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Abstract:

Two seemingly unrelated problems are intimately connected. The first is the

equsingularity problem in R?: For an analytic family f; : (R%,0) — (R,0), when should it be
called an “equisingular deformation”? This amounts to finding a suitable trivialization condition
(as strong as possible) and, of course, a criterion. The second is on the Morse stability. We define
R., which is R “enriched” with a class of infinitesimals. How to generalize the Morse Stability
Theorem to polynomials over R.? The space R, is much smaller than the space used in Non-
standard Analysis. Our infinitesimals are analytic arcs, represented by fractional power series. In
our Theorem II, (B) is a trivialization condition which can serve as a definition for equisingular
deformation; (A), and (A’) in Addendum 1, are criteria, using the stability of “critical points” and
the “complete initial form”; (C) is the Morse stability (Remark 1.6).
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1. Results. As in the Curve Selection
Lemma, by a parameterized arc at 0 in R? (resp.
C?) we mean a real analytic map germ X : [0,¢) —
R2 (resp. C2), X(0) = 0, X(s) % 0. We call the image
set, A := Im(X), a (geometric) arc at 0, or the locus
of X; call X a parametrization of A.

Take A # . The distance from P € A to p is
a fractional power series in s := OP, dist(P,pu) =
as" + -, where a > 0, h € Qt.

We call O(A, ) := h the contact order of A

and p. Define O(A, A) 1= 0.
Let S, or simply S., denote the set of arcs at
0 in R2. This is called the enriched unit circle for
the following reason. The tangent half line at 0, I, of
a given A can be identified with a point of the unit
circle S*. If A # I, then 1 < O(X,1) < co. Hence we
can regard X as an “infinitesimal” at 1, and S, as S'
“enriched” with infinitesimals.

Let f : (R%,0) — (R,0) be analytic. Write
V.e(f) :={¢ €S| f(z,w) = 0 on ¢}, where S?
denotes the set of arcs at 0 in C?(= R*), and f(z, w)
is the complexification of f.

For A€S., write O(X, V,€(f)) :=max{O(\, )|
¢ € V.C(f)}. Define the f-height of X by h() :=
O\, V.E(f)). Hence hp(A) = oo if f(x,y) = 0 along
A

For Ay, A2 € S, define Ay ~f Ay if and only
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Zf hf(Al) = hf(Ag) < O(Ah)\g). (In fact, hf(A1> <
O(A1,A2) implies hp(A1) = hp(A2).) The equiva-
lence class of A is denoted by Ay.

We call Ay an f-truncated arc, or simply an
J-arc. Write S, /¢ := 8./ ~y, h(Af) := hy(X).

Define the contact order of Ay and p; by: if
Ar # Byp, OXp pyp) = OA, 1), X € Af, o € g
and O(Ags,Ay) := oo. This is well-defined. Write
O, V.E(f)) == O\ VE(S)).

From now on we assume f(z,y) is mini-regular
in z, that is, regular in « of order m(f), the multi-
plicity of f.

Let R} (resp. R:/f) denote those arcs of S,
(resp. S, /f) in y > 0, not tangent to the z-axis, and
R} (resp. R;/f) denote those in y < 0. Write R, :=

+ - — Rt -
R UR;, Ryp =R}, UR],.

Take Af, py € R:/f, or € R/, Define Ay ~
ey (read:“bar equivalent”) if and only if either Ay =
Ky, or else h(Ap) = h(py) = O(Ap,py). Call an
equivalence class an f-bar. The one containing A
is denoted by B(Ay), having height h(B(Af)) =
h(Af). (See [3-5].)

If h(Af) = oo then B(Af) = {Af}, a singleton,
and conversely.

The given coordinates (x,y) yield a coordinate
on each bar of finite height, as follows:

Take B, say in R}, h(B) < co. Take A € Ay €



116 T.-C. Kuo and L. PAUNESCU

B with parametrization X(s). Eliminating s (s > 0)
yields a unique fractional power series (as in [7])

(1) :c:)\(y)zaly%l—i—agy%—f—---7
d<ni<ny<---, (y=>0).

Here all a; € R. Let Ap(y) denote A(y) with all
terms y¢, e > h(B), deleted. Observe that for any
B € Af € B, u(y) has the form p(y) = Ag(y) +
uyB) ... where u € R is uniquely determined by
Ar. We say Ay € B has canonical coordinate u,
writing Ay := u. We call z = Ag(y), which depends
only on B, the canonical representation of B.

Take B, h(B) < o0, and u = Ay € B. Let us
write

FOsy) +uy P 4 y)
=17 (wy® + -, I7(Ap) == IF (u) #0.

An important observation is that e depends only
on B, not on Ay; If(u) depends only on Ay, not on
A € Af, and is a polynomial (Lemma 1.2 below).
We call L;y(B) := Ly(Ay) := e the Lojasiewicz
exponent of f on B.

Attention/Convention. Not every u € R is
a canonical coordinate. For example, f(z,y) = 2% —
y> has a bar B of height 3/2, and &1 are not canon-
ical coordinates; IfB(u) is not a priori defined at 1.
Since IfB 18 a polynomial, we shall regard it as defined
for all u € R.

In general, the canonical coordinate identifies B
with a copy of R minus the real roots of IJ?. Hence
B, the metric space completion, is a copy of R.

If B = {XAs}, a singleton, we define I (Ay) :=
O, Lf()\f) = Q.

Now, take [(x,y) := z, and consider S, /. If
v(y) =ay®+---,a#0,e>1, then the l-arc v; can
be identified with (a,e) € (R — {0}) x Q*, Q! :=
{r e QT | r>1}. If v(y) = 0 then h(v;) = oo;
we write v; := (0,00). We call V := (R — {0}) x
Q™) U {(0,00)}(= Rf/l) the infinitesimal value
space. The given f, mini-regular in x, induces a
V-valued function

f* : R*/f - Va

Fep) = (IF (Ap), Ly(Ap)) €V, (Af € B).

Take z € C. We say z is a B-root of f if f has
a Newton-Puiseux root of the form a(y) = Ag(y) +

zy™B) 4 ... The number of such roots is the multi-
plicity of z.
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Definition 1.1. Take c:=~, € B. If h(B) <
oo and c¢(€ R) is a B-root of f;, say of multiplic-
ity k, we say v, is a (real) critical point of f. of
multiplicity m(vy;) := k.

If B ={v,}, and m(B) > 2, we also call v, a
critical point of multiplicity m(B) — 1.

Call f.(c) := fu(v;) € V the critical value at
Y-

If f, has complex B-root(s), but no real B-root,
then we take a generic real number r, put v(y) :=
A(y) + ry"(B) and call v the real critical point in
B with multiplicity m(v;) := 1. (Convention: For
different such B, we take different generic r.)

The above is the list of all (real) critical points.
(If f, has no B-root, B yields no critical point.) The
number of critical points is finite (Lemma 1.2).

Now, let M be the maximal ideal of R{s},
furnished with the point-wise convergence topology,
that is, the smallest topology so that the projection
maps

M — RY,

CL13+"'+CLN3N+""_>(alv"'7aN)7 N€Z+’

are continuous. Furnish S, S, ,; with the quotient
topologies by the quotient maps

ps : M?—{0} = S., p.y:M>—{0} =S,/

Take X € M2, and a real-valued function, «,
defined near X. We say « is analytic at Xif o = po
TN, TN & projection, ¢ an analytic function at 7wy (X)
in RN. This defines an analytic structure on M?2.
We furnish S, and S, /f with the quotient analytic
structure.

In the following, let I be a sufficiently small
neighborhood of 0 in R. We write “c-” for “contin-
uous”, “a-" for “analytic”, “c/a-” for “continuous
(resp. analytic)”.

Let F(z,y;t) be a given t-parameterized a-
deformation of f(x,y). That is to say, F(x,y;t) is
real analytic in (z,y,t), defined for (x,y) near 0 €
R2?, t € I, with F(z,y;0) = f(z,y), F(0,0;t) = 0.
When ¢ is fixed, we also write F(x,y;t) as fi(x,y).

In S, x I define (X, t) ~p (X, t') if and only if
t =1t and A ~y, X'. Denote the quotient space by
S. xp I. Similarly, Rf xp I :=RF x I/ ~p.

By a t-parameterized c¢/a-deformation of Ay
we mean a family of f;-arcs, Ay,, obtained as follows.
Take a parametrization X(s) of Ay, and a ¢/a-map:
I — M2 t— X, Ao = A. Then Ap, = p*/ft(xt).



No. 6]

This is equivalent to taking a ¢/a-map: I — S, Xp
I, t — (Ap,t). A ¢/a-deformation of a given B
is, by definition, a family {B;} obtained by taking
any Ay € B, a ¢/a-deformation Ay,, and then B; :=
B(Ag,)-

Theorem I. The following three conditions
are equivalent.

(a) Each (real) critical point, v, of fs is sta-
ble along {f.} in the sense that v; admits a c-
deformation v;,, a critical point of (fi)«, such that
m(vy,), M(vy,)s Ly (vy,) are constants. (If vy arises
from the generic number r, we use the same r for
Y1 )

(b) There exists a (t-level preserving) homeomor-
phism

H:(R*xI,0xI)— (R*x1I1,0x1),
((.’L‘,y),t) = (nt(xay)7t>a

which is bi-analytic off the t-axis {0} x I, with the
following five properties:

(b.1) fi(me(z,y)) = flz,y), t € I, (trivializa-
tion of F(x,y;t));

(b.2) Given any bar B, n:(d(s)) is analytic in
(d@,s,t), d € p*_/lf(B) (analyticity on each bar); in
particular, ny is arc-analytic, for any fixed t;

(b.3) O(e, B) = O(n(ex),m:(B)) (contact order
preserving); moreover, ni(ap) € S, g, is well-defined
(invariance of truncated arcs).

(b.4) The induced mapping n; : B — By extends
to an analytic isomorphism: B — By.

(b.5) Ifc is a critical point of f«, then ¢ = ni(c)
is one of (ft)«, m(c) = m(ey).

(c) There exists an isomorphism H, : R,/ X
I - R, xpl, (ay,t)— (n(ay),t), preserving crit-
ical points and multiplicities. That is to say, H. is
a homeomorphism,

(c.1) Given B, By := n:(B) is a bar, h(B;) =
h(B), m(B;) = m(B);

(c.2) The restriction of n; to B extends to an
analytic isomorphism 7; : B — By;

(¢.3) If ¢ is a critical point of fi, then ¢; =
ne(c) is one of (fi)x, m(c) = m(ct).

Theorem II. The following three conditions
are equivalent.

(A) The function f. is Morse stable along { f:}.
That is, every critical point is stable along {f:}, and
for critical points ¢ € B, ¢’ € B', f.(c) = f«(c')
implies (ft)+(ce) = (fi)«(cf).
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(B) There exists H, as in (b), with an additional
property:

(b.6) If e, ¢’ are critical points, fi(c) = fu(c’),
then (f1)+(c1) = (fo)e(c).

(C) There exist an isomorphism H, as in (c), and
an isomorphism K, :V x I —V x I, such that K, o
(fe xid) = ®o H,, where ®(ay,,t) := ((fi)«(az,), ).

Lemma 1.2. Let {21,...,2,} be the set of B-
roots of f (z; € C), h(B) < co. Then

q
IP(w) = a]J(u—z)m™,

i=1
0 # a € R, a constant, m; the multiplicity of z;.

In particular, IJ]? (u) is a polynomial with real coeffi-
cients.

If ¢ :== ~; € B is a critical point of f«, then
%IJ‘-B(C) =0 # IfB(c), and conversely. The mul-
tiplicity of ¢ (as a critical point of the polynomial
IfB (u)) equals m(vyy).

The number of critical points of f.« in Rj/f
(resp. R, ;) is bounded by m(f) — 1.

Definition 1.3. The degree of I}B (u) is called
the multiplicity of B, denoted by m(B).

We say B is a polar bar if I}B (u) has at least
two distinct roots (in C), or B is a singleton with
m(B) > 2. Call Z(f) := {(B,I) | B polar} the
complete initial form of f.

Corollary 1.4. Fach critical point belongs to
a polar bar; each polar bar contains at least one crit-
ical point.

We recall Morse Theory. Take an a-family of
real polynomials p;(x) = ag(t)z?+ - -4aq(t), ap(0) #
0, t € I, as an a-deformation of p(z) := po(x). Let
¢o € R be a critical point of p(z), of multiplicity
m(co). We say cg is stable along {p:}, if it admits
a c-deformation c, %pt(ct) = 0, m(ct) = m(co).
(A c-deformation ¢, if exists, is necessarily an a-
deformation.)

Definition 1.5. We say p(z) is Morse and
zero stable along {p;} if:

(i) Every (real) critical point of pg(x) is stable
along {p:};

(ii) For critical points cop, ¢f, po(co) = po(c)
implies pt(ct) = pe(cy).

(iii) If po(co) = fhpo(co) = 0, then pi(c;) =
L pi(ce) = 0.

Remark 1.6. Theorem II generalizes in spirit
a version of the Morse Stability Theorem : If p(z)
is Morse and zero stable along {p;} then there exist
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analytic isomorphisms H, K : R x I — R x I, such

that Ko(pxid) = ®oH, K(0,t) = 0, where ®(z, t) :=
(pt ((E)7 t)
That (a)=(c) reduces to the following. Given

z = fi(t), 1 < i < N, analytic, fi(t) # f;(t), for
i # j, t € I. There exists an analytic isomorphism
H:RxI—RxI, (z,t) — (n(x),t), ::(fi(t)) =
const, 1 <i < N. (Proved by Cartan’s Theorem A,
or Interpolation.)

We say Z(f) is Morse and zero stable along
{f+} if each polar B admits a c-deformation By, a po-
lar bar of f;, such that two of h(B;), m(B¢), Ly, (B:)
are constants (we can then show all three are), and
{I7} is Morse and zero stable along {Iﬁt}, for each
B.

Addendum 1. (B) is also equivalent to (A'):
Z(f) is Morse and zero stable along {f;}.

2. Relative Newton polygons. Take A,
say in R, with A(y). Let us change variables: X :=

x—MNy), Y =y,
FX,Y) = f(X+AY),Y):=> a;; X'V,

i,j20,2+]>0.

In the first quadrant of a coordinate plane we
plot a dot at (¢,j/d) for each a;; # 0, called a (New-
ton) dot. The Newton polygon of F in the usual
sense is called the Newton Polygon of f relative to
A, denoted by P(f, A). (See [4].) Write mg := m(f).
Let the vertices be

Vo = (mo,O),. . .,Vk = (mk,qk),
¢ €Qf, m; > mMi+1, 4 < qi+1-

The (Newton) edges are: E; = V;_1V;, with an-
gle 0;, tan§; := ﬁ, w/4 < 0; < 7/2; a vertical
one, Ei1, sitting at Vi, Ox+1 = 7/2; a horizontal
one, Fy, which is unimportant.

If mp > 1 then f=0o0on A If mpy > 2, fis
singular on A. If A ~¢ X then P(f,X) = P(f, X)),
hence P(f, A¢) is well-defined.

Notation: L(E;) := Vi_1V/, V/ := (0,q;—1 +
m;—1 tanb;), i.e. F; extended to the y-axis.

Fundamental Lemma. Suppose each polar
bar B admits a c-deformation By such that h(By)
and m(By) are independent of t. Then each Ay €
R.,/; admits an a-deformation Ay, € R, /s, such that
P(fi, Ay,) is independent of t. The induced deforma-
tion By := B(Ay,) of By := B(Af), and hence the
a-deformation x = \p,(y) of the canonical represen-
tation © = Ap,(y), are uniquely defined; that is, if
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we take any m; € B(Ay), and a c-deformation ny,
with P(ft,nft): P(f,Af), then B(nft) B(Ay,).

Given B, B'. The contact order O(By, By), de-
fined below, is independent of t.
For B # B', define O(B,B’) := O(Ap, A}),

Ar € B, )\} € B’; and O(B, B) := oc.

The Lemma is proved by a succession of Tschirn-
hausen transforms at the vertices, beginning at Vj,
which represents a0 X" in F(X,Y), m = m(f).
Let us define P by
(2) F(X4+AY),Y;t):=F(X,Y)+P(X,Y;t),

P(X,Y5t) = pi; ()X V4,

where p;;(t) are analytic, pij(o) = 0. Take a root of
e [amoX™ + P(X,Y ;1)) =

axm— oxm—1
= bi() b;(0) =0,

X = pt
b;(t) analytlc. (Implicit Function Theorem.)

y]/d

Thus, A(y) + p:(y) is an a-deformation of A(y). Let
X1:=X—p(Y), Y1 :=Y. Then

F(X1 + MY1) + pe(Y1), Y5 1)
= F(X1, Y1) + PO (X1, Yi3),

where PO = 55 () X{Y{"", p{(0)
pfn) 1,;(t) = 0 (Tschirnhausen).

For brevity, we shall write the coordinates
(X1,Y1,t) simply as (X,Y,t), abusing notations.
That is, we now have pp,—1;(t) =0 in (2).

We claim that P in fact has no dot below L(Ey).
This is proved by contradiction.

Suppose it has. Take a generic number s € R.
Let ¢(y) := A(y) + sy, e :=tan#f;, and

F(X +((Y),Y;t) := F(X,Y)+P, P(X,Y;0)=0.

Since s is generic, P(f,(;) has only one edge,
which is L(E1), and B(¢) is polar. Below L(Ey), P
has at least one dot (when ¢ # 0), but still no dot of
the form (m — 1, q).

A c-deformation B, of B((;) would either cre-
ate new dot(s) of the form (m —1, q) below L(E1), o
else not change the existing dot(s) of P below L(El).
(This is the spirit of the Tschirnhausen transforma-
tion.) Thus, as t # 0, h(B;) or m(B;), or both,
will drop. This contradicts to the hypothesis of the
Fundamental Lemma.

This argument can be repeated recursively at
Vi, Va, etc., to clear all dots under P(f, A¢). More
precisely, suppose in (2), P has no dots below L(E;),

= 0, and
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0 <i<r. By the Newton Puiseux Theorem, there
exists a root p; of W[aerqu + P] = 0 with
Oy(pt) > tanb,41, where aX™ Y% is the term for
V... A Tschirnhausen transform will then eliminate
all dots of P of the form (m, — 1,q). As before, all
dots below L(E, 1) also disappear.

We have seen the only way to clear dots be-
low P(f, Af) is by the Tschirnhausen transforms. If
P(f,ny) = P(f,Af), we must have O(Ay,,ny,) >
h(By). The uniqueness follows.

Define a partial ordering “>” by: B > B if and
only if h(B) > h(B) = O(Ay, py), Af € B,y € B.
Let B be the largest bar so that B > B, B > B. We
write Ag(y) = Ag(y) +ay® +---, Ap (y) = Ag(y) +
by¢+---,e:= h(B). The uniqueness of B; completes
the proof.

3. Vector fields. Assume (a). We use a vec-
tor field ¥ to prove (b). The other implications are
not hard.

Take a critical point vy, say in B, v(y) =
A(y) +cy™B). Let B, be the deformation of B. Let
¢t be the a-deformation of ¢, d‘flIB‘ (ct) =0, m(cy) =
m(c). (If ¢ is generic, take ¢; = ¢.)

Let 7i(y) = A, (y) + B
critical point of f; in Bs.

Now, let ’y(fi), 1 < i < N, denote all the critical
points of f, for all (polar) B. For brevity, write
~ ) = 'ygf), with deformations 79, just defined.
We can assume F(z,0;t) = 42™, and hence
%—f(xﬁ;t) =0. As F(z,0;t) = a(t)z™ +---, a(0) #
0, a substitution u = %/|a(t)| - © + --- will bring
F(z,0,t) to this form.

We can also assume v € R;"/f for 1 <i<r,
and y*) € R, forr+1<i < N.

For each ~() ¢ R;"/ > We now construct a vector
U (x,y,t), defined for y > 0.

erte vy = 79. Let X := 2 —n(y),Y = y.

Then F(X,Y;T) := F(X +%(Y),Y;T) is analytic

Then ~, is a

field v

n (X,YY4 T). Asin [1, 6], define @' (z,y,t) =
‘7(56 - 'Yt(y)vyvt% ) Z 07 where
. XFxF; 13}
3) V(X.,Y.,t) = ) ‘gl
( ) ( T ) (Xfx)2+(Y.7:y>2 0X
n Y7y 7 v o 9
(XFx)2+ (YFy)?2 9y ot

In general, given o, = a;(y), say in Rf, 1 <
i <. Let q(z,y) = [[j_ (@ — an(y))?,

i(z,y) = q(z,y)/(z — u(y))?,
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pi(®,y) = qi(x,y)/ [ (z,y) + - + ¢ (2, y)].

We call {pi1,...,pr} a partition of wunity for
{a1,...,a.}.

Now, take {p;} for {71, A} Define
TH (@, y,t) = 3o pile,y, ) T (2, 1),

Similarly, 'yg‘-)? r+1<i<N,yield 77 (,y,t),
y < 0. We can then glue o (, y, t) together along
the z-axis, since 7% (x,0,t) = —2-. This is our vector
field ¥(z, y, t), which, by (3), is clearly tangent to the
level surfaces of F(x,y;t), proving (b.1).

4. Sketch of Proof.

Lemma 4.1. Let W(X,Y) be a weighted form
of degree d, w(X) = h, w(Y) = 1. Take ug, not a
multiple root of W(X,1). If W(ug,1) # 0 or ug # 0
then, with X = w", Y = v,

I XWx| + [YWy | = unit-|v|?, foru near ug.

For, by Euler’s Theorem, if X — uoY™" divides
Wx and Wy, then ug is a multiple root.

To show (b.2), etc., take a, say in Rf. Take k,
=max{0(V), a)|1<j <7}

We can assume o is not a multiple root of f,
e = 0(y® as) < co. (If a is, then v¥ = ay,
h(B) = oo. This case is easy.)

Write B := B(ay) if B(ay) < B(y®), and
B := B(v®) if B(ay) > B(v™).

Thus a(y) = As(y) + ay® + -
Let us consider the mapping

. %I'B( ) # 0.

7 (u,v,t) = (x,y,t) := (Ap, (V) + w® v,t),
ueR, 0<v<e, tel,

B; the deformation of B, and the liftings D;" =
(dr)~ (o)), 7F =300, )

Key Lemma. The lifted vector fields ﬁf, and
hence 7T, are analytic at (u,v,t), if u is not a mul-
tiple root of Iﬁt. Moreover, U%(u,0,t) is analytic
for all uw € R; that is, lim,_ o+ UV (u,v,t) has only
removable singularities on the u-axis.

We analyze each 7", using (3).
write B := B(y(®), B, := B(y{").

First, consider the case B = B.
poses the main ideas.

Now I]? and P(f,~?) are related as follows.
Let W(X,Y) = 3, . a;X'Y//% be the (unique)
weighted form such that W(u,1) = IP(u + ¢),
w(X) = h(B), w(Y) = 1, where ¢ is the canoni-
cal coordinate of 4(?). The Newton dots on the high-

For brevity,

This case ex-
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est compact edge of P(f, 'y(i)) represent the non-zero
terms of W (X,Y'); the highest vertex is (0, L(B)).

Thus ££W(0,1) = £1P(c) = 0, W(0,1) # 0.
The weighted degree of W(X,Y) is L¢(B).

Hence, by Lemma 4.1, the substitution X =
z—Ap(y) — cy™B) = (u — )" B Y = v, yields
O, (| XFx|+|YFy|) = Ly(B), if u — ¢ is not a mul-
tiple root of W (u,1).

The Newton Polygon is independent of ¢:
P(f,~") = P(ft,'ygi)). All Newton dots of F, and
hence those of Fr, are contained in P(f,(®). Hence
Ou(Fr((u— )" B v;T)) > L(B).

By the Chain Rule, we have Xaix = (u— 8)6%7
Y2 =0 —h(B)(u—c)Z.

It follows that (d7)~1(¥;") and 7; are analytic at
(u,v,t), if u is not a multiple root of Iﬁ‘.

Next, suppose B < B. Again we show
(d7)~1(#) has the required property.

Write vV (y) == Ap(y) + c'y"B) + ..., Let
W(X,Y) denote the weighted form such that
W(u,1) = If(u+c’), w(X) = h(B), w(Y) = 1.

If W(X,Y) has more than one terms, they are
dots on a compact edge of P(f,(*), not the highest
one. If W(X,Y) has only one term, it is a vertex,
say (m,q), m > 2.

In either case, u = 0 is a multiple root of
W(u,1). All Newton dots of Fr are contained in
P(f,v®). The rest of the argument is the same as
above.

Finally, suppose B £ B. Here p; plays a vital
role in analyzing ﬁf .

Let B denote the largest bar such that B > B<
B.

Let U :=x — Ap,(y), V := y. The identity p; =
Prqi/qk, and the Chain Rule yield

0  (U+e)? o)
pit a_x—p’“mw”)%’

o  U+ePT. o 9
pl'YW_pk.m Vav ~VoWVgg |-

where 8 := 3(y,t) == A, (y) = %" (y), € = A, (y) —
¥ (y), 0y(8) = h(B) < h(B) < Oy(e).

The substitution U = wv™B), V = v lifts both
to analytic vector fields in (u,v,t).

It remains to study ¥ := Fr/(| X Fx|+ |Y Fy])
when X = (v, t) +uB) Y =,
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Let G(U,V,T) := F(U + 6(V,T),V,T). The

Chain Rule yields
(4) XFx = U +6)Gy, YFy =V(Gy —vGu),

Fr =Gr —6rGu.

Let us compare P(f,~®) and P(G,U = 0), the
(usual) Newton Polygon of G. Let E/, 6/ and V;/
denote the edges, angles and vertices of the latter.
Then E; = Ef, for 1 < i <, where [ is the largest
integer such that tan¢; < h(B). Moreover, 6/ ; =
0141 (although Eyyq, E/, | may be different).

Consider the vertex V', := (mj_,q,,),
mf_H > 2. Tt yields a term p := a(T)UPV? of §Gy,
a(0) #0, p:=mj, —1,q:=q, +tan6;. With
the substitution U = uv"B), (u #0,) V = v, p is the
dominating term in (4). That is, O,(p) < O,(1'),
for all terms u' in UGy, V Gy, etc., (and for all terms
' # pin 0Gy), since Oy (0) = tan f;41.

It follows that W is analytic. That lim 7" has
only removable singularities also follows.

Conditions (b.2) etc. can be derived from the
Key Lemma.
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