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Trace identities of twisted Hecke operators

on the spaces of cusp forms of half-integral weight
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Abstract: Let Rψ be a twisting operator for a quadratic primitive character ψ and T̃ (n2)
the n2-th Hecke operator of half-integral weight. When ψ has an odd conductor, we already found
trace identities between twisted Hecke operators RψT̃ (n2) of half-integral weight and certain Hecke
operators of integral weight for almost all cases (cf. [U1–3]). In this paper, the restriction is removed
and we give similar trace identities for every quadratic primitive character ψ, including the case
that ψ has an even conductor.
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1. Introduction. Let k, A, and N be posi-
tive integers with 4 | N . We denote the space of cusp
forms of weight 2k, level A and the trivial character
by S(2k, A). Let χ be an even quadratic charac-
ter defined modulo N . We denote the space of cusp
forms of weight k+1/2, level N , and character χ by
S(k + 1/2, N, χ).

In [Sh], Shimura had found “Shimura Corre-
spondence”. That is an important correspondence
from Hecke eigenforms in S(k + 1/2, N, χ) to those
in S(2k,N/2).

From the existence of Shimura Correspondence,
we can expect that there exist certain identities be-
tween traces of Hecke operators of weight k+1/2 and
those of weight 2k.

After pioneering works of Niwa [N] and Kohnen
[K], we had generalized their results and had found
such identities between traces of Hecke operators for
almost all levels N (cf. [U1], [U3]). Furthermore, we
generalized these results for the twisted Hecke oper-
ators ([U2]).

We explain more precisely. Let ψ, Rψ, and
T̃ (n2) be the same as the abstract. In the papers
[U1], [U2], and [U4], we calculated the traces of
twisted Hecke operators RψT̃ (n2) both on S(k +
1/2, N, χ) and on Kohnen’s plus space S(k +
1/2, N, χ)K. Moreover, when the conductor of ψ is
odd, we found that the above traces are linear com-
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binations of the traces of certain Hecke operators on
the spaces S(2k,N ′) (N ′ runs over positive divisors
of N/2) for almost all cases. However we missed the
cases such that ord2(N) (the 2-adic additive valua-
tion of N) is equal to 6 and the conductor of χ is
divisible by 8.

The purpose of this paper is to remove the above
restriction. Namely, we report trace identities for all
quadratic primitive characters ψ, including both the
above missing cases of odd conductors and the cases
of even conductors. Details will appear in [U5].

2. Notation. The notation in this paper is
the same as in the previous paper [U1]. Hence see
[U1] and [U2] for the details of notation. Here, we
explain several notations for convenience.

Let k, N , χ be the same as above. For a prime
number p, let ordp(·) be the p-adic additive valuation
with ordp(p) = 1 and | · |p the p-adic absolute value
which is normalized with |p|p = 1. For a real number
x,
[
x
]

means the greatest integer less than or equal
to x. Let a be a non-zero integer and b a positive
integer. We write a | b∞ if every prime factor of a
divides b.

Let ρ be any Dirichlet character. We denote the
conductor of ρ by f(ρ) and for any prime number p,
the p-primary component of ρ by ρp. Furthermore we
set ρA :=

∏
p|A ρp for an arbitrary integer A. Here p

runs over all prime divisors of A. We denote by
( ·
·
)

the Kronecker symbol. See [M, p. 82] for a definition
of this symbol.
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Let V be a finite-dimensional vector space over
C. We denote the trace of a linear operator T on V
by tr(T ; V ).

Put µ := ord2(N) and ν = νp := ordp(N) for
any odd prime number p. Then we decompose N =
2µM . Namely, M is the odd part of N .

3. Results. Let ψ be a quadratic primitive
character with conductor r. Then we can express the
conductor r as follows:{

r = 2uL, u = 0, 2, and 3
and L is a squarefree positive odd integer.

We consider the following conditions (∗1)–(∗3).

L2 |M.(∗1)

L2 |M and

{
µ � 5, if f(χ2) = 8.

µ � 4, if f(χ2) | 4.
(∗2)

L2 |M and µ � 6.(∗3)

From now on until the end of this paper, we
assume the following.

Assumption. We impose the condition (∗1),
(∗2), or (∗3) according to u = 0, 2, or 3 respectively.

Now, let Rψ be the twisting operator of ψ:

f =
∑
n�1

a(n)qn �→ f | Rψ :=
∑
n�1

a(n)ψ(n)qn ,

(q := exp(2π
√−1z), z ∈ C, Im z > 0).

Then, from the above conditions (∗1–3) and the as-
sumption ψ2 = 1, we see that the twisting operator
Rψ fixes the space of cusp forms S(k + 1/2, N, χ)
(cf. [Sh, Lemma 3.6]).

In the case of k = 1, we need to make a
certain modification. It is well-known that the
space S(3/2, N, χ) contains a subspace U(N ;χ)
which corresponds to a space of Eisenstein series via
Shimura correspondence and which is generated by
theta series of special type (cf. [U2, § 0(c)]). Let
V (N ;χ) be the orthogonal complement of U(N ;χ)
in S(3/2, N, χ). Then it is also well-known that
V (N ;χ) corresponds to a space of cusp forms of
weight 2 via Shimura correspondence. Hence we
need to consider the subspace V (N ;χ) in place of
S(3/2, N, χ) in the case of k = 1. The subspaces
U(N ;χ) and V (N ;χ) are fixed by the twisting oper-
ator Rψ (See [U5] for a proof and refer also to [U2,
p. 94]). Moreover, the n2-th Hecke operators T̃ (n2),
(n,N) = 1, also fix the subspace V (N ;χ) (cf. [U1,
p. 508]).

Thus for any positive integer n with (n,N) = 1,
we can consider the twisted Hecke operator RψT̃ (n2)
on the spaces S(k + 1/2, N, χ) (k � 2) and V (N ;χ)
(k = 1) (cf. [U2, p. 86]).

For the statement of Theorem, we prepare a lit-
tle more notation.

First we decompose the level N with respect to
L as follows:

N = 2µL0L2, L0 > 0, L2 > 0,

µ := ord2(N), L0 | L∞, (L2, L) = 1.

And we put

N0 :=
∏
p|L

p2[(νp−1)/2]+1.

Here p runs over all prime divisors of L.
Next, let A be any positive integer. For any

odd prime number p and any integers a, b (0 � a �
ordp(A)/2), we put

λp(χp, ordp(A); b, a)

:=


1, if a = 0,

1 +
(
−b
p

)
, if 1 � a �

[
(ordp(A) − 1)/2

]
,

χp(−b), if ordp(A) is even
and a = ordp(A)/2 � 1.

And for any integers a, b (0 � a � ord2(A)/2), we
put

λ2(χ2, ord2(A); b, a)

:=



1, if a = 0,
0, if a = 1,
ξ(b)
(
1 +
(

2
b

))
,

if 2 � a �
[
(ord2(A) − 1)/2

]
,

ξ(b)χ2(−b), if ord2(A) is even
and a = ord2(A)/2 � 2.

Here, ξ(b) :=
(
1 − (−1

b

))
/2.

Then for any integer b and any square integer c,
we put

Λχ(ψ,A; b, c)

:=
∏
p|A

(p,r)=1

λp(χp, ordp(A); b, ordp(c)/2).

Here p runs over all prime divisors of A prime to r.
Furthermore, let B be a positive integer such

that B | r∞ and (A/B,B) = 1. For all positive
integers n such that (n,N) = 1, we define



No. 7] Trace identities of twisted Hecke operators 133

Θψ[2k, n;A,B, χ] = Θψ [A,B, χ]

:=
∑

0<N1|A
N1=�, (N1,r)=1

Λχ(ψ,A; rn,N1)

× tr(W (BN1)T (n);S(2k,N1N2)) ,

where N1 runs over all square divisors of A which are
prime to r and N2 := A

∏
p|N1

|A|p.
Remark. All the spaces which occur in the

definition of Θψ [A,B, χ] are contained in the space
S(2k, A).

Finally, let χr be the r-primary component of
χ and χ′

r :=
∏
p|N,(p,r)=1 χp, where p runs over all

prime divisors of N which are prime to r. Then we
put

c(k, n;ψ, χ) = c(ψ, χ) := ψ(−1)kχr(n)χ′
r(−r).

Under these notations, we can state trace iden-
tities of the twisted Hecke operators RψT̃ (n2).

First we state trace identities for the case of odd
conductors.

Theorem 1. Let k, N, and χ be the same as
above. Suppose that ψ is a quadratic primitive char-
acter defined modulo an odd positive integer r. Hence
we assume the condition (∗1).

For all positive integers n such that (n,N) = 1,
we have the following trace identities.

(1) Suppose that µ = 2. We have{
tr
(
RψT̃ (n2);S(k + 1/2, N, χ)K

)
if k � 2

tr
(
RψT̃ (n2); V (N ;χ)K

)
if k = 1

}
= c(ψ, χ)Θψ[N0L2, N0, χ].

(2) Suppose that 2 � µ � 4 and furthermore
f(χ2) = 8 if µ = 4. We have{

tr
(
RψT̃ (n2);S(k + 1/2, N, χ)

)
if k � 2

tr
(
RψT̃ (n2); V (N ;χ)

)
if k = 1

}
= c(ψ, χ)Θψ[2µ−1N0L2, N0, χ].

(3) Suppose that 4 � µ � 6 and furthermore
f(χ2) divides 4 if µ = 4, 6. We have{

tr
(
RψT̃ (n2);S(k + 1/2, N, χ)

)
if k � 2

tr
(
RψT̃ (n2); V (N ;χ)

)
if k = 1

}
= 2c(ψ, χ)Θψ[2µ−2N0L2, N0, χ].

(4) Suppose that µ = 6 and f(χ2) = 8. We have



tr
(
RψT̃ (n2);S(k + 1/2, 26M,χ)

)
− ψ(2) tr

(
RψT̃ (n2);S(k + 1/2, 25M,χ

(
2
)
)
)
,

if k � 2.
tr
(
RψT̃ (n2); V (26M ;χ)

)
− ψ(2) tr

(
RψT̃ (n2); V (25M ;χ

(
2
)
)
)
,

if k = 1.


= 4c(ψ, χ) ×

{
Θψ[23N0L2, N0, χ]

− Θψ

[
22N0L2, N0, χ

(
2
)]} .

(5) Suppose that µ = 7 and f(χ2) divides 4. We
have

tr
(
RψT̃ (n2);S(k + 1/2, 27M,χ)

)
− ψ(2) tr

(
RψT̃ (n2);S(k + 1/2, 26M,χ

(
2
)
)
)
,

if k � 2.
tr
(
RψT̃ (n2); V (27M ;χ)

)
− ψ(2) tr

(
RψT̃ (n2); V (26M ;χ

(
2
)
)
)
,

if k = 1.


= 2c(ψ, χ) ×

{
Θψ[25N0L2, N0, χ]

− Θψ

[
24N0L2, N0, χ

(
2
)]} .

(6) Suppose that µ = 7 and f(χ2) = 8. We have

tr
(
RψT̃ (n2);S(k + 1/2, 27M,χ)

)
− ψ(2) tr

(
RψT̃ (n2);S(k + 1/2, 26M,χ

(
2
)
)
)
,

if k � 2.
tr
(
RψT̃ (n2); V (27M ;χ)

)
− ψ(2) tr

(
RψT̃ (n2); V (26M ;χ

(
2
)
)
)
,

if k = 1.


= 2c(ψ, χ) × {Θψ[25N0L2, N0, χ]

− Θψ [24N0L2, N0, χ]− Θψ

[
24N0L2, N0, χ

(
2
)]

+ 2Θψ [23N0L2, N0, χ] + Θψ

[
23N0L2, N0, χ

(
2
)]

− 2Θψ

[
22N0L2, N0, χ

(
2
)]}

.

(7) Suppose that µ � 8. We have

tr
(
RψT̃ (n2);S(k + 1/2, 2µM,χ)

)
− ψ(2) tr

(
RψT̃ (n2);S(k + 1/2, 2µ−1M,χ

(
2
)
)
)
,

if k � 2.
tr
(
RψT̃ (n2); V (2µM ;χ)

)
− ψ(2) tr

(
RψT̃ (n2); V (2µ−1M ;χ

(
2
)
)
)
,

if k = 1.


= 2c(ψ, χ) ×

{
Θψ[2µ−2N0L2, N0, χ]

− Θψ

[
2µ−3N0L2, N0, χ

(
2
)]} .
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Next, we state trace identities for the case of
even conductor.

Theorem 2. Let k, N, and χ be the same
as above. Suppose that ψ is a quadratic primitive
character defined modulo an even positive integer r.
Hence we assume the condition (∗2) or (∗3) accord-
ing to u = 2 or 3 respectively.

For all positive integers n such that (n,N) = 1,
we have the following trace identities.

Case I. (u = 2)
(⇔ ψ2 =

(−1
))

(I-1) Suppose that µ = 4 and f(χ2) divides 4.
We have{

tr
(
RψT̃ (n2);S(k + 1/2, 24M,χ)

)
if k � 2

tr
(
RψT̃ (n2); V (24M ;χ)

)
if k = 1

}

= χ2

((−1
Ln

))
c(ψ, χ)Θψ [22N0L2, 22N0, χ].

(I-2) Suppose that µ = 5 and f(χ2) divides 4.
We have{

tr
(
RψT̃ (n2);S(k + 1/2, 25M,χ)

)
if k � 2

tr
(
RψT̃ (n2); V (25M ;χ)

)
if k = 1

}

= χ2

((−1
Ln

))
c(ψ, χ) × {Θψ[23N0L2, N0, χ]

− 2Θψ[22N0L2, N0, χ]+2Θψ[22N0L2, 22N0, χ]
}
.

(I-3) Suppose that µ = 5, 6 and f(χ2) = 8. We
have{

tr
(
RψT̃ (n2);S(k + 1/2, 2µM,χ)

)
= 0 if k � 2.

tr
(
RψT̃ (n2); V (2µM ;χ)

)
= 0 if k = 1.

(I-4) Suppose that µ = 7 and f(χ2) = 8. We
have{

tr
(
RψT̃ (n2);S(k + 1/2, 27M,χ)

)
if k � 2

tr
(
RψT̃ (n2); V (27M ;χ)

)
if k = 1

}

=
(
1 − ψ(−1)

(−1
n

))
c(ψ, χ)

× {Θψ[26N0L2, 26N0, χ]− Θψ[24N0L2, 24N0, χ]
}
.

(I-5) Suppose that µ � 8, or µ = 6, 7 and f(χ2)
divides 4. We have{

tr
(
RψT̃ (n2);S(k + 1/2, 2µM,χ)

)
if k � 2

tr
(
RψT̃ (n2); V (2µM ;χ)

)
if k = 1

}

=
(
1 − ψ(−1)

(−1
n

))
c(ψ, χ)

× Θψ [2µ̂−2N0L2, 2µ̂−2N0, χ].

Here µ̂ is the greatest even integer less than or equal
to µ, i.e. µ̂ = 2

[
µ/2
]
.

Case II. (u = 3)
(⇔ ψ2 =

(±2
))

(II-1) Suppose that µ = 6, 7 and f(χ2) = 8. We
have{

tr
(
RψT̃ (n2);S(k + 1/2, 2µM,χ)

)
= 0 if k � 2.

tr
(
RψT̃ (n2); V (2µM ;χ)

)
= 0 if k = 1.

(II-2) Suppose that µ � 8, or µ = 6, 7 and f(χ2)
divides 4. We have{

tr
(
RψT̃ (n2);S(k + 1/2, 2µM,χ)

)
if k � 2

tr
(
RψT̃ (n2); V (2µM ;χ)

)
if k = 1

}

=
(
1 − ψ(−1)

(−1
n

))
c(ψ, χ)

× Θψ [2µ̃−2N0L2, 2µ̃−2N0, χ].

Here µ̃ is the greatest odd integer less than or equal
to µ, i.e. µ̃ = 2

[
(µ− 1)/2

]
+ 1.

4. Concluding remarks. We can expect to
establish a theory of newforms by using these trace
identities. In fact, we established a theory of new-
forms in the case of level 2m. See [U6] for the results.
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