On the solution of $x^{2}-d y^{2}= \pm m$

By Julius M. Basilla*) and Hideo Wada**)
(Communicated by Shigefumi Mori, M. J. A., Oct. 12, 2005)

Abstract

An improvement of the Gauss' algorithm for solving the diophantine equation $x^{2}-d y^{2}= \pm m$ is presented. As an application, multiple continued fraction method is proposed.

Key words: Quadratic form; diophantine equation; continued fraction method; prime decomposition.

1. Introduction. For solving a given quadratic diophantine equation

$$
A X^{2}+B X Y+C Y^{2}+D X+E Y+F=0
$$

all we have to do is to solve one of the diophantine equations

$$
\begin{array}{r}
x^{2}+d y^{2}=m \\
x^{2}-d y^{2}= \pm m \tag{2}
\end{array}
$$

where d and m are suitable positive integers and $\sqrt{d} \notin \mathbf{Q}$ because the degenerate cases $\sqrt{d} \in \mathbf{Q}$ and $m=0$ are easy (cf. [7, §34, §53]). There is a very efficient algorithm for solving (1) even if m is very large (cf. [1]). So in this paper, we shall treat the equation (2). Gauss gave an efficient algorithm (cf. [3, $7, \S 35]$). Our algorithm is essentially the same as Gauss' one, but a little more efficient and simpler.

Let x and y be a primitive solution of (2), namely a solution such that $\operatorname{gcd}(x, y)=1$. Then $\operatorname{gcd}(y, m)=1$. So there exists an integer t such that

$$
\begin{equation*}
x \equiv-t y \quad(\bmod m) \tag{3}
\end{equation*}
$$

From (2) and (3) we have $\pm m \equiv t^{2} y^{2}-d y^{2}(\bmod m)$. From $\operatorname{gcd}(y, m)=1$, we have

$$
\begin{equation*}
t^{2} \equiv d \quad(\bmod m) \tag{4}
\end{equation*}
$$

Let α be $x+\sqrt{d} y$ and $\vec{\alpha}$ be $\left(\alpha, \alpha^{\prime}\right)=(x+\sqrt{d} y, x-$ $\sqrt{d} y)$. Then $\alpha \alpha^{\prime}=x^{2}-d y^{2}= \pm m$. From (3) there exists an integer z such that $x=m z-t y$. So

$$
\alpha=(m z-t y)+\sqrt{d} y=m z+(-t+\sqrt{d}) y
$$

Let α_{-1} be $-t+\sqrt{d}$ and α_{0} be m. Then $\alpha=y \alpha_{-1}+$

[^0]

Fig. 1. $m<\sqrt{d}$.
$z \alpha_{0}$ and $\vec{\alpha}=y \vec{\alpha}_{-1}+z \vec{\alpha}_{0}$. Let L_{t} be

$$
\begin{aligned}
L_{t} & =\langle(m, m),(-t+\sqrt{d},-t-\sqrt{d})\rangle_{\mathbf{Z}} \\
& =\left\{y \vec{\alpha}_{-1}+z \overrightarrow{\alpha_{0}} \mid y, z \in \mathbf{Z}\right\}
\end{aligned}
$$

Then $\vec{\alpha}$ is an element of L_{t} and for all $\vec{\beta} \in L_{t}$, there exist y, z such that $\vec{\beta}=y{\overrightarrow{\alpha_{-1}}}^{\prime}+z \overrightarrow{\alpha_{0}}$ and from (4)

$$
\begin{align*}
\beta \beta^{\prime} & =(m z-t y)^{2}-d y^{2} \\
& \equiv\left(t^{2}-d\right) y^{2} \quad(\bmod m), \\
\beta \beta^{\prime} & \equiv 0 \quad(\bmod m) . \tag{5}
\end{align*}
$$

Therefore for solving the equation (2), we first calculate all t which satisfy (4). If we have a prime decomposition of m, we can calculate t very efficiently (cf. [2]). Secondly we search $\vec{\alpha} \neq \overrightarrow{0}=(0,0)$ in L_{t} such that $\left|\alpha \alpha^{\prime}\right|$ is the smallest. From (5), $\alpha \alpha^{\prime}$ is a multiple of m. If $\alpha \alpha^{\prime}= \pm m$, then we get a solution. If $\left|\alpha \alpha^{\prime}\right| \geq 2 m$, then there is no solution in L_{t}.
2. Algorithm. Let t be a solution of (4). If $t^{\prime} \equiv t(\bmod m)$ then t^{\prime} also satisfies (4). So we can choose the smallest t such that

$$
\alpha_{-1}=-t+\sqrt{d}<\alpha_{0}=m
$$

$$
\alpha_{-1}^{\prime}=-t-\sqrt{d}<-\alpha_{0}^{\prime}=-m .
$$

Moreover if $m<\sqrt{d}$, then we have $0<\alpha_{-1}$ (cf. Fig. 1). For example, when $m=1$, then $\alpha_{-1}=$ $-[\sqrt{d}]+\sqrt{d}$. We define
(6) $\quad \alpha_{i+1}=\alpha_{i-1}+\left[-\frac{\alpha_{i-1}^{\prime}}{\alpha_{i}^{\prime}}\right] \alpha_{i} \quad(i \geq 0)$,

$$
\begin{equation*}
\beta_{i}=-\frac{\alpha_{i-1}^{\prime}}{\alpha_{i}^{\prime}}, k_{i}=\left[\beta_{i}\right] . \tag{7}
\end{equation*}
$$

Let F_{i} be the Fibonacci sequence, namely $F_{1}=F_{2}=$ $1, F_{i+1}=F_{i}+F_{i-1}$. Then we have next theorem.

Theorem.

$$
\beta_{0}=\frac{\sqrt{d}+t}{m}, \quad \beta_{i+1}=\frac{1}{\beta_{i}-k_{i}}
$$

The continued fraction expansion of β_{0} is

$$
\beta_{0}=\left[k_{0}, k_{1}, k_{2}, \ldots\right]
$$

and there exist integers a_{i}, b_{i}, such that

$$
\beta_{i}=\frac{\sqrt{d}+b_{i}}{a_{i}}, \quad \alpha_{i} \alpha_{i}^{\prime}=(-1)^{i} a_{i} m
$$

Even if $\alpha_{-1}<0$, if $F_{2 k} \geq \sqrt{m}$, then we have

$$
0<\alpha_{2 k-1}<\alpha_{2 k}<\alpha_{2 k+1}<\cdots
$$

Moreover there exists positive integer $\ell(<2 d)$ such that $\beta_{2 k}=\beta_{2 k+\ell}$. So a_{i} are periodic. If $a_{i}=1$ for some $i(2 k \leq i<2 k+\ell)$, then we have a solution α_{i} in L_{t} and all solution in L_{t} are

$$
\pm \alpha_{i+n \ell}= \pm\left(\alpha_{2 k+\ell} / \alpha_{2 k}\right)^{n} \alpha_{i}, \quad n \in \mathbf{Z}
$$

If $a_{i}>1$ for all $i(2 k \leq i<2 k+\ell)$, then there is no solution in L_{t}.

Example.

$$
\begin{aligned}
x^{2}-295 y^{2} & = \pm 5 \\
t & \equiv 0 \quad(\bmod 5) \\
0<\alpha_{-1}=\sqrt{295}-15 & =2.17 \cdots<5=\alpha_{0} \\
\alpha_{-1}^{\prime}=-\sqrt{295}-15 & <-5=-\alpha_{0}^{\prime} \\
\beta_{0} & =\frac{\sqrt{295}+15}{5} \\
& =[6,2,3,2,1,5, \ldots] \\
\beta_{6} & =\frac{\sqrt{295}+17}{1} \\
\alpha_{6} & =2250+131 \sqrt{295} \\
2250^{2}-295 \times 131^{2} & =5
\end{aligned}
$$

Fig. 2. Next minimal element.
3. Proof of the theorem. We call $\vec{\alpha} \in L_{t}$ is minimal if there exists no $\vec{\beta} \neq \overrightarrow{0}$ in L_{t} such thet $|\beta|<|\alpha|,\left|\beta^{\prime}\right|<\left|\alpha^{\prime}\right|$. If $\left|\alpha \alpha^{\prime}\right|$ is the smallest, then of course $\vec{\alpha}$ is minimal. Therefore we shall search all minimal elements $\vec{\alpha}$ in L_{t} which are positive (namely $\alpha>0)$.

Let $\vec{\alpha}$ and $\vec{\beta}$ be generators of L_{t} such that

$$
0<\alpha<\beta, \quad \alpha^{\prime} \beta^{\prime}<0, \quad\left|\alpha^{\prime}\right|>\left|\beta^{\prime}\right|
$$

(cf. Fig. 2). Then $\vec{\alpha}, \vec{\beta}$ are minimal and the next minimal element $\vec{\gamma}$ such that $\beta<\gamma$ is

$$
\gamma=\alpha+\left[-\frac{\alpha^{\prime}}{\beta^{\prime}}\right] \beta
$$

(cf. [8]). The vectors $\vec{\beta}$ and $\vec{\gamma}$ are also generators of L_{t} and we have

$$
0<\beta<\gamma, \quad \beta^{\prime} \gamma^{\prime}<0, \quad\left|\beta^{\prime}\right|>\left|\gamma^{\prime}\right| .
$$

Therefore $\vec{\beta}$ and $\vec{\gamma}$ satisty the same conditions as $\vec{\alpha}$ and $\vec{\beta}$. From (6), we have

$$
L_{t}=\left\langle\overrightarrow{\alpha_{-1}}, \overrightarrow{\alpha_{0}}\right\rangle=\left\langle\overrightarrow{\alpha_{0}}, \overrightarrow{\alpha_{1}}\right\rangle=\left\langle\overrightarrow{\alpha_{1}}, \overrightarrow{\alpha_{2}}\right\rangle=\cdots
$$

If we put $r_{i}=(-1)^{i} \alpha_{i}^{\prime}$, then

$$
r_{-1}=t+\sqrt{d}>m=r_{0}>0 .
$$

From (6), we have

$$
r_{i+1}=r_{i-1}-\left[\frac{r_{i-1}}{r_{i}}\right] r_{i}
$$

This is just the Euclidian Algorithm. So we have

$$
\begin{gather*}
r_{-1}>r_{0}>r_{1}>r_{2}>\cdots>0, \\
\beta_{i}=\frac{r_{i-1}}{r_{i}}>1, \quad k_{i}=\left[\frac{r_{i-1}}{r_{i}}\right] \geq 1, \tag{8}\\
\alpha_{i+1}=\alpha_{i-1}+k_{i} \alpha_{i} . \tag{9}
\end{gather*}
$$

Fig. 3. $\alpha_{-1}<0, \alpha_{1}<0$.

If $m>\sqrt{d}$, then there is a possibility that α_{-1} <0. We shall examine this case strictly. As $k_{0} \geq 1$, we have

$$
\alpha_{1}=\alpha_{-1}+k_{0} \alpha_{0} \geq \alpha_{-1}+\alpha_{0} .
$$

If $\alpha_{1}<0$, then $\alpha_{-1}<-\alpha_{0}<0$. From $0<\alpha_{0}^{\prime} / \alpha_{0}<$ $\alpha_{-1}^{\prime} / \alpha_{-1}$, we have $0<\alpha_{-1}^{\prime} / \alpha_{-1}<\alpha_{1}^{\prime} / \alpha_{1}$ (cf. Fig. 3). From $0<\alpha_{0}^{\prime} / \alpha_{0}<\alpha_{1}^{\prime} / \alpha_{1}$ and $-\alpha_{0}^{\prime}<\alpha_{1}^{\prime}<0$ we have $-\alpha_{0}<\alpha_{1}$. From $\alpha_{0}^{\prime} / \alpha_{0}<\alpha_{1}^{\prime} / \alpha_{1}$ and $0<\alpha_{2}^{\prime}$ we have $0<\alpha_{2}<\alpha_{0}, \alpha_{0}^{\prime} / \alpha_{0}>\alpha_{2}^{\prime} / \alpha_{2}$. Therefore if $\alpha_{1}<0$ then we have

$$
\alpha_{-1}<-\alpha_{0}<\alpha_{1}<0<\alpha_{2}, \quad \frac{\alpha_{1}^{\prime}}{\alpha_{1}}>\frac{\alpha_{2}^{\prime}}{\alpha_{2}} .
$$

Similarly if $\alpha_{2 k-1}<0$ then we have

$$
\alpha_{-1}<-\alpha_{0}<\alpha_{1}<\cdots<\alpha_{2 k-1}<0<\alpha_{2 k}
$$

Let s_{i} be $(-1)^{i} \alpha_{i}$. Then,

$$
s_{-1}>s_{0}>s_{1}>s_{2}>\cdots>s_{2 k-1}>0
$$

Recalling (9), we see

$$
s_{i+1}=s_{i-1}-k_{i} s_{i}<s_{i}
$$

This is again the Euclidean Algorithm and

$$
s_{2 k-3}=k_{2 k-2} s_{2 k-2}+s_{2 k-1}>2 s_{2 k-1}=F_{3} \cdot s_{2 k-1}
$$

Using induction we have

$$
m=s_{0}>F_{2 k} \cdot s_{2 k-1} .
$$

Similarly we have

$$
m=r_{0}>F_{2 k} \cdot r_{2 k-1}
$$

As $r_{2 k-1} s_{2 k-1}=\alpha_{2 k-1} \alpha_{2 k-1}^{\prime} \equiv 0(\bmod m)$, we have $m F_{2 k}^{2}<m^{2}$. Therefore if $F_{2 k} \geq \sqrt{m}$, we have

$$
\begin{equation*}
0<\alpha_{2 k-1}<\alpha_{2 k}<\alpha_{2 k+1}<\cdots \tag{10}
\end{equation*}
$$

When $\alpha_{-1}>0$, we define $k=0$. Then (10) is always valid. From (5) we have integers a_{i} such that

$$
\begin{equation*}
\alpha_{i} \alpha_{i}^{\prime}=(-1)^{i} a_{i} m \tag{11}
\end{equation*}
$$

We shall prove next Lemma.
Lemma. There are integers b_{i} such that

$$
\begin{equation*}
\alpha_{i-1}^{\prime} \alpha_{i}=(-1)^{i-1}\left(\sqrt{d}+b_{i}\right) m \tag{12}
\end{equation*}
$$

Proof. When $i=0$,

$$
\alpha_{i-1}^{\prime} \alpha_{i}=\alpha_{-1}^{\prime} \alpha_{0}=(-1)^{-1}(\sqrt{d}+t) m
$$

So $b_{0}=t$. If (12) is valid, then from (9)

$$
\begin{aligned}
\alpha_{i}^{\prime} \alpha_{i+1} & =\alpha_{i}^{\prime}\left(\alpha_{i-1}+k_{i} \alpha_{i}\right) \\
& =\left(\alpha_{i-1}^{\prime} \alpha_{i}\right)^{\prime}+k_{i} \alpha_{i} \alpha_{i}^{\prime} \\
& =(-1)^{i-1}\left(-\sqrt{d}+b_{i}\right) m+(-1)^{i} k_{i} a_{i} m \\
& =(-1)^{i}\left(\sqrt{d}-b_{i}+k_{i} a_{i}\right) m
\end{aligned}
$$

So $b_{i+1}=k_{i} a_{i}-b_{i}$.
From (7), (11), (12) we have

$$
\beta_{i}=-\frac{\alpha_{i-1}^{\prime} \alpha_{i}}{\alpha_{i}^{\prime} \alpha_{i}}=\frac{\sqrt{d}+b_{i}}{a_{i}}
$$

From (9) we have

$$
\begin{aligned}
-\frac{\alpha_{i+1}^{\prime}}{\alpha_{i}^{\prime}} & =-\frac{\alpha_{i-1}^{\prime}}{\alpha_{i}^{\prime}}-k_{i} \\
\frac{1}{\beta_{i+1}} & =\beta_{i}-\left[\beta_{i}\right] \\
\beta_{0} & =-\frac{\alpha_{-1}^{\prime}}{\alpha_{0}^{\prime}}=\frac{\sqrt{d}+t}{m}
\end{aligned}
$$

If $i \geq 2 k$, then $\alpha_{i}>0$. So $a_{i}>0$ follows from (11),

$$
1<\beta_{i}, \quad-1<\beta_{i}^{\prime}=-\frac{\alpha_{i-1}}{\alpha_{i}}<0
$$

follow from (8) and (10). Therefore we have

$$
0<\frac{\sqrt{d}-b_{i}}{a_{i}}<1<\frac{\sqrt{d}+b_{i}}{a_{i}}, \quad(i \geq 2 k)
$$

From $a_{i}>0$, we have

$$
0<b_{i}<\sqrt{d}, \quad 0<a_{i}<\sqrt{d}+b_{i}<2 \sqrt{d}
$$

Using pegion-hole principle, we can find $i, j(2 k \leq$ $i<j<2 k+2 d)$ such that $\beta_{i}=\beta_{j}$. From (9), we have

$$
\frac{\alpha_{i+1}}{\alpha_{i}}=\frac{\alpha_{i-1}}{\alpha_{i}}+k_{i} .
$$

If $2 k \leq i$, then $0<\alpha_{i-1}<\alpha_{i}<\alpha_{i+1}$. So we have

$$
\begin{aligned}
k_{i} & =\left[\frac{\alpha_{i+1}}{\alpha_{i}}\right] \\
\alpha_{i-1} & =\alpha_{i+1}-\left[\frac{\alpha_{i+1}}{\alpha_{i}}\right] \alpha_{i} \quad(i \geq 2 k) \\
\beta_{i}^{\prime} & =-\frac{\alpha_{i-1}}{\alpha_{i}}=-\frac{\alpha_{i+1}}{\alpha_{i}}+\left[\frac{\alpha_{i+1}}{\alpha_{i}}\right] \\
\beta_{i}^{\prime} & =\frac{1}{\beta_{i+1}^{\prime}}+\left[-\frac{1}{\beta_{i+1}^{\prime}}\right], \quad(i \geq 2 k) .
\end{aligned}
$$

If $2 k<i$, then from (14) we have $\beta_{i-1}=\beta_{j-1}$. So for some $\ell(1 \leq \ell<2 d)$ we have $\beta_{2 k}=\beta_{2 k+\ell}$. So $a_{i+\ell}=a_{i}(2 k \leq i)$, namely a_{i} are periodic.

Redefine α_{i-1} for $i<2 k$ by (13). Then all positive minimal elements in L_{t} are $\overrightarrow{\alpha_{i}}, i \in \mathbf{Z}$. Similarly we can prove for all $i \in \mathbf{Z}$
$\beta_{i}=-\frac{\alpha_{i-1}^{\prime}}{\alpha_{i}^{\prime}}=\frac{\sqrt{d}+b_{i}}{a_{i}}=\beta_{i+\ell}, \quad \alpha_{i} \alpha_{i}^{\prime}=(-1)^{i} a_{i} m$.
Therefore if $a_{i}=1$ for some $i(2 k \leq i<2 k+\ell)$, we have a solution α_{i}, and all solutions in L_{t} are $\pm \alpha_{i+n \ell}, n \in \mathbf{Z}$. From $\beta_{i}=\beta_{i+\ell}$, we have

$$
\begin{aligned}
\alpha_{i+n \ell} & =\frac{-1}{\beta_{i+n \ell}^{\prime}} \cdots \frac{-1}{\beta_{i+1}^{\prime}} \alpha_{i} \\
& =\left(\frac{\alpha_{2 k+\ell}}{\alpha_{2 k}}\right)^{n} \alpha_{i}, \quad n \in \mathbf{Z}
\end{aligned}
$$

If $a_{i}>1$ for all i such that $2 k \leq i<2 k+\ell$, then there is no solution in L_{t}. Therefore the theorem is completely proved.
4. The case $\boldsymbol{m}<\sqrt{\boldsymbol{d}}$. If m is less than \sqrt{d}, then we have $0<\alpha_{-1}$. Therefore we can take $k=0$. If $m=1$, then $a_{\ell}=a_{0}=1$, namely we have always solutions. If $m>1$ and (2) has a solution, then there exists $i(0<i<\ell)$ such that $a_{i}=1$. Then we have $\beta_{i}=\left(\sqrt{d}+b_{i}\right) / 1,-1<\beta_{i}^{\prime}<0$. Therefore $b_{i}=[\sqrt{d}]$ and $\beta_{\ell}=\beta_{0}=(\sqrt{d}+t) / m$. This means that if we start from $\beta_{0}=\sqrt{d}+[\sqrt{d}]$, then for some i, a_{i} becomes m (Lagrange, cf. [4, 6, § 27]). If there does not exist such i, then (2) has no solution. We need not calculate t. For example

$$
x^{2}-295 y^{2}= \pm 3
$$

has no solution, because $\beta_{0}=\sqrt{295}+17$ and a_{i} are $1,6,21,11,9,14,5,14,9,11,21,6,1, \ldots$.
5. Multiple continued fraction method.

We shall propose an improvement of continued fraction metod (cf. [5]). When we want to decompose a large number d into prime factors, we expand \sqrt{d} into continued fraction. Namely from $\beta_{0}=\sqrt{d}+[\sqrt{d}]$, we calculate β_{i}. We want to get many a_{i} which are products of small primes. When some a_{i} is $\left(\prod p_{i}\right) m$, where p_{i} are small primes but m is a product of large primes, then we start from $\tilde{\beta}_{0}=(\sqrt{d}+t) / m$ in parallel with β_{i}. There are many such m. From (11), (12), we have $a_{i-1} a_{i}=d-b_{i}^{2}$. So we can use b_{i} as t. From the continued fraction expansion of $\tilde{\beta}_{0}$, we get $\tilde{\beta}_{j}=\left(\sqrt{d}+\tilde{b}_{j}\right) / \tilde{a}_{j}$. We get many \tilde{a}_{j} which are products of small primes. So some product of $a_{i}, \tilde{a}_{j} m$ becomes a square number and we can get a decomposition of d.

Acknowledgement. The authors thank the referee who suggested the use of the Fibonacci sequence for estimating k such that $0<\alpha_{2 k-1}$.

References

[1] J.M. Basilla, On the solution of $x^{2}+d y^{2}=m$, Proc. Japan Acad., 80A (2004), no. 5, 40-41.
[2] H. Cohen, A course in computational algebraic number theory, Springer, Berlin, 1993.
[3] C.F. Gauss, Disquisiones Arithmeticae, Fleischer, Leipzig, 1801.
[4] L.K. Hua, Introduction to number theory, Translated from the Chinese by Peter Shiu, Springer, Berlin, 1982.
[5] M.A. Morrison and J. Brillhart, A method of factoring and the factorization of F_{7}, Math. Comp. 29 (1975), 183-205.
[6] O. Perron, Die Lehre von dem Kettenbrüchen I, Teubner, Stuttgart, 1954.
[7] T. Takagi, Lectures on the elementary theory of numbers, 2nd ed., Kyoritsu-publication, Tokyo, 1971. (In Japanese).
[8] H. Wada, A note on the Pell equation, Tokyo J. Math. 2 (1979), no. 1, 133-136.

[^0]: 2000 Mathematics Subject Classification. 11D09, 11Y05, 11Y16.
 *) Department of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines.
 **) Department of Mathematics, Sophia University, 7-1 Kioicho, Chiyoda-Ku, Tokyo 102-8554.

