G� (� (Z/�)×). Fix n ∈ S. By the canonical
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isomorphism Gal(L(µn)/Q) � (Z/nN)× we write
τa ∈ Gal(L(µn)/Q) corresponding to a ∈ (Z/nN)×

(ζτa = ζa for every ζ ∈ µnN). Further define σa ∈
GN and τn,a ∈ Gn by τa �→ (σa, τn,a) under the iso-
morphism Gal(L(µn)/Q) � GN ×Gn.

2.1. Higher annihilators of the minus
part. In this subsection, we define the higher anni-
hilator of AK,χ for an odd character χ. We assume
χ �= ω (Teichmüller character). We know Stickel-
berger element as a good annihilator of AK,χ. For
each n ∈ S, we choose an integer bn > 0 such that
(bn, nNp) = 1 and bn ≡ 1 (mod n).

Definition 1 (Stickelberger element). For any
n ∈ S, we define Stickelberger element θn ∈
Zp[Gal(L(µn)/Q)] by

θn = (σbn − bn)
nN∑
a=1

(a,nN)=1

a

nN
τa

−1.

Stickelberger’s theorem says that eχ ResL/K(θ1)
annihilates AK,χ, namely AK,χ

eχ ResL/K(θ1) = 0,
where ResL/K : Zp[GN ] → Zp[G] is the natural re-
striction ([6, Theorem 6.10]). We define an element
δ(n) ∈ (Z/M)[GN ] for each n ∈ S, which is the nat-
ural image of θ1 for n = 1.

Lemma 2 (4, Lemma 2.1). For any n ∈ S, we
have

Dnθn ∈ (Z/M)[Gal(L(µn)/Q)]Gn = Nn(Z/M)[GN ].

By this lemma, we define the higher annihila-
tor δ(n) ∈ (Z/M)[GN ] to be the element satisfy-
ing Dnθn = Nnδ(n). For any n ∈ S, let BK(n)
be the Zp[∆]-submodule of AK which is generated
by the classes of prime ideals of K dividing n. V.
Kolyvagin showed that eχ ResL/K δ(n) annihilates
AK,χ/BK(n)χ.

Proposition 3 (V. Kolyvagin [1, Theorem 5],
K. Rubin [4, Proposition 2.3]). Let n ∈ S. If M is
a power of p satisfying M ≥ |AK,χ|, then we have
(AK,χ/BK(n)χ)eχ ResL/K(δ(n)) = 0.

2.2. Higher annihilators of the plus part.
In this subsection, we define the higher annihilators
of AK,χ for an even character χ. In this case, we can
consider χ as a character of G+ = Gal(K+/Q), and
we have an isomorphism AK,χ � AK+,χ. Hence we
study AK+,χ instead of AK,χ. First, we define the
cyclotomic unit.

Definition 4 (cyclotomic unit). For any n ∈
S, we define the cyclotomic unit ξL+,n by

ξL+,n =
(
ζN

∏
�|n
ζ�−1

)(
ζN

−1
∏
�|n

ζ�−1
)
∈L+(µn)×.

Lemma 5 (3, Appendix, Lemma 2.2). For
any n ∈ S, there is a unique κL+,n ∈ L+×

/(L+×)M

such that κL+,n ≡ ξL+,n
Dn (mod (L+(µn)×)M ).

Next, we define certain map whose image is in
(Z/M)[G+

N ], and we construct higher annihilators by
the image of κL+,n. Let � ∈ S1 and fix a prime ideal
L of L+ above �, and denote the unique prime ideal
of L+(µ�) above L by L̃. We choose an element πL
of the ring of integers OL+(µ�) of L+(µ�) such that
the principal ideal generated by πL satisfies (πL) =
L̃a, where a is an ideal of L+(µ�) which is prime
to �. For a fixed generator ρ� of G�, we can see
that πLρ�−1 mod L̃ is a generator of (OL+(µ�)/L̃)× �
(Z/�)× and πLρ�−1 ≡ 1 (mod L̃τ) for every τ (�= 1) ∈
G+
N . Hence πLρ�−1 mod

∏
τ∈G+

N
L̃τ is a generator of

XL+,� = (OL+(µ�)/
∏
τ∈G+

N
L̃τ )× as a G+

N -module.
Further, we can easily show that the following map
is an isomorphism of (Z/M)[G+

N ]-modules.

ψπL : XL+,�/XL+,�
M � (Z/M)[G+

N ](
πLρ�−1 mod

∏
τ∈G+

N
L̃τ

)x
�→ x .

Remark. Let IL+ denote the ideal group of
L+. For x ∈ L+×, let [x] ∈ IL+/MIL+ be the
projection of the principal ideal (x) and [x]� ∈
IL+,�/MIL+,� be its �-part (product of prime ide-
als dividing �). The map ψπL satisfies the following
commutative diagram.

x �→ [NL+(µ�)/L+(x)]�

x L+(µ�)× → IL+,�/MIL+,� L
↓ ↓ ↓ ↓

xρ�−1 XL+,�/XL+,�
M →

ψπL
(Z/M)[G+

N ] 1

Proposition 6 (V. Kolyvagin [1, Theorem 5],
K. Rubin [3, Appendix, Lemma 2.2]). Let n ∈ S.
Assume that M is a power of p satisfying M ≥
|AK+,χ|. For each class c ∈ AK+,χ, we choose a
prime ideal λ as the representative of c which di-
vides a rational prime � ∈ S1 satisfying � ≡ 1
(mod MnN0) (We can choose such λ by the Cheb-
otarev density theorem). Then for any prime ideal L
of L+ above λ, we have ceχ ResL+/K+ ψπL (κL+,n) = 0
in AK+,χ/BK+(n)χ.

Remarks. (1) Note that the higher annihila-
tor ψπL (κL+,n) of the plus part are different for each
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class c ∈ AK+,χ. (2) For n = 1, this proposition is
essentially the result of F. Thaine [5].

3. Explicit formulae of higher annihila-
tors. In this section, we will give explicit formulae
of the higher annihilators δ(n) and ψπL (κL+,n) in
Section 2. First, we show the following Key proposi-
tion. For any prime � ∈ S1, let g� be the generator of
(Z/�)× corresponding to a fixed generator ρ� ∈ G�
by the canonical isomorphism G� � (Z/�)×.

Proposition 7. For any

Yn =
nN∑
a=1,

(a,nN)=1

yaτa
−1 ∈ (Z/M)[Gal(L(µn)/Q)],

ya ∈ Z/M satisfying

DnYn ∈ (Z/M)[Gal(L(µn)/Q)]Gn = Nn(Z/M)[GN ],

if we write DnYn = NnZn with Zn ∈ (Z/M)[GN ],
then we have

Zn =
nN∑
a=1

(a,nN)=1

ya

( ∏
�|n

prime

ν�(a)
)
σa

−1 ∈ (Z/M)[GN ],

where ν� : (Z/�)× → Z/(�− 1) denotes the logarithm
map given by g�ν�(a) ≡ a (mod �).

Proof. This proposition is a consequence of the
following lemma by putting n′ = n.

Lemma 8. For any divisor n′ of n,

DnYn ≡ Dn/n′Nn′

×
nN∑
a=1

(a,nN)=1

ya

( ∏
�|n′

prime

ν�(a)
)
σa

−1τn/n′,a
−1

(mod M).

Proof. We use the induction with respect to the
number of primes dividing n′. For n′ = 1, it is triv-
ial. Let q be a rational prime such that q � n′ and
q|n, then we have n′q|n. We will prove the assertion
for n′q. Let ρq be the fixed generator of Gq corre-
sponding to a generator gq of (Z/q)×, we have τq,a =
ρq
νq(a). From the decomposition Gn/n′ � Gn/(n′q) ×

Gq, we can write τn/n′,a
−1 = τn/(n′q),a

−1τq,a
−1 =

τn/(n′q),a
−1ρq

νq(a−1). Further we have

Dn/n′ = Dn/(n′q)Dq and Dq =
q−1∑
d=1

νq(d)ρqνq(d).

By the assumption of the induction, we obtain

DnYn

≡ Dn/n′Nn′

nN∑
a=1

(a,nN)=1

ya

( ∏
�|n′

prime

ν�(a)
)
σa

−1τn/n′,a
−1

≡ Dn/(n′q)Nn′

q−1∑
d=1

nN∑
a=1

(a,nN)=1

ya

( ∏
�|n′

prime

ν�(a)
)
σa

−1τn/(n′q),a
−1ρq

νq(da−1)νq(d)

(mod M).

By replacing d with ad, we can write

DnYn ≡
q−1∑
d=1

Kdρq
νq(d) (mod M),

where

Kd = Dn/(n′q)Nn′

×
∑
a

ya

( ∏
�|n′

prime

ν�(a)
)
σa

−1τn/(n′q),a
−1νq(ad)

∈ (Z/M)[Gal(L(µn/q)/Q)].

Since DnYn ∈ (Z/M)[Gal(L(µn)/Q)]Gq , we have
Kd = K1 for every d with 1 ≤ d ≤ q − 1. There-
fore, we get

DnYn ≡ K1Nq ≡ Dn/(n′q)Nn′q

nN∑
a=1

(a,nN)=1

ya

( ∏
�|n′q
prime

ν�(a)
)
σa

−1τn/(n′q),a
−1

(mod M).

Next, we calculate higher annihilators by us-
ing Proposition 7. First, we consider the annihila-
tor δ(n) of the minus part. For n ∈ S, let θn ∈
Zp[Gal(L(µn)/Q)] be the Stickelberger element de-
fined in Subsection 2.1. By Lemma 2, we apply
Proposition 7 to θn and get the explicit formula of
δ(n).

Theorem 9. For any n ∈ S, we have

δ(n) = (σbn − bn)
nN∑
a=1

(a,nN)=1

a

nN

( ∏
�|n

prime

ν�(a)
)
σa

−1

∈ (Z/M)[GN ].
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Proof. We apply Proposition 7 to

θn = (σbn − bn)
nN∑
a=1

(a,nN)=1

a

nN
τa

−1 =
nN∑
a=1

(a,nN)=1

yaτa
−1

with

ya =
{
bna

nN

}
− bn

{ a

nN

}
∈ Z,

where {x} denotes the fractional part of x for any
x ∈ Q. Then we have

δ(n) =
nN∑
a=1

(a,nN)=1

ya

( ∏
�|n

prime

ν�(a)
)
σa

−1

=
nN∑
a=1,

(a,nN)=1

{
bna

nN

}( ∏
�|n

prime

ν�(a)
)
σa

−1

− bn

nN∑
a=1

(a,nN)=1

a

nN

( ∏
�|n

prime

ν�(a)
)
σa

−1

=
nN∑
a=1,

(a,nN)=1

a

nN

( ∏
�|n

prime

ν�(abn−1)
)
σabn

−1
−1

− bn

nN∑
a=1,

(a,nN)=1

a

nN

( ∏
�|n

prime

ν�(a)
)
σa

−1

= (σbn − bn)
nN∑
a=1,

(a,nN)=1

a

nN

( ∏
�|n

prime

ν�(a)
)
σa

−1

because of abn−1 ≡ a (mod �) for any � with �|n by
the definition of bn (cf. Subsection 2.1).

Next, we consider the annihilator ψπL(κL+,n) of
the plus part. We begin with giving a new definition
of the map ψπL . Let F/Q be a finite Galois exten-
sion, and λ be a prime ideal of F which is completely
decomposed in F/Q. We denote the rational prime
below λ by � and denote the unique prime ideal of
F (µ�) above λ by λ̃. Define the logarithm map νλ :
{x ∈ F× | ordλ(x) = 0} → Z/(�− 1) by g�νλ(x) ≡ x

(mod λ), where g� ∈ (Z/�)× is a fixed generator. Let
OF denote the ring of integers of F . Set

XF,� =
(
OF

/ ∏
τ∈Gal(F/Q)

λτ
)×

(
� (OF (µ�)

/ ∏
τ∈Gal(F/Q)

λ̃τ
)×)

.

We define the Gal(F/Q)-isomorphism

ϕλ : XF,� � (Z/(�− 1))[Gal(F/Q)]

by ϕλ(x) =
∑

τ∈Gal(F/Q) νλτ (x̃)τ (mod (� − 1)),
where x̃ is a lifting of x ∈ XF,� to F×. If � ≡
1 (mod M), then we also denote the isomorphism
XF,�/XF,�

M � (Z/M)[Gal(F/Q)] by ϕλ. We can
show the following lemma by a direct calculation.

Lemma 10. Let F and λ be as before. For
any subfield F ′ of F , we have
(i) ResF/F ′(ϕλ(x)) = ϕNF/F ′(λ)(xNF/F ′ ) for any

x ∈ XF,�,
(ii) ϕλ(y) = NF/F ′ (ϕNF/F ′(λ)(y)) for any y ∈ XF ′,�,
where ResF/F ′ : (Z/(� − 1))[Gal(F/Q)] → (Z/(� −
1))[Gal(F ′/Q)] is the natural restriction map, and
NF/F ′ =

∑
τ∈Gal(F/F ′) τ .

Lemma 11. Let L be a prime ideal of L+ ly-
ing above a rational prime � ∈ S1. The map ϕL co-
incides with the map ψπL defined in Subsection 2.2 :
ϕL = ψπL . Especially, the map ψπL is independent
of the choice of an element πL ∈ OL+(µ�).

Proof. It is enough to show ϕL(πLρ�−1 mod∏
τ∈G+

N
L̃τ ) = 1. By the definition of πL (cf. Sub-

section 2.2), we can write πL = (1 − ζ�)y where
y ∈ L+(µ�) is prime to L̃. Since (1 − ζ�)ρ�−1 ≡ g�
(mod L̃) and yρ�−1 ≡ 1 (mod L̃), we get πLρ�−1 ≡
g� (mod L̃). The assertion follows this.

By the above lemma, we consider ϕL(κL+,n) in-
stead of ψπL(κL+,n). Let L be a prime ideal of L+

lying above a rational prime � ≡ 1 (mod MnN0).
Fix prime ideals L′ of L and L̂ of L(µn) lying
above L such that L̂ ⊃ L′. We apply Proposi-
tion 7 to ϕL̂(ξL+,n) ∈ (Z/M)[Gal(L(µn)/Q)], where
ξL+,n ∈ L+(µn)× is the cyclotomic unit defined
in Subsection 2.2. By the canonical isomorphism
Gal(L+(µn)/Q) � ((Z/N)×/{±1}) × (Z/n)× �
(Z/Nn)×/{〈−1, 1〉}, we write τa ∈ Gal(L+(µn)/Q)
corresponding to a ∈ (Z/Nn)×/{〈−1, 1〉}, and define
σa ∈ G+

N = Gal(L+/Q) by τa �→ (σa, τn,a) under the
isomorphsm Gal(L+(µn)/Q) � G+

N × Gn. Further,
we define βn ∈ (Z/Nn)× by βn �→ (−1, 1) under the
isomorphism (Z/Nn)× � (Z/N)× × (Z/n)×.

Definition 12. For any a ∈ (Z/Nn)×/
{〈−1, 1〉}, we define Tn,�,a ∈ (Z/�)× by

Tn,�,a =
(
g�

�−1
Nn a − 1

)(
g�

�−1
Nn βna − 1

)
,

where g� ∈ (Z/�)× is a fixed generator.
Theorem 13. For any n ∈ S and prime

ideal L of L+ lying above a rational prime � ≡ 1
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(mod MnN0), we have

ϕL(κL+,n)

=
∑

a∈(Z/Nn)×/{〈−1,1〉}
ν�(Tn,�,a)

( ∏
q|n

prime

νq(a)
)
σa

−1

∈ (Z/M)[G+
N ].

Proof. Since

ξL+,n
Dn ∈ [L+(µn)×/(L+(µn)×)M ]Gn

(cf. [3, Appendix, Lemma 2.1]) and ϕL̂ is a
Gal(L(µn)/Q)-homomorphism, we have

DnϕL̂(ξL+,n) = ϕL̂(ξL+,n
Dn)

∈ (Z/M)[Gal(L(µn)/Q)]Gn.

Hence we can apply Proposition 7 to ϕL̂(ξL+,n).
Then we have

ϕL̂(ξL+,n
Dn)

= Nn
∑

a∈(Z/Nn)×
νL̂τa

−1 (ξL+,n)
( ∏

q|n
prime

νq(a)
)
σa

−1.

By the injection µNn ↪→ (OL(µn)/Q̂)× (cf. [6,
Lemma 2.12]), we have the isomorphism of abelian
groups:

(OL(µn)/L̂)× � (Z/�)×
(
ζN

∏
q|n

ζq �→ g�
�−1
Nn

)
.

Using this isomorphism, for any a ∈ (Z/Nn)× we
get

ξL+,n
τa =

((
ζN

∏
q|n

ζq

)a
− 1

)((
ζN

−1
∏
q|n

ζq

)a
− 1

)

≡ Tn,�,a (mod L̂).

Hence we have

νL̂τa−1 (ξL+,n) = νL̂(ξL+,n
τa ) = ν�(Tn,�,a).

We conclude

ϕL̂(ξL+,n
Dn)

= Nn
∑

a∈(Z/Nn)×
ν�(Tn,�,a)

( ∏
q|n

prime

νq(a)
)
σa

−1.

We consider the following diagram which is commu-
tative by Lemma 10 (ii).

ϕL′ : XL,�/XL,�
M � (Z/M)[GN ]

↓ ↓ Nn

ϕL̂ : (XL(µn),�/XL(µn),�
M )Gn � (Z/M)[Gal(L(µn)/Q)]Gn

||
Nn(Z/M)[GN ]

From this diagram and κL+,n ≡ ξL+,n
Dn mod

(L+(µn)×)M (Lemma 5), we get

ϕL′ (κL+,n) =
∑

a∈(Z/Nn)×
ν�(Tn,�,a)

( ∏
q|n

prime

νq(a)
)
σa

−1.

By Lemma 10 (i), we have

ϕL(κL+,n
NL/L+ )

=
∑

a∈(Z/Nn)×
ν�(Tn,�,a))

( ∏
q|n

prime

νq(a)
)
σa

−1

= 2
∑

a∈(Z/Nn)×/{〈−1,1〉}
ν�(Tn,�,a))

( ∏
q|n

prime

νq(a)
)
σa

−1.

Since κL+,n
NL/L+ = κL+,n

2 and p �= 2, we have

ϕL(κL+,n)

=
∑

a∈(Z/Nn)×/{〈−1,1〉}
ν�(Tn,�,a)

( ∏
q|n

prime

νq(a)
)
σa

−1.

4. The ideal class groups of abelian num-
ber fields whose degrees are prime to p. In
this section, we reformulate the Kolyvagin-Rubin’s
structure theorem of AK in the case p � [K : Q], us-
ing the results of Section 3. Let χ : Gal(Q/Q) →
Qp

×
be a character of finite and prime-to-p order

with conductorN , andK be the abelian number field
corresponding to χ. If χ is the Teichmüller character
ω or the trivial character 1, then we have AK,χ = 0.
Hence we assume χ �= ω, 1. For an odd character χ,
we see that B1,χ−1 (the generalized Bernoulli num-
ber) annihilates AK,χ. On the other hand, for an
even character χ, F. Thaine [5] constructed annihi-
lators of AK,χ from cyclotomic units. Let E denote
the group of units in K, and set Eχ = (E ⊗Z Zp)χ.
By the Dirichlet unit theorem, we have Eχ � Oχ.
We define the χ-part Cχ of the group of cyclotomic
units to be the Oχ-module generated by ξK,1

eχ =
{(ζN − 1)(ζN−1 − 1)}NL+/Keχ ∈ Eχ, where NL+/K

is the norm map. Let η be the power of p such that
Eχ/Cχ � Oχ/ηOχ. We know from Thaine’s result



74 M. Aoki [Vol. 81(A),

that η annihilates AK,χ. V. Kolyvagin [1] extended
Thaine’s method and showed |Oχ/B1,χ−1Oχ| (resp.
|Eχ/Cχ|) = |AK,χ|) (they were also known as con-
sequences of the Iwasawa main conjecture [2]). Fur-
ther, Kolyvagin’s method determines the structure of
AK,χ by using higher annihilators of AK,χ/BK (n)χ
defined in Section 2.

4.1. The minus part of the ideal class
groups. For an odd character χ (�= ω), we use the
Euler system of Gauss sums to determine the struc-
ture of AK,χ. For each n ∈ S, choose the integer bn ∈
S in Subsection 2.1 so that χ(bn) − bn ∈ Oχ

×. For
any n ∈ S, we define δ(n) ∈ (Z/M)[GN ] as in Subsec-
tion 2.1, and let d(n) be the largest power of p which
divides eχ ResL/K(δ(n)) ∈ (Z/M)[G]eχ � Oχ/M ,
where ResL/K : (Z/M)[GN ] → (Z/M)[G] is the nat-
ural restriction. Note that d(1) is the largest power
of p which divides B1,χ−1 . V. Kolyvagin showed that
eχ ResL/K(δ(n)) annihilatesAK,χ/BK(n)χ (Proposi-
tion 3), and showed that the structure of AK,χ is de-
termined by d(n)’s (cf. V. Kolyvagin [1, Theorem 7]
K. Rubin [4, Theorem 4.4]). From this and Theo-
rem 9, we get the following theorem.

Theorem 14. Let χ (�= ω) be an odd charac-
ter whose order is finite and prime-to-p, K be the
abelian number field corresponding to χ, and M be a
power of p satisfying M ≥ |AK,χ|2. Write

AK,χ �
m⊕
i=1

Oχ/p
ei , e1 ≥ · · · ≥ em,

as Oχ-modules. Then we have

ei+1 + · · ·+ em

= min
{

ordp

( nN∑
a=1

(a,nN)=1

a

nN

( ∏
�|n

prime

ν�(a)
)
χ−1(a)

∈ Oχ/M

) ∣∣∣ n ∈ Si

}
,

for any i with 0 ≤ i ≤ m− 1.
4.2. The plus part of the ideal class

groups. For an even character χ (�= 1), we use the
Euler system of cyclotomic units to determine the
structure of AK,χ. In this case, we have K = K+.
We write N = ptN0 with t = 0 or 1 and p � N0.
Let n ∈ S and L be a prime ideal of L+ lying above
a rational prime � ≡ 1 (mod MnN0). V. Kolyvagin
[1, Theorem 5] showed that eχ ResL+/K(ψπL (κL+,n))

annihilates the class of NL+/K(L) in AK,χ/BK (n)χ
(Proposition 6) and that the structure of AK,χ
is determined by ordp(eχ ResL+/K(ψπL (κL+,n)))’s
(cf. V. Kolyvagin [1, Theorem 7]). From this and
Lemma 11, Theorem 13, we get the following theo-
rem.

Theorem 15. Let χ (�= 1) be an even charac-
ter whose order is finite and prime-to-p, K be the
abelian number field corresponding to χ, and M be a
power of p satisfying M ≥ |AK,χ|2. Write

AK,χ �
m⊕
i=1

Oχ/p
ei, e1 ≥ · · · ≥ em,

as Oχ-modules. Then we have

ei+1 + · · ·+ em

= min
{

ordp

( ∑
a∈(Z/Nn)×/{〈−1,1〉}

ν�(Tn,�,a)

×
( ∏

q|n
prime

νq(a)
)
χ−1(a) ∈ Oχ/M

) ∣∣∣ n ∈ Si,

rational primes � with � ≡ 1 (mod MnN0)
}
,

for any i with 0 ≤ i ≤ m− 1.
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