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Abstract: We give a characterization of the first standard imbedding of the Cayley pro-
jective plane into a real space form in terms of a particular class of Frenet curves of order 2.
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1. Introduction. Let f : M → M̃ be an iso-
metric immersion of a Riemannian manifold M into
an ambient Riemannian manifold M̃ . By observing
the extrinsic shape of curves of a submanifold M , we
can study the properties of the immersion f : M →
M̃ in some cases.

In their paper [5], Nomizu and Yano proved a
well-known theorem which states that a submani-
fold M is an extrinsic sphere of M̃ , namely M is a
totally umbilic submanifold with parallel mean cur-
vature vector in M̃ , if and only if all circles of some
constant positive curvature k in M are circles in the
ambient space M̃ . In [3], Kôzaki and Maeda im-
proved this theorem, that is, they showed that M is
an extrinsic sphere of M̃ if and only if all circles of
some constant positive curvature k in M are Frenet
curves of proper order 2 in M̃ .

Then, if an isometric immersion f : M → M̃

maps some Frenet curves of proper order 2 on M to
Frenet curves of proper order 2 in the ambient space
M̃ , what can we say about the immersion f ? In the
preceding paper [9], the author showed that M is a
totally geodesic submanifold of M̃ if and only if all
Frenet curves of proper order 2 of some nonconstant
positive curvature function κ in M are mapped to
Frenet curves of proper order 2 in the ambient space
M̃ . In [4] and [10], S. Maeda and the author char-
acterized parallel isometric immersions of complex
projective spaces and quaternionic projective spaces
into a real space form by using particular classes of
Frenet curves of order 2 which are closely related to
the complex structure and the quaternionic Kähler
structure of M .
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The purpose of this note is to give a character-
ization of the first standard imbedding of the Cay-
ley projective plane CayP 2(c) into a real space form
along this context, which is an improvement of a re-
sult of T. Adachi, S. Maeda and K. Ogiue [1].

The author wishes to express his appreciation to
Professor S. Maeda for his constant encouragement
and help in developing this paper. He also greatly
appreciates the referee’s valuable suggestions.

2. Cayley circles in the Cayley projec-
tive plane. We first review the definition of Frenet
curves. A smooth curve γ = γ(s) in a Riemannian
manifold M parametrized by its arclength s is called
a Frenet curve of proper order d if there exist a field
of orthonormal frames {V1 = γ̇, V2, . . . , Vd} along γ

and positive smooth functions κ1(s), . . . , κd−1(s) sat-
isfying the following system of ordinary differential
equations

∇γ̇Vj(s) = −κj−1(s)Vj−1(s) + κj(s)Vj+1(s),

j = 1, . . . , d,

where V0 ≡ Vd+1 ≡ 0 and ∇γ̇ denotes the co-
variant differentiation along γ with respect to the
Riemannian connection ∇ of M . The functions
κj(s) (j = 1, . . . , d − 1) and a field of orthonor-
mal frames {V1, . . . , Vd} are called the curvatures
and the Frenet frame of γ, respectively. We note
that for a given orthonormal frame {v1, . . . , vd} at
any point x of M and positive smooth functions
κ1(s), . . . , κd−1(s) there exists a unique Frenet curve
γ = γ(s) defined for some open interval (−ε, ε) such
that γ(0) = x, its curvatures are κ1(s), . . . , κd−1(s)
and its Frenet frame is coincident with {v1, . . . , vd}
at x. A Frenet curve is called a Frenet curve of order
d if it is a Frenet curve of proper order r (≤ d). We
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call a curve a helix when all its curvatures are con-
stant. A helix of order 1 is nothing but a geodesic.
A helix of order 2, that is a curve which satisfies
∇γ̇ γ̇ = kV2(s), ∇γ̇V2(s) = −kγ̇, is called a circle of
curvature k.

A curve γ = γ(s) on a Riemannian manifold M

is called a plane curve if the curve γ is locally con-
tained in some 2-dimensional totally geodesic sub-
manifold of M . As a matter of course, every plane
curve with positive curvature function is a Frenet
curve of proper order 2. But in general, the converse
does not hold. In the case that the space M is a real
space form M̃n(c̃) of constant curvature c̃ (that is,
M̃n(c̃) is locally congruent to a Euclidean space Rn,
a standard sphere Sn(c̃), or a real hyperbolic space
Hn(c̃) according as the curvature c̃ is zero, positive,
or negative), it is easy to see that a curve γ is a Frenet
curve of proper order 2 if and only if the curve γ is
a plane curve with positive curvature function.

In the following, we consider a Frenet curve γ =
γ(s) of proper order 2 in the Cayley projective plane
CayP 2(c) of maximal sectional curvature c which
satisfies

(2.1) ∇γ̇ γ̇ = κ(s)V and ∇γ̇V = −κ(s)γ̇

with a unit vector field V = V (s) along γ and a
function κ = κ(s) (> 0). We can see from (2.1) that
the sectional curvature K(γ̇ , V ) given by the oscu-
lating plane spanned by γ̇ and V is constant along
γ. Indeed, since ∇R ≡ 0 we have

∇γ̇〈R(γ̇, V )V, γ̇〉
= 〈R(∇γ̇ γ̇, V )V + R(γ̇,∇γ̇V )V + R(γ̇, V )∇γ̇V, γ̇〉

+ 〈R(γ̇, V )V,∇γ̇ γ̇〉
= κ〈R(V, V )V, γ̇〉 − κ〈R(γ̇, γ̇)V, γ̇〉

− κ〈R(γ̇, V )γ̇, γ̇〉 + κ〈R(γ̇, V )V, V 〉
= 0.

We here consider the case that the curvature κ of
a Frenet curve γ of proper order 2 is constant,
namely we study a circle. The circle γ which satisfies
K(γ̇, V ) = c is called a Cayley circle. Suppose that
an open subset M of CayP 2(c) is isometrically im-
mersed into a real space form M̃16+p(c̃). It is need-
less to say that the image of a circle on M is not
always a circle in the ambient space M̃16+p(c̃). How-
ever, if the isometric immersion is given by a compo-
sition of the first standard minimal imbedding and
a totally umbilic imbedding, the image of a Cayley

circle on M is a circle in M̃16+p(c̃) ([1]).
Finally we summarize a few fundamental no-

tions in submanifold theory. Let M and M̃ be Rie-
mannian manifolds and f : M → M̃ an isometric
immersion. The Riemannian metrics on M , M̃ are
denoted by the same notation 〈 , 〉. We denote by
∇ and ∇̃ the covariant differentiations of M and M̃ ,
respectively. Then the formulas of Gauss and Wein-
garten are

∇̃XY = ∇XY + σ(X, Y ), ∇̃Xξ = −AξX + DXξ,

where σ, Aξ and D denote the second fundamental
form of f , the shape operator in the direction of ξ and
the covariant differentiation in the normal bundle, re-
spectively. We define the covariant differentiation ∇̄
of the second fundamental form σ with respect to the
connection in (tangent bundle) ⊕ (normal bundle) as
follows:

(∇̄Xσ)(Y, Z) = DX(σ(Y, Z))

− σ(∇XY, Z) − σ(Y,∇XZ).

If ∇̄σ = 0, an isometric immersion f is called parallel.
An isometric immersion f is said to be isotropic

at x ∈ M if ‖σ(v, v)‖/‖v‖2 does not depend on the
choice of v (�= 0) ∈ TxM . In this case we put the
number as λ(x). If the immersion is isotropic at ev-
ery point, then the immersion is said to be isotropic.
When the function λ = λ(x) is constant on M , we
call M a λ-isotropic submanifold. Note that a totally
umbilic immersion is isotropic, but not vice versa
([6]).

3. Main result. We shall prove the follow-
ing theorem.

Theorem. Let M be an open subset of the
Cayley projective plane CayP 2(c) and f an isomet-
ric immersion of M into a real space form M̃16+p(c̃).
Suppose that every Frenet curve γ = γ(s) of proper
order 2 on M with some curvature function κ =
κ(s) > 0 which satisfies K(γ̇, V ) = c is mapped to
a plane curve in M̃16+p(c̃). Then the curve γ is a
Cayley circle and the immersion f is locally congru-
ent to a parallel immersion defined by
(3.1)

f2 ◦ f1 : CayP 2(c) f1−→ S25

(
3c

4

)
f2−→ M̃16+p(c̃),

where f1 is the first standard minimal immersion, f2

is a totally umbilic immersion and 3c/4 ≥ c̃.
The basic idea of proof is similar to that of The-

orem 2 in [4]. But for readers we explain it in detail.



14 H. Tanabe [Vol. 81(A),

Proof. Let x be an arbitrary point of M and
v ∈ TxM an arbitrary unit vector. Let γ = γ(s) be
a Frenet curve of proper order 2 on M satisfying the
equations (2.1) and the initial condition γ(0) = x,
γ̇(0) = v and K(v, V (0)) = c. Since the curve f ◦ γ

is a plane curve in M̃16+p(c̃) by assumption, there
exist a (nonnegative) function κ̃ = κ̃(s) and a field
of unit vectors Ṽ = Ṽ (s) along f ◦ γ in M̃16+p(c̃)
which satisfy that

(3.2) ∇̃γ̇ γ̇ = κ̃Ṽ , ∇̃γ̇Ṽ = −κ̃γ̇.

Then using the formula of Gauss, we have

(3.3) κ̃Ṽ = κV + σ(γ̇, γ̇),

hence

(3.4) κ̃2 = κ2 + ‖σ(γ̇, γ̇)‖2.

The function κ̃ is positive because κ > 0.
For the left-hand side of (3.3), by using (3.2)

and (3.3) again, we get

κ̃∇̃γ̇(κ̃Ṽ ) = κ̃{ ˙̃κṼ + κ̃∇̃γ̇Ṽ } = κ̃ ˙̃κṼ − κ̃3γ̇(3.5)

= ˙̃κ{κV + σ(γ̇, γ̇)} − κ̃3γ̇.

And for the right-hand side of (3.3), by the formulas
of Gauss and Weingarten we have

(3.6) κ̃∇̃γ̇{κV + σ(γ̇, γ̇)}
= κ̃

{
κ̇V + κ∇̃γ̇V − Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇ , γ̇))

}
= κ̃

{
κ̇V + κ (∇γ̇V + σ(γ̇ , V )) − Aσ(γ̇,γ̇)γ̇

+ (∇̄γ̇σ)(γ̇ , γ̇) + 2σ(∇γ̇ γ̇, γ̇)
}

= κ̃
{
κ̇V − κ2γ̇ + 3κσ(γ̇, V )

− Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇)
}
.

By comparing the tangential components and the
normal components for the submanifold M in (3.5)
and (3.6), we obtain the following equations:

˙̃κκV − κ̃3γ̇ = κ̃
{
κ̇V − κ2γ̇ − Aσ(γ̇,γ̇)γ̇

}
,(3.7)

˙̃κσ(γ̇, γ̇) = κ̃
{
3κσ(γ̇, V ) + (∇̄γ̇σ)(γ̇, γ̇)

}
.(3.8)

From (3.4) we have

κ̃ ˙̃κ =
1
2

d

ds
κ̃2(3.9)

= κκ̇ +
1
2

d

ds
〈σ(γ̇, γ̇), σ(γ̇, γ̇)〉

= κκ̇ + 〈Dγ̇(σ(γ̇, γ̇)), σ(γ̇, γ̇)〉
= κκ̇ + 〈(∇̄γ̇σ)(γ̇ , γ̇), σ(γ̇, γ̇)〉

+ 2κ〈σ(V, γ̇), σ(γ̇, γ̇)〉.

On the other hand, the equation (3.8) yields

(3.10) κ̃ ˙̃κσ(γ̇, γ̇) = κ̃2
{
3κσ(γ̇, V ) + (∇̄γ̇σ)(γ̇, γ̇)

}
.

Substitute (3.4) and (3.9) into (3.10) and set s = 0.
Then we have{

κ(0)κ̇(0) + 〈(∇̄vσ)(v, v), σ(v, v)〉(3.11)

+ 2κ(0)〈σ(v, v), σ(v, V (0))〉}σ(v, v)

=
{
κ(0)2 + ‖σ(v, v)‖2

}×{
3κ(0)σ(v, V (0)) + (∇̄vσ)(v, v)

}
.

Now we note that there exists another Frenet
curve γ1 = γ1(s) of proper order 2 with the same cur-
vature κ on M satisfying ∇γ̇1 γ̇1 = κV1 and ∇γ̇1V1 =
−κγ̇1 with the initial condition γ1(0) = x, γ̇1(0) = v

and V1(0) = −V (0). Then the equality (3.11) for γ1

turns to {
κ(0)κ̇(0) + 〈(∇̄vσ)(v, v), σ(v, v)〉(3.11′)

− 2κ(0)〈σ(v, v), σ(v, V (0))〉}σ(v, v)

=
{
κ(0)2 + ‖σ(v, v)‖2

}×{−3κ(0)σ(v, V (0)) + (∇̄vσ)(v, v)
}
.

Therefore, from (3.11) and (3.11′) we obtain

2κ(0)〈σ(v, v), σ(v, V (0))〉σ(v, v)

= 3κ(0)
{
κ(0)2 + ‖σ(v, v)‖2

}
σ(v, V (0)),

so that

2〈σ(v, v), σ(v, V (0))〉σ(v, v)(3.12)

= 3
{
κ(0)2 + ‖σ(v, v)‖2

}
σ(v, V (0)).

Taking the inner product of both sides of (3.12) with
σ(v, v), we get

2〈σ(v, v), σ(v, V (0))〉‖σ(v, v)‖2

= 3
{
κ(0)2 + ‖σ(v, v)‖2

}〈σ(v, v), σ(v, V (0))〉
and hence{

3κ(0)2 + ‖σ(v, v)‖2
}〈σ(v, v), σ(v, V (0))〉 = 0.

Since 3κ(0)2 + ‖σ(v, v)‖2 > 0, we have
〈σ(v, v), σ(v, V (0))〉 = 0. Thus, again from (3.12),
we see that σ(v, V (0)) = 0 holds for any v ∈ TxM

and any V (0) ∈ TxM satisfying K(v, V (0)) = c at
an arbitrary point x ∈ M . It follows that

(3.13) σ(γ̇, V ) = 0 along γ.

Taking the inner product of both sides of (3.7) with
V , we have

˙̃κκ = κ̃κ̇ − κ̃〈Aσ(γ̇,γ̇)γ̇, V 〉
= κ̃κ̇ − κ̃〈σ(γ̇, γ̇), σ(γ̇, V )〉.
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Owing to (3.13), the above equation becomes

(3.14) ˙̃κκ = κ̃κ̇.

Then the equation (3.8), together with (3.13) and
(3.14), yields

(∇̄γ̇σ)(γ̇, γ̇) =
˙̃κ
κ̃

σ(γ̇, γ̇) =
κ̇

κ
σ(γ̇, γ̇),

and

(∇̄vσ)(v, v) =
κ̇(0)
κ(0)

σ(v, v).

Changing v into −v, we get (∇̄vσ)(v, v) = 0. Thanks
to Codazzi’s equation in a space of constant curva-
ture (∇̄vσ)(u, w) = (∇̄uσ)(v, w), the immersion f is
parallel.

Thus our immersion f is locally congruent to a
parallel immersion f2 ◦ f1 defined by (3.1) ([2, 8]).
We here comment. According to the fundamental
theorem of submanifolds, the fact that the second
fundamental form is parallel implies the rigidity of
our immersion. In fact, all connection forms of the
normal bundle NM in M̃16+p(c̃) are uniquely deter-
mined by connection forms of M . So we can use the
classification theorem of complete parallel submani-
folds in a real space form as a local theorem. Note
that our submanifold M is not necessarily complete.

Next, we shall show that the curve γ satisfying
the hypothesis of our theorem is a Cayley circle by
using a reduction to absurdity. So we assume that
the curvature function κ is not constant. Then there
exists some s0 with κ̇(s0) �= 0. Since κ, κ̃ > 0, we
find ˙̃κ(s0) �= 0 from (3.14). From the fact that ∇̄σ =
0 and (3.13) we can see that the equation (3.8) yields
σ(γ̇(s0), γ̇(s0)) = 0. Moreover, we find that ‖σ(γ̇, γ̇)‖
is constant along the curve γ. Indeed, by use of the
fact that ∇̄σ = 0 and (3.13) we have

d

ds
‖σ(γ̇, γ̇)‖2 = 2〈(∇̄γ̇σ)(γ̇ , γ̇), σ(γ̇, γ̇)〉

+ 4κ〈σ(V, γ̇), σ(γ̇, γ̇)〉
= 0.

Thus we conclude σ(v, v) = 0 for an arbitrary unit
vector v ∈ TxM at each point x ∈ M . Hence the
immersion f : M → M̃16+p(c̃) is totally geodesic.
But it is known that our manifold M cannot be im-
mersed into a real space form as a totally geodesic
submanifold. Thus we have a contradiction, so that
the curve γ is a Cayley circle.

Finally, we shall check the immersion f = f2◦f1

given by (3.1) satisfies the hypothesis of theorem in

detail. Let γ = γ(s) be a Cayley circle of curvature
k (> 0), which satisfies ∇γ̇ γ̇ = kV and ∇γ̇V = −kγ̇.
Then, by the equation of Gauss we have

c = 〈R(γ̇, V )V, γ̇〉(3.15)

= c̃ + 〈σ(γ̇ , γ̇), σ(V, V )〉 − ‖σ(γ̇, V )‖2.

On the other hand, since it is known that the im-
mersion f is

√
c − c̃ (> 0)-isotropic (see for instance

[7]), we have

〈σ(u, v), σ(w, y)〉 + 〈σ(u, w), σ(y, v)〉
+ 〈σ(u, y), σ(v, w)〉
= (c − c̃) (〈u, v〉〈w, y〉 + 〈u, w〉〈y, v〉 + 〈u, y〉〈v, w〉)

for arbitrary u, v, w, y. Hence, particularly we have

(3.16) 2‖σ(γ̇, V )‖2 + 〈σ(γ̇, γ̇), σ(V, V )〉 = c − c̃.

From (3.15) and (3.16) we obtain σ(γ̇, V ) = 0.

The curve f ◦ γ satisfies ∇̃γ̇ γ̇ = kV +σ(γ̇, γ̇), so
that

‖∇̃γ̇ γ̇‖ =
√

k2 + ‖σ(γ̇, γ̇)‖2 =
√

k2 + c − c̃.

Put

Ṽ =
1√

k2 + c − c̃
{kV + σ(γ̇, γ̇)}.

Then

∇̃γ̇Ṽ =
1√

k2 + c − c̃
∇̃γ̇{kV + σ(γ̇, γ̇)}

=
1√

k2 + c − c̃

{
k (∇γ̇V + σ(γ̇, V ))

− Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))
}

=
1√

k2 + c − c̃

{−k2γ̇ − ‖σ(γ̇, γ̇)‖2γ̇

+ (∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇)
}

=
1√

k2 + c − c̃

{−(k2 + c − c̃)γ̇ + 2kσ(V, γ̇)
}

= −
√

k2 + c − c̃ γ̇.

Here we have used the fact that σ(γ̇, V ) = 0 and
Aσ(γ̇,γ̇)γ̇ = ‖σ(γ̇, γ̇)‖2γ̇ which follows from the prop-
erty of the isotropic immersion. Thus the curve f ◦γ

is a circle of curvature
√

k2 + c − c̃ (> 0), so that it
is a plane curve in M̃16+p(c̃).
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