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A remark on the norm of a formal group over Z�
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Abstract: Let h ≥ 2 be an integer and F a formal group over Zp of Honda type p +Xh.
The aim of this paper is to calculate the index of the image of the norm of F in the local cyclotomic
fields by following Kobayashi’s method ([1]). Here we use the property of certain subgroups which
we call norm subgroups.
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1. Introduction. In [1], Kobayashi shed
new light on the study of Iwasawa theory for ellip-
tic curves at good supersingular primes, by giving
another formulation of the main conjecture for such
curves. There, the formal groups of height 2 play an
important role.

We fix p an odd prime number. For a non-
negative integer n, we denote a pn-th root of unity
by ζpn which satisfies ζp

pn+1 = ζpn and ζp0 = 1. Let
k0 := Qp, kn := Qp(ζpn) for each n ≥ 1, m0 := pZp

and mn the maximal ideal of the integer ring of kn

for each n ≥ 1. Put Gn := Gal(kn/Qp).
For an integer h ≥ 2, we consider a formal group

F of Honda type p + Xh, whose logarithm is given
by

logF (X) =
∞∑

k=0

(−1)k (X + 1)phk − 1
pk

(cf. [1, §§8.1]). Let F (mn) denote the group defined
by the formal group F on the maximal ideal mn.

Let ∆ := Gal(Qp(ζp)/Qp) and ∆̂ the group
of characters from ∆ to Z×

p . For η ∈ ∆̂ and a
Zp[∆]-module M , we put Mη := εηM , where εη :=
1

|∆|
∑

τ∈∆ η(τ )η−1.
For n ≥ 0, CF (mn) denotes the norm subgroup,

which will be defined in Definition 2.5. Let qn :=
rankZp CF (mn) and qη

n := rankZp CF (mn)η. The
main result in this paper is the following.

Theorem 1.1. For n ≥ 1,
(i) dimFp F (mn−1)/NF

n/(n−1)F (mn) = φ(pn)− qn,
(ii) dimFp F (mn−1)η/NF

n/(n−1)F (mn)η = pn−1− qη
n.
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One can calculate the rank qn of the norm sub-
group CF (mn) as the following.

Proposition 1.2. (i) Let φ be the Euler
function. Then q0 = 1, qn + · · · + q0 = φ(pn) + n

if 1 ≤ n ≤ h − 2, and qn + · · ·+ qn−h+1 = φ(pn) +
(h− 1) for any n ≥ h − 1.
(ii) If η is non-trivial, then qη

0 = 0, qη
n + · · ·+ qη

0 =
pn−1 if 1 ≤ n ≤ h− 2, and qη

n + · · ·+ qη
n−h+1 =

pn−1 for any n ≥ h− 1.
(iii) If η is trivial, then q10 = 1, q1n+· · ·+q10 = pn−1+

n if 1 ≤ n ≤ h − 2, and q1n + · · · + q1n−h+1 =
pn−1 + (h − 1) for any n ≥ h− 1.
Kobayashi remarks this main result in the case

where h = 2 ([1, Remark 8.14], see also [2]). Kuriya
also studies about the index of the norm of F in this
direction by a different method ([3]).

We note that if one would like to generalize
Kobayashi’s result to abelian varieties, one need to
study formal groups of higher dimension, instead of
the above formal groups.

2. Norm subgroup.
Proposition 2.1. Let h ≥ 1 be an integer.

Let F be a formal group whose Honda type is p +
Xh. [−p] : F → F denotes the multiplication by −p
map of the formal group F . Then,
(i) [−p](X) ≡ −pX mod deg 2,
(ii) [−p](X) ≡ Xph

mod pZp[[X]].
Proof. The assertion (i) follows from general

properties of formal groups. Let us show the asser-
tion (ii).

Let P be the Zp-submodule of Qp[[X]] consist-
ing of the elements

∑∞
k=1 akX

k satisfying kak ∈ Zp

for all k. We define an endomorphism ϕ of P by

ϕ
(
f(X)

)
:= f

(
(X + 1)p − 1

)
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for f ∈ P. We denote the n-iterated composition of
the endomorphism ϕ by ϕ(n).

By the way of construction of the formal group
which corresponds to the Honda type p+Xh,

[−p](X) = expF (−p · logF (X)) ∈ Zp[[X]].

Since

ϕ(h) ◦ logF (X) = logF (ϕ(h)(X))

=
∞∑

k=0

(−1)k (X + 1)ph(k+1) − 1
pk

and

p · logF (X) = pX −
∞∑

k=0

(−1)k (X + 1)ph(k+1) − 1
pk

,

we have

expF (− p · logF (X))

≡ expF (ϕ(h) ◦ logF (X)) mod pZp[[X]]

= expF (logF (ϕ(h)(X)))

= ϕ(h)(X).

Further, we have

ϕ(h)(X) = (X + 1)ph − 1 ≡ Xph

mod pZp[[X]].

Therefore,

[−p](X) ≡ Xph

mod pZp[[X]].

From the Lubin-Tate theory, F (mn) has no tor-
sion point ([1, §§8.3]). Thus, the logarithm logF is in-
jective. This implies that for any integers m, n with
0 ≤ m ≤ n, logF F (mn) ∩ kn−m = logF F (mn−m).

Definition 2.2. Let F be a formal group over
Zp. Let m, n be integers with 0 ≤ m ≤ n. The norm
of a formal group F is the homomorphism NF

n/m :
F (mn) → F (mm) defined by

NF
n/m(x) :=

∑
σ∈Gal(kn/km)

xσ

for x ∈ F (mn), where
∑

denotes the sum by the
addition law of F .

Since logF : F (m0) → m0 is an isomorphism
between groups, there exists a unique element ε ∈
F (m0) such that logF (ε) = p/(p+ 1). Put

cn :=


(ζpn − 1)+F ε for n ≥ 1,
ε for − h+ 2 ≤ n ≤ 0,
[2] ε for n = −h+ 1.

Proposition 2.3. NF
n/(n−1)(cn) = −F cn−h.

Proof. By direct calculations, we have

Trn/(n−1) logF (cn) = − logF (cn−h)

where Trn/(n−1) : kn → kn−1 is the trace map. Since
Trn/(n−1) ◦ logF = logF ◦Nn/(n−1) and logF is injec-
tive, we have the desired formula.

Proposition 2.4. Let m be an integer with
1 ≤ m ≤ h− 1. Then
(i) F (mn)/F (mn−m) ∼= mn/mn−m.
(ii) F (mn)/F (mn−m) is generated by⋃n

k=n−m+1{cσk +F F (mn−m) | σ ∈ Gk}.
Proof. Since logF is injective, F (mn) is isomor-

phic to logF F (mn) for each n ≥ 0. Therefore, to
prove (i), it suffices to show that

logF F (mn)/ logF F (mn−m) ∼= mn/mn−m.

First, we have

logF F (mn)/ logF F (mn−m)

= logF F (mn)/(logF F (mn) ∩ kn−m)

↪→ (mn + kn−m)/kn−m

∼= mn/mn−m,

by sending

x+F logF F (mn−m) �→ x+ kn−m,

and

y + kn−m �→ y + mn−m.

Let c′n := logF (cn). We can see that c′n ≡ ζpn −
1 mod kn−m. Hence, we have c′n

σ ≡ ζσ
pn − 1 mod

kn−m for each σ ∈ Gn.
Since it is well-known that mn/mn−m is gener-

ated by

{(1− ζ) + mn−m | ζ is

a primitive pi-th root of unity (n −m < i ≤ n)},
(mn + kn−m)/kn−m is generated by

n⋃
k=n−m+1

{c′kσ + kn−m | σ ∈ Gk}.

Hence, the above injection

logF F (mn)/ logF F (mn−m) ↪→ (mn + kn−m)/kn−m

is surjective, so we have (i). This immediately im-
plies (ii).

Definition 2.5. For an integer n ≥ 0, we de-
fine the n-th norm subgroup by
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CF (mn) := {x ∈ F (mn) | NF
n/m x ∈ F (mm−h+1)

for all m ≡ n − 1 mod h, 0 ≤ m ≤ n}.
Here, we put F (mk) := F (m0) when k ≤ 0.

Proposition 2.6. For any n ≥ 0,

F (mn) = CF (mn) +F · · ·+F CF (mn−h+1).

Here, we put CF (mk) := F (m0) for k < 0.
Proof. Let m be an integer such that 1 ≤

m ≤ h − 1. By Proposition 2.4,
⋃n

k=n−m+1{cσk +
F (mn−m) | σ ∈ Gk} generates F (mn)/F (mn−m).
Since {cσn | σ ∈ Gn} ⊆ CF (mn),

F (mn) = CF (mn) +F · · ·
+F CF (mn−m+1) +F F (mn−m).

Therefore, the statement is true for n =
0, 1, 2, . . . , h− 1.

Suppose that the statement is true for all inte-
gers less than or equal to n− 1. Then,

F (mn−1) = CF (mn−1) +F · · ·+F CF (mn−h).

Hence,

F (mn) = CF (mn) +F F (mn−1)

= CF (mn)

+F CF (mn−1) +F · · ·+F CF (mn−h).

Since CF (mn−h) ⊆ CF (mn), we have

F (mn) = CF (mn) +F · · ·+F CF (mn−h+1).

Proposition 2.7. For any n ≥ 1 and 1 ≤ k ≤
min{n, h− 1},(

CF (mn) +F · · ·+F CF (mn−k+1)
) ∩ CF (mn−k)

= F (m0).

Proof. It suffices to check that the left hand
side is contained in the right hand side. Let x ∈(
CF (mn) +F · · ·+F CF (mn−k+1)

) ∩ CF (mn−k). To
show x ∈ F (m0), we suppose that there exists an
integer m such that x ∈ F (mm) \ F (mm−1) and 1 ≤
m ≤ n− k, and deduce a contradiction.

Let i be an integer with 1 ≤ i ≤ h − 1. If m ≡
n− k − i mod h,

[pn−(m+i−1)]x = NF
n/(m+i−1) x

since x ∈ CF (mm). Moreover,

NF
n/(m+i−1) x = NF

(n−k)/(m+i−1) ◦NF
n/(n−k)x

= [pk]
(
NF

(n−k)/(m+i−1) x
)

is contained in F (mm+i−h) since x ∈ CF (mn−k) and
m+ i− 1 ≡ n− k − 1 mod h. Therefore, we have

[pn−(m+i−1)]x ∈ F (mm+i−h).

If m ≡ n− k mod h, there exist xl ∈ CF (ml) for
n− k + 1 ≤ l ≤ n such that

[pn−m]x = NF
n/m x

= NF
n/m xn +F · · ·+F NF

n/m xn−k+1

since x ∈ CF (mn)+F · · ·+F CF (mn−k+1). Moreover,
for j = 0, 1, . . . , k− 1,

NF
(m+k−1−j)/m ◦NF

(n−j)/(m+k−1−j) ◦NF
n/(n−j)xn−j

= NF
(m+k−1−j)/m ◦NF

(n−j)/(m+k−1−j) ◦[pj]xn−j

= NF
(m+k−1−j)/m ◦[pj] ◦NF

(n−j)/(m+k−1−j) xn−j

∈ NF
(m+k−1−j)/m ◦[pj]

(
F (mm+k−h−j)

)
⊆ F (mm−h).

Hence

[pn−m]x ∈ F (mm−1).

Therefore, there exists an integer n0 ≥ 1 such that

[pn0 ]x ∈ F (mm−1).

Then, for all σ ∈ Gal(km/km−1),

[pn0](xσ −F x) = 0.

Since F (mn) has no p-torsion, we have we have xσ =
x for all σ ∈ Gal(km/km−1), so x ∈ F (mm−1).

Proposition 2.8. CF (mn) is generated by
{cσn | σ ∈ Gn} and F (m0).

Proof. This statement is proved by induction
on n. The statement is clear for n = 0 since
CF (m0) = F (m0). Let n be an integer with n ≥ 1
and let C ′

F (mn) the subgroup of CF (mn) generated
by {cσn | σ ∈ Gn} and F (m0). By Proposition 2.4,
F (mn)/F (mn−1) is generated by {cσn +F F (mn−1) |
σ ∈ Gn}. Hence,

F (mn) = C ′
F (mn) +F F (mn−1).

By Proposition 2.6,

F (mn) = C ′
F (mn) +F CF (mn−1)

+F · · ·+F CF (mn−h).

By the assumption of the induction,

C ′
F (mn−h) = CF (mn−h).

Moreover, since cσn−h = −NF
n/(n−1) c

σ
n by Proposi-

tion 2.3,
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C ′
F (mn−h) ⊆ C ′

F (mn).

Hence

F (mn) = C ′
F (mn) +F CF (mn−1)

+F · · ·+F CF (mn−h+1).

For x ∈ CF (mn),

x = xn +F yn−1 +F · · ·+F yn−h+1,

where xn ∈ C ′
F (mn) and yi ∈ CF (mi). Then,

yn−h+1 = (x−F xn)−F yn−1 −F · · · −F yn−h+2

∈ (CF (mn) +F CF (mn−1) +F · · ·
+F CF (mn−h+2)

) ∩ CF (mn−h+1).

By Proposition 2.7, we have yn−h+1 ∈ F (m0).
Then

x = x′n +F yn−1 +F · · ·+F yn−h+2

where x′n ∈ C ′
F (mn), yi ∈ CF (mi), and we set x′n :=

xn + yn−h+1. Repeating this process, we have suc-
cessively yn−h+2 ∈ F (m0), . . . , yn−1 ∈ F (m0), and
finally, we have x ∈ C ′

F (mn). Hence CF (mn) =
C ′

F (mn).
3. Proof of main result.
Proposition 3.1. Let h ≥ 2 be an integer.

Let F be the formal group which is of Honda type
p+Xh.

For n ≥ h− 1, the sequence

0 →
h−1⊕
i=1

F (m0)
f→

h−1⊕
i=0

CF (mn−i)
g→ F (mn) → 0

is exact, where we define the maps f and g by

f(xn−1, xn−2, . . . , xn−h+1)

:= (−Fxn−1, xn−1−F xn−2,

. . . , xn−h+2 −F xn−h+1, xn−h+1),

g(xn, xn−1, . . . , xn−h+1)

:=
h−1∑
i=0

xn−i.

Proof. By Proposition 2.6, the sequence

0 → ker g ι→
h−1⊕
i=0

CF (mn−i)
g→ F (mn) → 0

is exact. If (xn, xn−1, . . . , xn−h+1) ∈ ker g, then

xn−h+1 = −F

h−2∑
i=0

xn−i ∈ F (m0),

xn−h+2 + xn−h+1 = −F

h−3∑
i=0

xn−i ∈ F (m0),

· · · · · ·
h−1∑
i=1

xn−i = −Fxn ∈ F (m0)

by Proposition 2.7. Therefore, we have a map

ker g →
h−1⊕
i=1

F (m0),

(xn, . . . , xn−h+2, xn−h+1)

�→
(

h−1∑
i=1

xn−i,

h−1∑
i=2

xn−i,

. . . , xn−h+2 +F xn−h+1, xn−h+1

)
.

We see that this map is an isomorphism because the
following map

f ′ :
h−1⊕
i=1

F (m0) → ker g,

(yn−1, . . . , yn−h+2, yn−h+1)

�→ (−F yn−1, yn−1 −F yn−2,

. . . , yn−h+2 −F yn−h+1, yn−h+1)

gives the inverse map. Note that this is well-defined
since F (m0) ⊆ CF (mn) for all n ≥ 0. Hence, by
putting f := ι ◦ f ′, we have the desired exact se-
quence.

Remark 3.2. In the same way, we can show
that for each 1 ≤ n ≤ h− 2, the sequence

0 →
n⊕

i=1

F (m0)
f→

n⊕
i=0

CF (mn−i)
g→ F (mn) → 0

is exact, where we define the maps f and g by

f(xn−1, xn−2, . . . , x0)

:= (−Fxn−1, xn−1−F xn−2,

. . . , x1 −F x0, x0),

g(xn, xn−1, . . . , x0)

:=
n∑

i=0

xn−i.

Proposition 3.3. For n ≥ h−1, the sequence
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0 →
h−1⊕
i=1

F (m0)
[p]F (m0)

�f→
h−1⊕
i=1

CF (mn−i)
[p]CF (mn−i)

�g→ F (mn−1)
NF

n/(n−1)F (mn)
→ 0

is exact, where the maps f̃ and g̃ are induced by f

and g at the exact sequence in Proposition 3.1.
Proof. We define the homomorphism

Ñ :

(
h−1⊕
i=1

CF (mn−i)

)
⊕CF (mn) →

h⊕
i=1

CF (mn−i)

by

Ñ(xn−1, . . . , xn−h+1, xn)

:= (Nn/(n−1)xn−1, . . . ,

Nn/(n−1)xn−h+1, Nn/(n−1)xn)

= ([p]xn−1, . . . , [p]xn−h+1, Nn/(n−1)xn).

Furthermore, we put

T :
h−1⊕
i=0

CF (mn−i) →
(

h−1⊕
i=1

CF (mn−i)

)
⊕ CF (mn),

(xn, xn−1, . . . , xn−h+1)

�→ (xn−1, . . . , xn−h+1, xn),

and

T ′ :
h−1⊕
i=1

F (m0) →
h−1⊕
i=1

F (m0),

(xn−1, xn−2, . . . , xn−h+1)

�→ (xn−2 −F xn−1, xn−3 −F xn−1,

. . . , xn−h+1 −F xn−1,−Fxn−1).

By a direct calculation, we can check

f ◦ Ñ ◦ T ′ = Ñ ◦ T ◦ f
and

g ◦ Ñ ◦ T = NF
n/(n−1) ◦ g.

Since T ′ is an isomorphism,

Ñ ◦ T ′
(

h−1⊕
i=1

F (m0)

)
= Ñ

(
h−1⊕
i=1

F (m0)

)
.

Hence

coker Ñ ◦ T ′ =
h−1⊕
i=1

F (m0)
[p]F (m0)

.

Since T is an isomorphism,

Ñ ◦ T
(

h−1⊕
i=0

CF (mn−i)

)
= Ñ

(
h−1⊕
i=0

CF (mn−i)

)
.

If i ≥ 1, the norm map Nn/(n−1) on CF (mn−i)
is multiplication-by-p map. Furthermore, we have
NF

n/(n−1)CF (mn) = CF (mn−h) by Proposition 2.3
and Proposition 2.8. Hence

coker Ñ ◦ T =
h−1⊕
i=1

CF (mn−i)
[p]CF (mn−i)

.

By Proposition 3.1 and the snake lemma, the se-
quence

h−1⊕
i=1

F (m0)
[p]F (m0)

�f→
h−1⊕
i=1

CF (mn−i)
[p]CF (mn−i)

�g→ F (mn−1)
NF

n/(n−1)F (mn)
→ 0

is exact. In order to show that f̃ is an injection, sup-
pose that (xn−1, . . . , xn−h+1) +F

⊕h−1
i=1 [p]F (m0) ∈

ker f̃ . Since F (mn) has no torsion point, [p]CF (mn)∩
F (m0) = [p]F (m0) for each integer n ≥ 0. Therefore,

−F xn−1 ∈ [p]CF (mn−1) ∩ F (m0) = [p]F (m0),

xn−1 −F xn−2 ∈ [p]CF (mn−2) ∩ F (m0) = [p]F (m0),

· · · · · ·
xn−h+2 −F xn−h+1

∈ [p]CF (mn−h+1) ∩ F (m0) = [p]F (m0).

Then we have xn−1 ∈ [p]F (m0), xn−2 ∈
[p]F (m0), . . . , xn−h+1 ∈ [p]F (m0) one after another.
Hence (xn−1, . . . , xn−h+1) ∈

⊕h−1
i=1 [p]F (m0). This

shows that f̃ is an injection.
Remark 3.4. In the same way, we can show

that for each 1 ≤ n ≤ h− 2, the sequence

0 →
n⊕

i=1

F (m0)
[p]F (m0)

�f→
n⊕

i=1

CF (mn−i)
[p]CF (mn−i)

�g→ F (mn−1)
NF

n/(n−1)F (mn)
→ 0

is exact, where the maps f̃ and g̃ are induced by f

and g at the exact sequence in Remark 3.2.
Proposition 1.2 follows from Proposition 3.1 and

Remark 3.2 immediately.
Proof of Theorem 1.1. Since F (mn) has no tor-

sion, we have

dimFp CF (mn−i)/[p]CF (mn−i) = rankZp CF (mn−i),

dimFp F (m0)/[p]F (m0) = rankZp F (m0).
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Then the desired result follows from the exact se-
quence in Proposition 3.3 and Proposition 1.2.

Acknowledgements. The author wishes to
thank Prof. S. Nakano for his warm encouragement.
He is grateful to Dr. Y. Hachimori for his valuable
suggestions to complete this study.

References

[ 1 ] Kobayashi, S.: Iwasawa theory for elliptic curves
at supersingular primes. Invent. Math., 152, 1–
36 (2003).

[ 2 ] Kurihara, M.: On the Tate Shafarevich groups
over cyclotomic fields of an elliptic curve with su-
persingular reduction I. Invent. Math., 149, 195–
224 (2002).

[ 3 ] Kuriya, T.: On the norm maps of formal groups
for Zp-extensions. (Preprint).




