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On the solution of x2 − dy2 = ±m

By Julius M. Basilla∗) and Hideo Wada∗∗)

(Communicated by Shigefumi Mori, m. j. a., Oct. 12, 2005)

Abstract: An improvement of the Gauss’ algorithm for solving the diophantine equation
x2 − dy2 = ±m is presented. As an application, multiple continued fraction method is proposed.
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decomposition.

1. Introduction. For solving a given quad-
ratic diophantine equation

AX2 + BXY + CY 2 + DX + EY + F = 0,

all we have to do is to solve one of the diophantine
equations

x2 + dy2 = m,(1)

x2 − dy2 = ±m(2)

where d and m are suitable positive integers and√
d /∈ Q because the degenerate cases

√
d ∈ Q and

m = 0 are easy (cf. [7, § 34, § 53]). There is a very ef-
ficient algorithm for solving (1) even if m is very large
(cf. [1]). So in this paper, we shall treat the equa-
tion (2). Gauss gave an efficient algorithm (cf. [3,
7, § 35]). Our algorithm is essentially the same as
Gauss’ one, but a little more efficient and simpler.

Let x and y be a primitive solution of (2),
namely a solution such that gcd(x, y) = 1. Then
gcd(y, m) = 1. So there exists an integer t such that

(3) x ≡ −ty (mod m).

From (2) and (3) we have ±m ≡ t2y2−dy2 (mod m).
From gcd(y, m) = 1, we have

(4) t2 ≡ d (mod m).

Let α be x +
√

dy and ~α be (α, α′) = (x +
√

dy, x−√
dy). Then αα′ = x2 − dy2 = ±m. From (3) there

exists an integer z such that x = mz − ty. So

α = (mz − ty) +
√

dy = mz + (−t +
√

d)y.

Let α−1 be −t+
√

d and α0 be m. Then α = yα−1 +
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Fig. 1. m <
√

d.

zα0 and ~α = y~α−1 + z~α0. Let Lt be

Lt = 〈(m,m), (−t +
√

d,−t−
√

d)〉Z
= {y~α−1 + z ~α0 | y, z ∈ Z}.

Then ~α is an element of Lt and for all ~β ∈ Lt, there
exist y, z such that ~β = y ~α−1 + z ~α0 and from (4)

ββ′ = (mz − ty)2 − dy2

≡ (t2 − d)y2 (mod m),

ββ′ ≡ 0 (mod m).(5)

Therefore for solving the equation (2), we first cal-
culate all t which satisfy (4). If we have a prime de-
composition of m, we can calculate t very efficiently
(cf. [2]). Secondly we search ~α 6= ~0 = (0, 0) in Lt

such that |αα′| is the smallest. From (5), αα′ is a
multiple of m. If αα′ = ±m, then we get a solution.
If |αα′| ≥ 2m, then there is no solution in Lt.

2. Algorithm. Let t be a solution of (4). If
t′ ≡ t (mod m) then t′ also satisfies (4). So we can
choose the smallest t such that

α−1 = −t +
√

d < α0 = m,
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α′−1 = −t−
√

d < −α′0 = −m.

Moreover if m <
√

d, then we have 0 < α−1 (cf.
Fig. 1). For example, when m = 1, then α−1 =
−[
√

d] +
√

d. We define

αi+1 = αi−1 +
[
−

α′i−1

α′i

]
αi (i ≥ 0),(6)

βi = −
α′i−1

α′i
, ki = [βi].(7)

Let Fi be the Fibonacci sequence, namely F1 = F2 =
1, Fi+1 = Fi + Fi−1. Then we have next theorem.

Theorem.

β0 =

√
d + t

m
, βi+1 =

1
βi − ki

.

The continued fraction expansion of β0 is

β0 = [k0, k1, k2, . . . ]

and there exist integers ai, bi, such that

βi =

√
d + bi

ai
, αiα

′
i = (−1)iaim.

Even if α−1 < 0, if F2k ≥
√

m, then we have

0 < α2k−1 < α2k < α2k+1 < · · · .

Moreover there exists positive integer ` (< 2d) such
that β2k = β2k+`. So ai are periodic. If ai = 1 for
some i (2k ≤ i < 2k + `), then we have a solution αi

in Lt and all solution in Lt are

±αi+n` = ±(α2k+`/α2k)nαi, n ∈ Z.

If ai > 1 for all i (2k ≤ i < 2k + `), then there is no
solution in Lt.

Example.

x2 − 295y2 = ±5,

t ≡ 0 (mod 5),

0 < α−1 =
√

295− 15 = 2.17 · · · < 5 = α0,

α′−1 = −
√

295− 15 < −5 = −α′0,

β0 =
√

295 + 15
5

= [6, 2, 3, 2, 1, 5, . . . ],

β6 =
√

295 + 17
1

,

α6 = 2250 + 131
√

295,

22502 − 295× 1312 = 5.
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Fig. 2. Next minimal element.

3. Proof of the theorem. We call ~α ∈ Lt

is minimal if there exists no ~β 6= ~0 in Lt such thet
|β| < |α|, |β′| < |α′|. If |αα′| is the smallest, then
of course ~α is minimal. Therefore we shall search all
minimal elements ~α in Lt which are positive (namely
α > 0).

Let ~α and ~β be generators of Lt such that

0 < α < β, α′β′ < 0, |α′| > |β′|

(cf. Fig. 2). Then ~α, ~β are minimal and the next
minimal element ~γ such that β < γ is

γ = α +
[
−α′

β′

]
β

(cf. [8]). The vectors ~β and ~γ are also generators of
Lt and we have

0 < β < γ, β′γ′ < 0, |β′| > |γ′|.

Therefore ~β and ~γ satisty the same conditions as ~α

and ~β. From (6), we have

Lt = 〈~α−1, ~α0〉 = 〈 ~α0, ~α1〉 = 〈 ~α1, ~α2〉 = · · · .

If we put ri = (−1)iα′i, then

r−1 = t +
√

d > m = r0 > 0.

From (6), we have

ri+1 = ri−1 −
[
ri−1

ri

]
ri.

This is just the Euclidian Algorithm. So we have

r−1 > r0 > r1 > r2 > · · · > 0,

βi =
ri−1

ri
> 1, ki =

[
ri−1

ri

]
≥ 1,(8)

αi+1 = αi−1 + kiαi.(9)
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Fig. 3. α−1 < 0, α1 < 0.

If m >
√

d, then there is a possibility that α−1

< 0. We shall examine this case strictly. As k0 ≥ 1,
we have

α1 = α−1 + k0α0 ≥ α−1 + α0.

If α1 < 0, then α−1 < −α0 < 0. From 0 < α′0/α0 <

α′−1/α−1, we have 0 < α′−1/α−1 < α′1/α1 (cf. Fig. 3).
From 0 < α′0/α0 < α′1/α1 and −α′0 < α′1 < 0 we
have −α0 < α1. From α′0/α0 < α′1/α1 and 0 < α′2
we have 0 < α2 < α0, α′0/α0 > α′2/α2. Therefore if
α1 < 0 then we have

α−1 < −α0 < α1 < 0 < α2,
α′1
α1

>
α′2
α2

.

Similarly if α2k−1 < 0 then we have

α−1 < −α0 < α1 < · · · < α2k−1 < 0 < α2k.

Let si be (−1)iαi. Then,

s−1 > s0 > s1 > s2 > · · · > s2k−1 > 0.

Recalling (9), we see

si+1 = si−1 − kisi < si.

This is again the Euclidean Algorithm and

s2k−3 = k2k−2s2k−2 + s2k−1 > 2s2k−1 = F3 · s2k−1.

Using induction we have

m = s0 > F2k · s2k−1.

Similarly we have

m = r0 > F2k · r2k−1.

As r2k−1s2k−1 = α2k−1α
′
2k−1 ≡ 0 (mod m), we have

mF 2
2k < m2. Therefore if F2k ≥

√
m, we have

(10) 0 < α2k−1 < α2k < α2k+1 < · · · .

When α−1 > 0, we define k = 0. Then (10) is always
valid. From (5) we have integers ai such that

(11) αiα
′
i = (−1)iaim.

We shall prove next Lemma.

Lemma. There are integers bi such that

(12) α′i−1αi = (−1)i−1(
√

d + bi)m.

Proof. When i = 0,

α′i−1αi = α′−1α0 = (−1)−1(
√

d + t)m.

So b0 = t. If (12) is valid, then from (9)

α′iαi+1 = α′i(αi−1 + kiαi)

= (α′i−1αi)′ + kiαiα
′
i

= (−1)i−1(−
√

d + bi)m + (−1)ikiaim

= (−1)i(
√

d− bi + kiai)m.

So bi+1 = kiai − bi.
From (7), (11), (12) we have

βi = −
α′i−1αi

α′iαi
=

√
d + bi

ai
.

From (9) we have

−
α′i+1

α′i
= −

α′i−1

α′i
− ki,

1
βi+1

= βi − [βi],

β0 = −
α′−1

α′0
=

√
d + t

m
.

If i ≥ 2k, then αi > 0. So ai > 0 follows from (11),

1 < βi, −1 < β′i = −αi−1

αi
< 0

follow from (8) and (10). Therefore we have

0 <

√
d− bi

ai
< 1 <

√
d + bi

ai
, (i ≥ 2k).

From ai > 0, we have

0 < bi <
√

d, 0 < ai <
√

d + bi < 2
√

d.

Using pegion-hole principle, we can find i, j (2k ≤
i < j < 2k + 2d) such that βi = βj . From (9), we
have

αi+1

αi
=

αi−1

αi
+ ki.
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If 2k ≤ i, then 0 < αi−1 < αi < αi+1. So we have

ki =
[
αi+1

αi

]
,

αi−1 = αi+1 −
[
αi+1

αi

]
αi (i ≥ 2k),(13)

β′i = −αi−1

αi
= −αi+1

αi
+
[
αi+1

αi

]
,

β′i =
1

β′i+1

+
[
− 1

β′i+1

]
, (i ≥ 2k).(14)

If 2k < i, then from (14) we have βi−1 = βj−1. So
for some ` (1 ≤ ` < 2d) we have β2k = β2k+`. So
ai+` = ai(2k ≤ i), namely ai are periodic.

Redefine αi−1 for i < 2k by (13). Then all pos-
itive minimal elements in Lt are ~αi, i ∈ Z. Similarly
we can prove for all i ∈ Z

βi = −
α′i−1

α′i
=

√
d + bi

ai
= βi+`, αiα

′
i = (−1)iaim.

Therefore if ai = 1 for some i (2k ≤ i < 2k + `),
we have a solution αi, and all solutions in Lt are
±αi+n`, n ∈ Z. From βi = βi+`, we have

αi+n` =
−1

β′i+n`

· · · −1
β′i+1

αi

=
(

α2k+`

α2k

)n

αi, n ∈ Z.

If ai > 1 for all i such that 2k ≤ i < 2k + `, then
there is no solution in Lt. Therefore the theorem is
completely proved.

4. The case m <
√

d. If m is less than
√

d,
then we have 0 < α−1. Therefore we can take k = 0.
If m = 1, then a` = a0 = 1, namely we have always
solutions. If m > 1 and (2) has a solution, then
there exists i (0 < i < `) such that ai = 1. Then
we have βi = (

√
d + bi)/1, −1 < β′i < 0. Therefore

bi = [
√

d] and β` = β0 = (
√

d + t)/m. This means
that if we start from β0 =

√
d + [

√
d], then for some

i, ai becomes m (Lagrange, cf. [4, 6, § 27]). If there
does not exist such i, then (2) has no solution. We
need not calculate t. For example

x2 − 295y2 = ±3

has no solution, because β0 =
√

295 + 17 and ai are
1, 6, 21, 11, 9, 14, 5, 14, 9, 11, 21, 6, 1, . . . .

5. Multiple continued fraction method.
We shall propose an improvement of continued frac-
tion metod (cf. [5]). When we want to decompose a
large number d into prime factors, we expand

√
d into

continued fraction. Namely from β0 =
√

d + [
√

d],
we calculate βi. We want to get many ai which are
products of small primes. When some ai is (

∏
pi)m,

where pi are small primes but m is a product of large
primes, then we start from β̃0 = (

√
d + t)/m in par-

allel with βi. There are many such m. From (11),
(12), we have ai−1ai = d − b2

i . So we can use bi

as t. From the continued fraction expansion of β̃0,
we get β̃j =

(√
d + b̃j

)
/ãj . We get many ãj which

are products of small primes. So some product of
ai, ãjm becomes a square number and we can get a
decomposition of d.
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