An optimal inequality and an extremal class of graph hypersurfaces in affine geometry

By Bang-Yen Chen
Department of Mathematics, Michigan State University
East Lansing, Michigan 48824-1027, U. S. A.
(Communicated by Shigefumi Mori, M. J. A., Sept. 13, 2004)

Abstract

We discover a general optimal inequality for graph hypersurfaces in affine ($n+1$)space \mathbf{R}^{n+1} involving the Tchebychev vector field. We also completely classify the hypersurfaces which verify the equality case of the inequality.

Key words: Optimal inequality; graph hypersurface; extremal class.

1. Introduction. A hypersurface $f: M \rightarrow$ $\mathbf{R}^{n+1}, n \geq 2$, in an affine $(n+1)$-space is called a graph hypersurface if its affine normal vector field is some constant transversal vector field ξ. A result of Nomizu and Pinkall [4] states that locally M is affine equivalent to the graph immersion of a certain function F.

For any vector fields X, Y tangent to a graph hypersurface M, one can decompose $D_{X} f_{*}(Y)$ into its tangential and transverse components:

$$
\begin{equation*}
D_{X} f_{*}(Y)=f_{*}\left(\nabla_{X} Y\right)+h(X, Y) \xi \tag{1.1}
\end{equation*}
$$

where D is the canonical flat connection on \mathbf{R}^{n+1}, h is a symmetric tensor of type $(0,2)$ and ∇ is the induced affine connection.

If h is non-degenerate, h defines a semiRiemannian metric on M which is called the affine metric of M.

Let $\hat{\nabla}$ be the Levi-Civita connection of (M, h) and K the difference tensor $\nabla-\hat{\nabla}$ on M. By taking the trace of K, one obtains a so-called Tchebychev form $T(X):=(1 / n) \operatorname{trace}\{Y \rightarrow K(X, Y)\}$. The Tchebychev vector field $T^{\#}$ can then be defined by $h\left(T^{\#}, X\right)=T(X)$.

As usual we assume that h is definite. In case that h is negative definite, we shall replace ξ by $-\xi$ for the affine normal. In this way, the symmetric $(0,2)$-tensor h is always positive definite and thus always defines a Riemannian metric on M.

In this article we prove a general inequality for graph hypersurfaces in \mathbf{R}^{n+1}. We also classify the extremal class of graph hypersurfaces which satisfy

[^0]the equality case of the optimal inequality identically.
2. Preliminaries. We recall some basic facts about graph hypersurfaces (for details see Nomizu and Sasaki's book [5]).

Let $f: M \rightarrow \mathbf{R}^{n+1}$ be a graph hypersurface. Then the equations of Gauss and Codazzi are given respectively by

$$
\begin{align*}
& R(X, Y) Z=0 \tag{2.1}\\
& \left(\nabla_{X} h\right)(Y, Z)=\left(\nabla_{Y} h\right)(X, Z) \tag{2.2}
\end{align*}
$$

Denote by $\hat{\nabla}$ the Levi-Civita connection of h and by \hat{K} and \hat{R} the sectional curvature and the curvature tensor of $\tilde{\nabla}$, respectively.

The difference tensor K is defined by

$$
\begin{equation*}
K_{X} Y=K(X, Y)=\nabla_{X} Y-\hat{\nabla}_{X} Y \tag{2.3}
\end{equation*}
$$

which is a symmetric (1,2)-tensor field.
For each X, K_{X} is self-adjoint. The Tchebychev form T and the Tchebychev vector field $T^{\#}$ are defined by

$$
\begin{align*}
& T(X)=\frac{1}{n} \text { trace } K_{X} \tag{2.4}\\
& h\left(T^{\#}, X\right)=T(X) \tag{2.5}
\end{align*}
$$

It is well-known that for graph hypersurfaces we have

$$
\begin{align*}
& h\left(K_{X} Y, Z\right)=h\left(Y, K_{X} Z\right) \tag{2.6}\\
& \hat{R}(X, Y) Z=K_{Y} K_{X} Z-K_{X} K_{Y} Z \tag{2.7}\\
& \left(\hat{\nabla}_{X} K\right)(Y, Z)=\left(\hat{\nabla}_{Y} K\right)(Z, X) \tag{2.8}\\
& \quad=\left(\hat{\nabla}_{Z} K\right)(X, Y)
\end{align*}
$$

3. A general optimal inequality. For any 2-plane section π at $p \in M$, let $\hat{K}(\pi)$ denote the sec-
tional curvature of (M, h) associated with π. The scalar curvature $\hat{\tau}$ of (M, h) at p is defined to be $\hat{\tau}(p)=\sum_{i<j} \hat{K}\left(e_{i} \wedge e_{j}\right)$, where e_{1}, \ldots, e_{n} is a h orthonormal basis of $T_{p} M$.

For graph hypersurfaces we have the following general inequality.

Theorem 1. If M is a definite graph hypersurface in $\mathbf{R}^{n+1}, n \geq 2$, then the Tchebychev vector field satisfies

$$
\begin{equation*}
\hat{\tau} \geq \frac{n^{2}(1-n)}{2(n+2)} h\left(T^{\#}, T^{\#}\right) \tag{3.1}
\end{equation*}
$$

The equality case of inequality (3.1) holds at a point $p \in M$ if and only if we have

$$
\begin{align*}
& K\left(e_{1}, e_{1}\right)=3 \lambda e_{1}, K\left(e_{1}, e_{j}\right)=\lambda e_{j}, \tag{3.2}\\
& K\left(e_{i}, e_{j}\right)=0, K\left(e_{j}, e_{j}\right)=\lambda e_{1}, \\
& \quad 2 \leq i \neq j \leq n
\end{align*}
$$

with respect to some suitable h-orthonormal basis e_{1}, \ldots, e_{n} of $T_{p} M$.

Proof. Let M be a definite graph hypersurface in \mathbf{R}^{n+1} and let e_{1}, \ldots, e_{n} be a h-orthonormal basis. We put $K_{j k}^{i}=h\left(K\left(e_{j}, e_{k}\right), e_{i}\right)$. From (2.6) we have

$$
\begin{equation*}
K_{j k}^{i}=K_{i k}^{j}=K_{i j}^{k}, \quad i, j, k=1, \ldots, n . \tag{3.3}
\end{equation*}
$$

From the definition of Tchebychev vector we find

$$
\begin{align*}
& n^{2} h\left(T^{\#}, T^{\#}\right) \tag{3.4}\\
& \quad=\sum_{i}\left(\sum_{j}\left(K_{j j}^{i}\right)^{2}+2 \sum_{j<k} K_{j j}^{i} K_{k k}^{i}\right) .
\end{align*}
$$

By applying equation (2.7) we have

$$
\begin{equation*}
2 \hat{\tau}=h(K, K)-n^{2} h\left(T^{\#}, T^{\#}\right) \tag{3.5}
\end{equation*}
$$

Thus, by (3.3), (3.4) and (3.5), we obtain

$$
\begin{align*}
2 \hat{\tau}= & 2 \sum_{i \neq j}\left(K_{j j}^{i}\right)^{2}+6 \sum_{i<j<k}\left(K_{j k}^{i}\right)^{2} \tag{3.6}\\
& -\sum_{i} \sum_{j \neq k} K_{j j}^{i} K_{k k}^{i} .
\end{align*}
$$

From (3.4) and (3.6) we find

$$
\begin{aligned}
& n^{2} h\left(T^{\#}, T^{\#}\right)+\frac{2(n+2)}{n-1} \hat{\tau} \\
& =\sum_{i}\left(K_{i i}^{i}\right)^{2}+\frac{3 n+5}{n-1} \sum_{i \neq j}\left(K_{j j}^{i}\right)^{2} \\
& \quad+\frac{6(n+2)}{n-1} \sum_{i<j<k}\left(K_{j k}^{i}\right)^{2}-\frac{3}{n-1} \sum_{i} \sum_{j \neq k} K_{j j}^{i} K_{k k}^{i}
\end{aligned}
$$

$$
\begin{aligned}
&= \sum_{i}\left(K_{i i}^{i}\right)^{2}+\frac{6(n+2)}{n-1} \sum_{i<j<k}\left(K_{j k}^{i}\right)^{2} \\
&-\frac{6}{n-1} \sum_{j \neq i} K_{i i}^{i} K_{j j}^{i}+\frac{9}{n-1} \sum_{j \neq i}\left(K_{j j}^{i}\right)^{2} \\
&+\frac{3}{n-1} \sum_{i \neq j, k} \sum_{j<k}\left(K_{j j}^{i}-K_{k k}^{i}\right)^{2} \\
&= \frac{6(n+2)}{n-1} \sum_{i<j<k}\left(K_{j k}^{i}\right)^{2} \\
&+\frac{1}{n-1} \sum_{j \neq i}\left(K_{i i}^{i}-3 K_{j j}^{i}\right)^{2} \\
&+\frac{3}{n-1} \sum_{i \neq j, k} \sum_{j<k}\left(K_{j j}^{i}-K_{k k}^{i}\right)^{2} \\
& \geq 0
\end{aligned}
$$

which implies (3.1).
It is easy to see that the equality sign of (3.1) holds if and only if $K_{i i}^{i}=3 K_{j j}^{i}$ and $K_{j k}^{i}=0$ for distinct i, j, k. Thus, if we choose e_{1}, \ldots, e_{n} in such way that e_{1} is parallel to the Tchebychev vector field $T^{\#}$, we obtain (3.2).

The converse is easy to verify.

4. The equality case.

Theorem 2. If $f: M \rightarrow \mathbf{R}^{n+1}, n \geq 2$, is a definite graph hypersurface satisfying the equality case of (3.1) identically, then M is affinely equivalent to an open part of one of the following hypersurfaces:
(I) The paraboloid defined by

$$
\left(u_{1}, u_{2}, \ldots, u_{n}, \frac{1}{2} \sum_{j=1}^{n} u_{j}^{2}\right)
$$

(II) The hypersurface defined by

$$
\left(u_{2}, \ldots, u_{n}, \frac{s^{4}}{4}+\sum_{j=2}^{n} u_{j}^{2},-\frac{s^{2}}{4}\right)
$$

(III) A hypersurface defined by

$$
\begin{aligned}
& \frac{\{(\mathrm{ns}(2 a s, k)-\mathrm{ds}(2 a s, k))(\mathrm{ds}(2 a s, k)-\operatorname{cs}(2 a s, k))\}^{\frac{3}{2}}}{\mathrm{~ns}(2 a s, k)+\operatorname{cs}(2 a s, k)-2 d s(2 a s, k)} \\
& \times\left(\sin u_{2}, \ldots, \sin u_{n} \prod_{j=2}^{n-1} \cos u_{j}, \prod_{j=2}^{n} \cos u_{j}, 0\right) \\
& -\left(0, \ldots, 0, \frac{1+\operatorname{dn}(2 a s, k)}{a^{2}(1+\operatorname{cn}(2 a s, k)+2 \operatorname{dn}(2 a s, k))}\right)
\end{aligned}
$$

where $k=1 / \sqrt{2}$ is the modulus of Jacobi's elliptic functions and a is an arbitrary positive number.
(IV) A hypersurface defined by

$$
\begin{aligned}
& \mathrm{ds}(a s, k)(\operatorname{cs}(a s, k)-\operatorname{ns}(a s, k)) \\
& \times\left(\sin u_{2}, \sin u_{3} \cos u_{2}, \ldots\right. \\
& \left.\quad \sin u_{n} \prod_{j=2}^{n-1} \cos u_{j}, \prod_{j=2}^{n} \cos u_{j}, \operatorname{nd}(a s, k)-\operatorname{cd}(a s, k)\right)
\end{aligned}
$$

where $k=1 / \sqrt{2}$ is the modulus of Jacobi's elliptic functions and a is an arbitrary positive number.

Proof. Let M be a definite graph hypersurface satisfying the equality case of (3.1) identically. Then we have (3.2) with respect to some h-orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$. Let $\omega^{1}, \ldots, \omega^{n}$ be the dual 1forms of e_{1}, \ldots, e_{n} with respect to h and $\left(\omega_{i}^{j}\right)$ the connection form on (M, h), so we have $\hat{\nabla}_{X} e_{i}=$ $\sum_{j=1}^{n} \omega_{i}^{j}(X) e_{j}$.

Case (i): $\lambda=0$ identically. In this case, we have $K=0, \nabla=\hat{\nabla}$. Hence, M is affinely equivalent to an open portion of the paraboloid given in (I).

Case (ii): $\lambda \neq 0$. Let $U=\left\{p \in M: T^{\#}(p) \neq\right.$ $0\}$. Then U is a nonempty open subset. From Theorem 1 we have $U=\{p \in M: K \neq 0$ at $p\}$. By applying (2.8) and (3.2) we find

$$
\begin{align*}
& e_{1} \lambda=\lambda \omega_{1}^{j}\left(e_{j}\right), \quad e_{j} \lambda=0, j=2, \ldots, n \tag{4.1}\\
& \omega_{1}^{j}\left(e_{k}\right)=\omega_{1}^{j}\left(e_{1}\right)=0, \quad 1<j \neq k \leq n
\end{align*}
$$

From (4.1) and (4.2) we obtain

$$
\begin{equation*}
\omega_{1}^{j}=e_{1}(\ln \lambda) \omega^{j}, \quad j=2, \ldots, n \tag{4.3}
\end{equation*}
$$

Let \mathcal{D} denote the distribution on U spanned by e_{1} and \mathcal{D}^{\perp} the h-orthogonal complementary distribution of \mathcal{D} which is spanned by $\left\{e_{2}, \ldots, e_{n}\right\}$.

Lemma 1. On U we have:
(a) The integral curves of e_{1} are geodesics of (M, h).
(b) Distributions \mathcal{D} and \mathcal{D}^{\perp} are both integrable.
(c) There exist a local coordinate system $\left\{x_{1}, \ldots, x_{n}\right\}$ such that
(c.1) \mathcal{D} is spanned by $\left\{\partial / \partial x_{1}\right\}$ and \mathcal{D}^{\perp} is spanned by $\left\{\partial / \partial x_{2}, \ldots, \partial / \partial x_{n}\right\}$;
(c.2) $e_{1}=\partial / \partial x_{1}, \omega^{1}=d x_{1}$ and h takes the form: $h=d x_{1}^{2}+\sum_{j, k=2}^{n} h_{j k} d x_{j} d x_{k}$.
(d) λ is a function of $s:=x_{1}$ satisfying

$$
\begin{equation*}
\frac{d^{2} \lambda}{d s^{2}}=2 \lambda^{3} \tag{4.4}
\end{equation*}
$$

Proof of Lemma 1. From (4.2) and (4.3), we find $\hat{\nabla}_{e_{1}} e_{1}=d \omega^{1}=0$, which implies that the integral curves of e_{1} are h-geodesic.

By using (4.2) we get $h\left(\left[e_{j}, e_{k}\right], e_{1}\right)=0$ which implies that \mathcal{D}^{\perp} is integrable. Also, since \mathcal{D} is of rank one, \mathcal{D} is trivially integrable.

Because \mathcal{D} is of rank one, there exists a local coordinate system $\left\{y_{1}, \ldots, y_{n}\right\}$ such that $e_{1}=\partial / \partial y_{1}$. Since \mathcal{D}^{\perp} is integrable too, there also exists a local coordinate system $\left\{z_{1}, \ldots, z_{n}\right\}$ such that \mathcal{D}^{\perp} is spanned by $\partial / \partial z_{2}, \ldots, \partial / \partial z_{n}$. Hence, if we put $x_{1}=$ $y_{1}, x_{2}=z_{2}, \ldots, x_{n}=z_{n}$, then $\left\{x_{1}, \ldots, x_{n}\right\}$ is a local coordinate system which satisfies conditions (c.1) and (c.2).

Statement (c) and (4.1) imply that λ depends only on s. Using (2.7) and (3.2) we get

$$
\begin{equation*}
h\left(\hat{R}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)=-2 \lambda^{2} \tag{4.5}
\end{equation*}
$$

On the other hand, (4.1), (4.2) and (4.3) imply that

$$
\begin{equation*}
h\left(\hat{R}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)=-(\ln \lambda)^{\prime \prime}-(\ln \lambda)^{\prime 2} \tag{4.6}
\end{equation*}
$$

Combining these two equations yields (4.4).
Lemma 2. Up to sign and translation on s, the non-trivial solutions of differential equation (4.4) are the following functions:
(a) $\lambda=s^{-1}$,
(b) $\lambda=a \operatorname{ns}(2 a s, 1 / \sqrt{2})+a \operatorname{cs}(2 a s, 1 / \sqrt{2}), a>0$,
(c) $\lambda=a \mathrm{ds}(a s, 1 / \sqrt{2}), a>0$.

Proof of Lemma 2. Clearly, differential equation (4.4) admits no non-trivial constant solution. So, we may assume λ is non-constant. Hence (4.4) yields $\lambda^{\prime} d \lambda^{\prime}=2 \lambda^{3} d \lambda$ which implies that

$$
\begin{equation*}
\pm(s+b)=\int^{\lambda} \frac{d t}{\sqrt{t^{4}+c}} \tag{4.7}
\end{equation*}
$$

for some constants b, c.
Case (1): $c=0$. In this case, (4.7) yields $\pm\left(s+c_{2}\right)=1 / \lambda$ which gives solution (a).

Case (2): $c>0$. If we put $c=a^{4}$ for a positive number a, we obtain solution (b) from (4.7).

Case (3): $c<0$. If we put $c=-a^{4} / 4$, then we obtain solution (c).

Lemma 3. The distribution \mathcal{D} is auto-parallel and its h-orthogonal complementary distribution \mathcal{D}^{\perp} is spherical on U. Moreover, when $n \geq 3$, each leave of \mathcal{D}^{\perp} in (M, h) is of constant curvature $\lambda^{\prime 2} / \lambda^{2}-\lambda^{2}$.

Proof of Lemma 3. First, it is easy to see that Lemma 1 implies that \mathcal{D} is auto-parallel.

Let X, Y be any two vector fields in \mathcal{D}^{\perp} and e_{1} a h-unit vector field in \mathcal{D}. Then (2.8), (3.2) and the auto-parallelism of \mathcal{D} imply that

$$
\begin{aligned}
- & 3 \lambda h\left(\hat{\nabla}_{X} Y, e_{1}\right)=-h\left(\hat{\nabla}_{X} Y, K\left(e_{1}, e_{1}\right)\right) \\
= & h\left(Y,(\hat{\nabla} K)\left(X, e_{1}, e_{1}\right)\right)+2 h\left(Y, K\left(e_{1}, \hat{\nabla}_{X} e_{1}\right)\right) \\
= & h\left(Y,(\hat{\nabla} K)\left(e_{1}, e_{1}, X\right)\right)+2 \lambda h\left(Y, \hat{\nabla}_{X} e_{1}\right) \\
= & h\left(Y, \nabla_{e_{1}} K\left(e_{1}, X\right)\right)-h\left(Y, K\left(e_{1}, \hat{\nabla}_{e_{1}} X\right)\right) \\
& +2 \lambda h\left(Y, \hat{\nabla}_{X} e_{1}\right) \\
= & h\left(Y, \hat{\nabla}_{e_{1}}(\lambda X)\right)-h\left(Y, K\left(e_{1}, \hat{\nabla}_{e_{1}} X\right)\right) \\
& +2 \lambda h\left(Y, \hat{\nabla}_{X} e_{1}\right) \\
= & \left(e_{1} \lambda\right) h(X, Y)+2 \lambda h\left(Y, \hat{\nabla}_{X} e_{1}\right) \\
= & \left(e_{1} \lambda\right) h(X, Y)-2 \lambda h\left(\hat{\nabla}_{X} Y, e_{1}\right)
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
h\left(\hat{\nabla}_{X} Y, e_{1}\right)=-\left(e_{1} \ln \lambda\right) h(X, Y) \tag{4.8}
\end{equation*}
$$

which shows that the leaves of \mathcal{D}^{\perp} are totally umbilical hypersurfaces with constant mean curvature. Since the codimension of leaves is one, the distribution \mathcal{D}^{\perp} is a spherical distribution.

When $n \geq 3$, it follows from (2.7), (3.2) and (4.8) that each leave of \mathcal{D}^{\perp} is of constant curvature $\lambda^{\prime 2} / \lambda^{2}-\lambda^{2}$ with respect to the metric induced from (M, h). This proves Lemma 3.

Now, let us assume that $n \geq 3$. It follows from Lemma 3 and a result of [3] that (U, h) is locally the warped product $I \times_{\varphi(s)} N(\bar{c})$ of an open interval I and a Riemannian $(n-1)$-manifold $N(\bar{c})$ of constant curvature \bar{c} with a suitable warping function φ. So, the metric h on $I \times_{\varphi} N$ is given by

$$
\begin{equation*}
h=d s^{2}+\varphi^{2} \tilde{h}, \tag{4.9}
\end{equation*}
$$

where \tilde{h} is the constant curvature metric on $N(\bar{c})$. Without loss of generality, we may choose $\bar{c}=1,0$, or -1 according to $c>0, c=0$, or $c<0$. Obviously, vectors tangent to first factor I are in \mathcal{D} and vectors tangent to the second factor $N(\bar{c})$ are in \mathcal{D}^{\perp}.

By applying Theorem 1, equation (2.8) of Codazzi and (4.9), we find $(\ln \lambda)_{s}=(\ln \varphi)_{s}$. Hence, we have

$$
\begin{equation*}
\varphi=\alpha \lambda \tag{4.10}
\end{equation*}
$$

for some nonzero real number α.
It is well-known that the curvature tensors \hat{R} and R^{F} of M and N for the warped product $M:=$ $I \times{ }_{\varphi} N$ are related by

$$
\begin{align*}
\hat{R}(X, Y) Z & =R^{F}(X, Y) Z \tag{4.11}\\
- & \left(\frac{\varphi^{\prime}}{\varphi}\right)^{2}(h(Y, Z) X-h(X, Z) Y)
\end{align*}
$$

for vector fields X, Y, Z tangent to N. From (4.10) and (4.11) we have

$$
\begin{align*}
& \hat{K}\left(\frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}\right)=\frac{\bar{c}-\varphi^{\prime 2}}{\varphi^{2}}=\frac{c-\lambda^{\prime 2}}{\lambda^{2}} \tag{4.12}\\
& c=\frac{\bar{c}}{\alpha^{2}}
\end{align*}
$$

On the other hand, Theorem 1 and (2.7) give

$$
\begin{equation*}
K\left(\frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}\right)=-\lambda^{2} \tag{4.13}
\end{equation*}
$$

Combining (4.12) and (4.13) shows that λ satisfies

$$
\begin{equation*}
\lambda^{\prime 2}-\lambda^{4}=c \tag{4.14}
\end{equation*}
$$

Since the constant c is equal to zero, a positive number, or a negative number, according to λ is given by cases (a), (b), or (c) of Lemma 2, the open subset U is the whole hypersurface M in cases (b) and (c); and U is dense in M if λ is given by case (a).

Now, we divide the proof into three cases.
Case (a): $\lambda=s^{-1}$. In this case, we have $c=0$. Thus (M, h) is locally the warped product $\mathbf{R} \times{ }_{\varphi(s)} \mathbf{E}^{n-1}$ with a suitable warping function φ. So, with respect to a natural Euclidean coordinate system $\left\{u_{2}, \ldots, u_{n}\right\}$, the warped product metric is

$$
\begin{align*}
& h=d s^{2}+\varphi^{2}(s) h_{0} \tag{4.15}\\
& h_{0}=d u_{2}^{2}+d u_{3}^{2}+\cdots+d u_{n}^{2}
\end{align*}
$$

It follows from (4.15) that the sectional curvature of $\mathbf{R} \times{ }_{\varphi(s)} \mathbf{E}^{n-1}$ satisfies

$$
\begin{equation*}
\hat{K}\left(\frac{\partial}{\partial s} \wedge \frac{\partial}{\partial u_{k}}\right)=-\frac{\varphi^{\prime \prime}(s)}{\varphi(s)} \tag{4.16}
\end{equation*}
$$

On the other hand, (2.7), (3.2) and $\lambda=s^{-1}$ give

$$
\begin{equation*}
\hat{K}\left(\frac{\partial}{\partial s} \wedge \frac{\partial}{\partial u_{k}}\right)=-\frac{2}{s^{2}} \tag{4.17}
\end{equation*}
$$

Hence, by combining (4.16) and (4.17), we obtain

$$
\begin{equation*}
s^{2} \varphi^{\prime \prime}(s)=2 \varphi(s) \tag{4.18}
\end{equation*}
$$

which gives $\varphi=k_{1} s^{2}+k_{2} s^{-1}$ for some constant k_{1}, k_{2} not both zero. So, (4.15) becomes

$$
\begin{equation*}
h=d s^{2}+\left(k_{1} s^{2}+\frac{k_{2}}{s}\right)^{2} h_{0} \tag{4.19}
\end{equation*}
$$

which yields

$$
\begin{align*}
& \hat{\nabla}_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}=\hat{\nabla}_{\frac{\partial}{\partial u_{i}}} \frac{\partial}{\partial u_{j}}=0, \tag{4.20}\\
& \hat{\nabla}_{\frac{\partial}{\partial s}} \frac{\partial}{\partial u_{i}}=\frac{2 k_{1} s^{3}-k_{2}}{s\left(k_{1} s^{3}+k_{2}\right)} \frac{\partial}{\partial u_{i}},
\end{align*}
$$

$$
\hat{\nabla}_{\frac{\partial}{\partial u_{i}}} \frac{\partial}{\partial u_{i}}=\frac{\left(k_{1} s^{3}+k_{2}\right)\left(k_{2}-2 k_{1} s^{3}\right)}{s^{3}} \frac{\partial}{\partial s},
$$

for $2 \leq i \neq j \leq n$. By combining (1.1), (2.3), (3.2), (4.19) and (4.20) we know that the immersion f : $M \rightarrow \mathbf{R}^{n+1}$ satisfies

$$
\begin{align*}
& f_{s s}=\frac{3}{s} f_{s}+\xi, \tag{4.21}\\
& f_{s u_{j}}=\frac{3 k_{1} s^{2}}{k_{1} s^{3}+k_{2}} f_{u_{j}}, \\
& f_{u_{j} u_{j}}=\frac{\left(k_{1} s^{3}+k_{2}\right)\left(2 k_{2}-k_{1} s^{3}\right)}{s^{3}} f_{s} \\
& \quad \quad+\left(k_{1} s^{2}+\frac{k_{2}}{s}\right)^{2} \xi, \\
& \\
& f_{u_{i} u_{j}}=0, \quad 2 \leq i \neq j \leq n .
\end{align*}
$$

From the condition $\left(f_{s s}\right)_{u_{j}}=\left(f_{s u_{j}}\right)_{s}$ we find $k_{1}=0$. For simplicity, we may assume $k_{2}=1$; thus $\varphi=s^{-1}$. After solving the partial differential system (4.21) with $k_{1}=0, k_{2}=1$, we obtain

$$
f\left(s, u_{1}, \ldots, u_{n}\right)=\sum_{j=2}^{n} c_{j} u_{j}+b \sum_{j=2}^{n} u_{j}^{2}+\frac{b}{4} s^{4}-\frac{s^{2}}{4} \xi
$$

for some basis b, c_{2}, \ldots, c_{n}. Therefore, we conclude that M is affinely equivalent to the hypersurface defined by (II).

Case (b): $\lambda=a \mathrm{~ns}(2 a s, k)+a \operatorname{cs}(2 a s, k)$ with $a>0, k=1 / \sqrt{2}$. In this case, we have $c=a^{4}$ which implies $\bar{c}=1$ and $\alpha=1 / a^{2}$ by (4.12). Furthermore, by (4.10), we know that (M, h) is locally the warped product of an open interval and a unit $(n-1)$-sphere with warped product metric:

$$
\begin{aligned}
& h=d s^{2}+\frac{\{\mathrm{ns}(2 a s, k)+\operatorname{cs}(2 a s, k)\}^{2}}{a^{2}} h_{1}, \\
& h_{1}=d x_{2}^{2}+\cos ^{2} x_{2} d x_{3}^{2}+\cdots+\prod_{j=2}^{n-1} \cos ^{2} x_{j} d x_{n}^{2}
\end{aligned}
$$

Thus the Levi-Civita connection satisfies

$$
\begin{aligned}
& \hat{\nabla}_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}=0, \quad \hat{\nabla}_{\frac{\partial}{\partial s}} \frac{\partial}{\partial u_{i}}=-2 a \operatorname{ds}(2 a s, k) \frac{\partial}{\partial u_{i}}, \\
& \hat{\nabla}_{\frac{\partial}{\partial u_{i}}} \frac{\partial}{\partial u_{j}}=-\tan u_{i} \frac{\partial}{\partial u_{j}}, \\
& \hat{\nabla}_{\frac{\partial}{\partial u_{2}}} \frac{\partial}{\partial u_{2}}=\frac{2}{a} \operatorname{ds}(2 a s, k)(\operatorname{ns}(2 a s, k)+\operatorname{cs}(2 a s, k))^{2} \frac{\partial}{\partial s}, \\
& \hat{\nabla}_{\frac{\partial}{\partial u_{i}}} \frac{\partial}{\partial u_{i}}=\frac{2}{a} \operatorname{ds}(2 a s, k)(\operatorname{ns}(2 a s, k)+\operatorname{cs}(2 a s, k))^{2} \\
& \times \prod_{i=2}^{j-1} \cos ^{2} u_{i} \frac{\partial}{\partial s}+\sum_{k=2}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) \frac{\partial}{\partial u_{k}}
\end{aligned}
$$

for $2 \leq i \neq j \leq n$.
Hence the immersion f satisfies the following differential system

$$
\begin{aligned}
& f_{s s}=3 a\{\mathrm{~ns}(a 2 s, k)+\operatorname{cs}(2 a s, k)\} f_{s}+\xi, \\
& f_{s u_{k}}=a\{\operatorname{ns}(2 a s, k)+\operatorname{cs}(2 a s, k)-2 \mathrm{ds}(2 a s, k)\} f_{u_{k}}, \\
& k=2, \ldots, n, \\
& f_{u_{i} u_{j}}=-\tan x_{i} f_{u_{j}}, 2 \leq i<j \leq n, \\
& f_{u_{j} u_{j}}=\frac{(\mathrm{ns}(2 a s, k)+\operatorname{cs}(2 a s, k))^{2}}{a} \times \\
& (\mathrm{ns}(2 a s, k)+\operatorname{cs}(2 a s, k)+2 \operatorname{ds}(2 a s, k)) \prod_{i=2}^{j-1} \cos ^{2} u_{i} f_{s} \\
& +\sum_{k=2}^{j-1}\left(\frac{\sin 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cos ^{2} u_{l}\right) f_{u_{k}} \\
& +\frac{(\mathrm{ns}(2 a s, k)+\operatorname{cs}(2 a s, k))^{2}}{a^{2}}\left(\prod_{i=2}^{j-1} \cos ^{2} u_{i}\right) \xi, \\
& j=2, \ldots, n .
\end{aligned}
$$

Solving the first equation of this system gives

$$
\begin{align*}
& f=A-\frac{1+\operatorname{dn}(2 a s, k)}{a^{2}(1+\operatorname{cn}(2 a s, k)+2 \operatorname{dn}(2 a s, k))} \xi \tag{4.22}\\
& +\frac{\{(\mathrm{ns}(2 a s, k)-\mathrm{ds}(2 a s, k))(\mathrm{ds}(2 a s, k)-\operatorname{cs}(2 a s, k))\}^{\frac{3}{2}} B}{a(\mathrm{~ns}(2 a s, k)+\operatorname{cs}(2 a s, k)-2 d s(2 a s, k))}
\end{align*}
$$

for $A=A\left(u_{2}, \ldots, u_{n}\right)$ and $B=B\left(u_{2}, \ldots, u_{n}\right)$. By substituting (4.22) into the second equation of the system we obtain $A_{u_{k}}=0$ which implies that A is a constant vector, say c_{0}. Finally, by substituting (4.22) with $A=c_{0}$ into the remaining equations of the system, we find

$$
\begin{aligned}
B= & c_{1} \sin u_{2}+c_{2} \sin u_{3} \cos u_{2}+\cdots \\
& +c_{n-1} \sin u_{n} \prod_{j=2}^{n-1} \cos u_{j}+c_{n} \prod_{j=2}^{n} \cos u_{j} .
\end{aligned}
$$

Consequently, the hypersurface is affinely equivalent to a hypersurface given by (III).

Case (c): $\lambda=a$ ds $(a s, k)$ with $a>0, k=$ $1 / \sqrt{2}$. In this case, we obtain $4 c=-a^{4}<0$ which yields $\bar{c}=-1, \alpha=2 / a^{2}$. Thus (M, h) is locally the warped product of the real line and a unit hyperbolic $(n-1)$-space $H^{n-1}(-1)$ with warped product metric:

$$
\begin{equation*}
h=d s^{2}+\frac{4}{a^{2}} \operatorname{ds}^{2}(a s, k) h_{-1} \tag{4.23}
\end{equation*}
$$

with

$$
\begin{equation*}
h_{-1}=d x_{2}^{2}+\cosh ^{2} x_{2} d x_{3}^{2}+\cdots+\prod_{j=2}^{n-1} \cosh ^{2} x_{j} d x_{n}^{2} \tag{4.24}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
& \hat{\nabla}_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}=0, \quad \hat{\nabla}_{\frac{\partial}{\partial s}} \frac{\partial}{\partial u_{i}}=-a \operatorname{cd}(a s, k) \operatorname{ns}(a s, k) \frac{\partial}{\partial u_{i}}, \\
& \hat{\nabla}_{\frac{\partial}{\partial u_{i}}} \frac{\partial}{\partial u_{j}}=\tanh u_{i} \frac{\partial}{\partial u_{j}}, \quad 2 \leq i<j \leq n, \\
& \hat{\nabla}_{\frac{\partial}{\partial u_{2}}} \frac{\partial}{\partial u_{2}}=\frac{4}{a} \operatorname{cs}(a s, k) \operatorname{ds}(a s, k) \operatorname{ns}(a s, k) \frac{\partial}{\partial s}, \\
& \hat{\nabla}_{\frac{\partial}{\partial u_{i}}} \frac{\partial}{\partial u_{i}}=\frac{4}{a} \operatorname{cs}(a s, k) \operatorname{ds}(a s, k) \operatorname{ns}(a s, k) \\
& \times \prod_{i=2}^{j-1} \cosh ^{2} u_{i} \frac{\partial}{\partial s}-\sum_{k=2}^{j-1}\left(\frac{\sinh 2 u_{k}}{2} \prod_{l=k+1}^{j-1} \cosh ^{2} u_{l}\right) \frac{\partial}{\partial u_{k}}, \\
& \quad 2 \leq i \neq j \leq n .
\end{aligned}
$$

From these we know that the immersion f satisfies the following differential system:

$$
\begin{aligned}
& f_{s s}=3 a \mathrm{ds}(a s, k) f_{s}+\xi, \\
& f_{s u_{j}}=a(\mathrm{ds}(a s, k)-\operatorname{cd}(a s, k) \mathrm{ns}(a s, k)) f_{u_{j}}, \\
& \quad j=2, \ldots, n, \\
& f_{u_{2} u_{2}}=\frac{4}{a^{2}} \mathrm{ds}^{2}(a s, k) \xi \\
& \quad+\frac{4}{a} \operatorname{ds}(a s, k)\left\{\mathrm{ds}^{2}(a s, k)+\operatorname{cs}(a s, k) \operatorname{ns}(a s, k)\right\} f_{s}, \\
& f_{u_{j} u_{j}}=\frac{4}{a^{2}} \mathrm{ds}^{2}(a s, k) \prod_{i=2}^{j-1} \cosh ^{2} u_{i} \xi \\
& \quad+\frac{4}{a} \operatorname{ds}(a s, k)\left\{\operatorname{ds}^{2}(a s, k)+\operatorname{cs}(a s, k) \operatorname{ns}(a s, k)\right\} \\
& \quad \times \prod_{i=2}^{j-1} \cosh ^{2} u_{i} f_{s}-\sum_{\ell=2}^{j-1}\left(\frac{\sinh 2 u_{\ell}}{2} \prod_{i=\ell+1}^{j-1} \cosh ^{2} u_{i}\right) f_{u_{\ell}} \\
& f_{u_{i} u_{\ell}}=\tanh u_{i} f_{u_{\ell}}, \quad 2 \leq i<\ell \leq n ; \quad j>2 .
\end{aligned}
$$

Solving the first equation of the last differential system gives

$$
\begin{aligned}
f=A & +\mathrm{ds}(a s, k)(\operatorname{cs}(a s, k)-\mathrm{ns}(a s, k)) B \\
& -\frac{(\mathrm{ns}(a s, k)-\operatorname{cs}(a s, k))^{2}}{a^{2}} \xi
\end{aligned}
$$

for some functions $A=A\left(u_{2}, \ldots, u_{n}\right)$ and $B=$ $B\left(u_{2}, \ldots, u_{n}\right)$. Substituting (4.24) into the second equation of the system yields $A_{u_{k}}=0$. Thus, A is a constant vector. Finally, by substituting (4.24) into the remaining equations of the system, we conclude that the hypersurface is affinely equivalent to a hypersurface given by (IV).

When $n=2$, Hiepko's result implies that M is locally the warped product of an open interval I and the real line \mathbf{R} with warped product metric $g=d x^{2}+$ $\varphi^{2} d y^{2}$. Using (2.8) we have $\varphi=\alpha \lambda$ for some nonzero constant α. Because λ is given by one of the three functions given in Lemma 2, the same arguments as for $n \geq 3$ yield the same results for $n=2$ as well.

Remark 1. For the corresponding general optimal inequalities of affine hypersurfaces in centroaffine geometry, see [2].

References

[1] Chen, B.-Y.: Geometry of Submanifolds. Pure and Applied Mathematics, no. 22, Marcel Dekker, New York (1973).
[2] Chen, B.-Y.: An optimal inequality and extremal classes of affine spheres in centroaffine geometry. (To appear in Geom. Dedicata.)
[3] Hiepko, S.: Eine innere Kennzeichnung der verzerrten Produkts. Math. Ann., 241, 209-215 (1979).
[4] Nomizu, K., and Pinkall, U.: On the geometry of affine immersions. Math. Z., 195, 165-178 (1987).
[5] Nomizu, K., and Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Tracts in Math., no. 111, Cambridge University Press, Cambridge (1994).

[^0]: 2000 Mathematics Subject Classification. Primary 53A15; Secondary 53C40, 53B20, 53B25.

