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Derivatives of multiple sine functions

By Nobushige KUROKAWA

Department of Mathematics, Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo 152-8551
(Communicated by Heisuke HIRONAKA, M. J. A., May 12, 2004)

Abstract: We calculate derivatives of multiple sine functions to investigate coefficients ap-
pearing in the addition type formula. We present explicit expressions and we obtain an interesting

modular form.
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1. Introduction. Let

o

Sew,w) = ]I
ni,...,ner=0
» ( 10

ma,...,mp=1

(w1 + -4 npwy + )

(-1
(miwy + -+ mew, — x))

be the multiple sine function of period w =
(w1,...,wr), where the zeta regularized product H
of Deninger [D] is used. Alternatively, S,(z,w) is
written as

Sp(z,w) = Doz, w) ' To(wy + - 4wy — 2, w) Y

using the regularized multiple gamma function

F,«(.ﬁ,g) = ( H

1,--,nr=0

-1
(nwy + -+ nywyr + x))

)

(nmwy + -+ npwyr +)7°

0
o (Z6ioma

Here
o0

CT(Saxag) = Z

n1,...,Npr=0

is the multiple Hurwitz zeta function defined by
Barnes [B]. We denote by I'?(z,w) the multiple
gamma function studied in [B]:

I'2(z,w) =T, (z,w)pr (W)
with

- Te(w,w)!
Pr (ﬂ) = E_{% T(T)
This pr(w) is called as “Stirling modular form” by
Barnes [B]. The function I'?(z,w) satisfies
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FB -1
lim Lo(@w) " 1.
x—0 x

The case 7 = 1 is reduced to the usual gamma func-
tion and sine function. In fact

I (z,w) =

and

Si(z,w) = ﬁ = 2sin (7;_&0) )

We notice that

2w
pw) =4/—
and
B _p(Z\ 21
Iy (x,w)—I’(w)w .
For simplicity we write
Iy(z) =Tr(x,(1,...,1)),
IB(x) =T8(x,(1,...,1)),
pr=pr(1,...,1)
and
Sp(x) = Sp(z, (1,...,1)).

Concerning multiple sine functions we refer to Shin-
tani [S], Manin [M] and previous papers [K1, K2, K3,
KK1, KK2, KOW, KW1, KW2].
We are quite interested in the derivatives
S,(«m) (0,w) since they give the coefficients of
(oo}

D (u,v) = Z Cmn (@)u™ 0"

m,n=0

satisfying the addition formula
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Se(z+y,w) =@ (S (z,w), Sr(y,w))
around z = y = 0. For example
D(u,v) =u+v+ e (w)uw + clg(g)uUQ
+ 021(g)u20 + (degree > 4)
with
1

and
S;“”(Oa E)S:“ (Oa ﬂ) —
25,(0,w)"

0,w) = 0 and S.(0,w) # 0. These
wy) are interesting “Stirling modular

S0, w)*

C12(g) = 021(g) =

Note that S, (
Cmn (W1, - -+,
functions”.

In this paper we study S.(0,w), S/ (0,w) and
c11(w). We notice that

2
Si(oaw) = Uﬂ- = pl(w)Qa

ST (0,w) =0
and
cll(w) =0.

The first non-trivial result was obtained by Shin-
tani [S] (proof of Proposition 5):

21
S5(0 =
2( Y (wl, LUQ)) \/m
See also Jimbo-Miwa [JM] using [K4]. We generalize
this result as follows:

= p1(w1)p1(w2).

Theorem 1. For w = (w1,...,w,) and j =
1,...,7, let
Pj(w) = H P Wiy Wiy - - -5 W)

1<y <ip<--<ij <r

Then S..(0,w) is expressed as follows:
(1) If r is odd

H (1)Jl

S, 7 (0,w) = pr(w
(2) If r is even

r—1

Si0.w) = [[ A",

j=1
Examples.
(1) 55(0, (w1, w2, w3))
_ p3(wi, wa, ws)?p1(wi)p1 (w2)pi (ws)
02(6«11,w2)p2(w2,w3)p2(w3,w1) '

[Vol. 80(A),

7
(2) 54(0) (w15w2)w3)w4)) -
p3(w1,w2,w3)ps(w2,ws,ws) p3(w1,ws,ws)
p2(wi,w2)p2(wi,wz)p2 (wi,ws)

w L3(@1.w2,wa)p1(W1)p1(w2)pr (wa)p1(wa)
p2(w2,w3)p2 (w2,wa) p2(ws,wa)

Since
p1 = V2,
Py = Vore= ¢ (=1)
and

ps = Ve~ 3 (D=3 (-D)

as calculated in [KK2], Theorem 1 gives concrete val-
ues:
Theorem 2.

(1) S$4(0) = 2me=¢' ) = 27 exp (%) |

(2)  S4(0) =2me 22 = 21 exp (%)

The calculation of S/ (0, w) is rather difficult and
we report a few results below.

Theorem 3. Let (wi,ws) satisfy w1 > 0 and
Im(wy) > 0. Put 7 = wa/wi, ¢ = €™ and

> g™ =) dn)g"

m,n=1 n=1
Then we have the following result.

(1) S5(0, (w1,w2))

-5 {(en-) (-9}

(2) cll(wl, wg)

-2 {(ren-9) - (r0-7)}-

Remark. For each complex number k£ we put

Ey(7) = M + Z ox-1(n)q"
with
Ok 1( ) de 1
d|n
Let
Rk(T) = Ek (—l) — TkEk( )
Then
1
f(r) =1 = Eal7)
and



(f (—7) - i) —7 (f(r) - i) — Ru(r).

We notice that for an even integer k > 4, Ej(7)
is the Eisenstein series of weight k with respect to
the modular group SL2(Z), so Ri(r) = 0 in this
case. For other k, E(7) is a “fake Eisenstein series
of weight k”. For example

7_2

RQ(T) = —4—7”

It seems that Ey(7) and Ry(7) appear for the first
time.

For w = (1,1) and (1,1,1) we obtain concrete
values.

Theorem 4.

(1) 84(0) = —4m.

(2) 611(1,1)2—%

(3) S5(0) = —6me—¢'(=2) — _67T€Xp<%>.
3¢6'(=2) 3 3

2. Proofs of theorems 1 and 2. We prove
Theorem 1. Then Theorem 2 follows from Theorem 1
directly via the explicit values p1, p2 and p3. We first
show the case r = 2 (Shintani’s result). Recall that
Iy (w1 + wo — 2, (w1, w2))

Do (z, (w1, w2))

We use the basic periodicity

Iy (2 +wi,w) = To(z,w)Toq (2, w(i) !

Sa(z, (w1, w2)) =

proved in [KK1], where
w(i) =

Then we have

(wl, e Wi—1, Wity - - .,w,«).

I (w1 + w2 — x, (w1, w2)
=Ta(w1 — z, (w1, w2) F1(6«11 -z w1)

)

)
=To(—z, (w1, w2))T1(—x,wa)

(—

X Fl IFQ( )

$,1

with
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1
Fo(x) = —.
X
Hence, by
Lr(z,w)™ ~ pr(w)
we obtain

S50, (wr,wp)) = lim M

_ p2(wi, w2)(=p1(w2))(=p1(w1))
(=p2(w1,w2))(—1)

= p1(w1)p1(w2)

_ 2

v/ W12 '

Hence we obtain the case r = 2. The case of even
r of Theorem 1 is similar to the case r = 2 treated
above. Hence it is sufficient to explain the case of
odd r by looking at the following typical case r = 3:
from

Sz(x, (w1, ws, ws))

= F3($ -1

(W1, w2, w3))
x T3(wi + wa + w3 — z, (w1, w2, w3)) "
and
I3(w1 + we + w3 — 2, (w1, wa, w3))
=Tz(w1 + w2 — , (w1, wa, w3))

x Da(w1 + wz — @, (w1, ws)) ™"

=T3(w1 — 2, (w1, w2, w3))Ta(w1 — z, (w1, ws)) "

Ty (w1 — 7, w1)
-1

x To(wy — z, (w1, w2))”
=T3(—m, (w1, wa, w3))T2(—
x To(—x, (w1,ws)) T (—2,ws)
x Do(—1, (w1, w2)) Ty (—z,ws)

x Ty (=, w)To(—z)

x, (w2, ws))

by periodicity, we have
S5(0, (w1, w2, ws))

— lim SB(xa (LU1,LU2,LU3))
r—0 x

_ pg(wl,wg,w3)2p1(w1)p1(w2)p1(w3)
p2(wi, wa)pa (w2, ws)p2(ws, wr)

The general case is easily obtained from

Sr(x, (wla . '7w7'))
= FT(xa (wla .. '7w7“))_1
X FT(WI +-Fwr—, (wla .- -7wT))(_1)T
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and S’ m [ 2% 1 1
5—2(30, (wl,w2))=?{ - <—+—>}
Op(wy + - 4w — 2, (W1, . W) 2 wiws w1 we
o= 27 2mimax
:I’T(w1+...+wr_1—x,(wl,...,w,«)) _Zz_qnme ( >
X FT—I(wl + -t w1 —x, (wla"'aw?“—l))_l n=0m=1 ! w1
2 2 2
via induction on 7. O n qum > ( mmx)
3. Proof of theorem 3. From n—lm=1 “2 w2
Sa(z, (w1, ws)) = Sa(z + wa, (w1, w2))S1 (2, w1) Thus
S5
we have S—(WQ, (w1, w2))
2
So(x, (w1, ws)) = Sh(z + wa, (w1, w2))S1 (z,w1) i (1 1 2mi
o ol B - S (5-2)+Z U - o)
+SQ($+(U2, (wl,wg))51($,w1) w1 w2 w2

and
S5 (x, (w1, w2)) = S5 (¢ + wa, (w1, w2))S1 (z, w1)
+285( + wa, (w1, w2)) Sy (2, w1)
+ So(x + wa, (W1, w2))SY (z,w1).
Hence
S5(0, (w1, w2)) = Sa(wa, (w1, w2))S1(0, w1)
and
S5 (0, (w1, w2)) = 285 (w2, (w1, w2))S1(0, wr).

In particular

U

S0, (o1, 2)) = 22, (w1, 02))S5(0, 1, 2)

4 !
= i 'é(WQ)(wlan))-

£/ W12 SQ
Now we use the following expression due to Shintani
[S] (Proposition 5):
0o 2mix
i o (1 —q"exp
Sy (z, (wi,ws)) = e H:o_o ( p ( erlu))
[0 (T =g exp(357))

with
. 2w
q:e%rm—:exp( 2>,
w1
¢ = e 2" = exp <—27Tiw1>
w2
and

mi [ a? 1 1
-3z (5 0 2)-
2 wiwo w1 w2

+l ﬂ_ﬁ_ﬂ +l
6 w1 wo 2.

The logarithmic derivative gives

L (reb-1) -7 (r0-1) b

Hence we obtain S% (0, (w1, w2)) and ¢11(w1,we). [
4. Proof of theorem 4. First recall the pe-
riodicity
So(x +1) = So(x)S; (x) L,
Ss(x+1) = S3(x)Sa ()"
and the differential equation
So(z) = —Sa(z)m(z — 1) cot(mx),
S4(z) = Sg(x)ﬂ'w cot(mx)
proved in [KK1, KK2].
(1) From
Sa(x) = Sa(x + 1)S1(x)
we have
Sy(w) = Sy(x +1)S1(w) + Sa( + 1) 5y (w)
and
Sy (x) =285 (x +1)S](x) + S5 (x + 1)S1(z)
+ So(x + 1)57 (x).
Hence we obtain
S5(0) = 47 S5 (1)
from S7(0) = 27 and S1(0) = S7(0) = 0. By the way
S5(1) = lim Sy(a)

= — lim Sy(x) - tz:;(:(%)l)
= —55(1)
-1

since S2(1) = 1. Thus S5 (0) = —4~.
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(2) We have
—4r 1

S5(0) _ 1
S4(0)%  (2m)? ™
since S%(0) = —4x by (1) and S5(0) = 27 from Shin-

tani’s result.
(3) From

Sg(x) = Sg(x + 1)SQ($)

611(1, 1) =

we have
S5 (x) = S5 (x +1)Sa(z) + 255 (x + 1)S5(z)
+Ss(x +1)85 (),
hence
S5(0) = 4w S5(1) — 4wS3(1)

by S2(0) = 0,.55(0) = 27 and S5 (0) = —4x. On the
other hand we proved that

S3(1) = e ¢ = exp (%)

in [KK1]. Now we calculate S%(1) as
S5(1) = lim S4(x)
rx—1

7T(Jc —1)(z—2)

= lim S5(z) cot(mz)
r—1 2
-1 -2
= lim Sg(x) 7T($ ) . $
z—1 tanm(z —1) 2
1
= —=55(1).
555(1)
Hence
5(0) = —67S3(1)
= —6me ¢ (-2
3
= —6mexp (%) .
(4) The above (3) and Theorem 2 (1) gives the
result. U

Remark. By similar calculations on Sz(x)
we can show c¢pm,(1,1) € Q(w) and ®(u,v) €
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Q(m)[[u, v]], for example.
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