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Real spectrum of ring of definable functions
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Abstract: Consider an o-minimal expansion of the real field. We deal with the real
spectrums of the ring Cr

df(M) of definable Cr functions on an affine definable Cr manifold M

in the present paper. Here r denotes a nonnegative integer. We show that the natural map
Sper(Cr

df(M)) → Spec(Cr
df(M)) is a homeomorphism when the o-minimal structure is polynomi-

ally bounded. If the o-minimal structure is not polynomially bounded, it is not known whether the
natural map Sper(Cr

df(M)) → Spec(Cr
df(M)) is a homeomorphism or not. However, the natural

map Sper(C0
df(M)) → Spec(C0

df(M)) is bijective even in this case.
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1. Introduction. An o-minimal structure
was first introduced by L. van den Dries [vdD1]
and developed by A. Pillay, C. Steinhorn and so on
[KPS, PS]. See [vdD2] for the definition and the ge-
ometric theory of o-minimal structures. We fix an
o-minimal expansion of the real field in the present
paper. Let M be an affine definable Cr manifold,
where r denotes a nonnegative integer. An affine
definable Cr manifold is a Cr submanifold of a Eu-
clidean space Rn which is simultaneously a definable
subset of Rn. The notation Cr

df(M) denotes the ring
of all definable Cr functions on M in the present pa-
per. We want to study the ring Cr

df(M) from the real
algebraic point of view in the present paper. If the
reader is not familiar with the basic theory of real
algebra, see [ABR, BCR].

The real spectrum of excellent rings has strong
properties as introduced in [ABR, BCR]. In addi-
tion, it is known that the real spectrum of some
large rings like the ring of continuous functions, ab-
stract semialgebraic functions or real analytic func-
tions on a 1-dimensional paracompact real analytic
manifold coincides with the Zariski spectrum of them
[AB, GR, GJ]. What about the ring Cr

df(M)? In the
present paper, we show that the natural map Φr :
Sper(Cr

df(M)) → Spec(Cr
df(M)) defined by

Φr(α) = supp(α) := {f ∈ Cr
df(M); f,−f ∈ α}

is a homeomorphism when the o-minimal structure
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is polynomially bounded. See [M1] for the definition
of polynomially bounded o-minimal structures. On
the other hand, it is not known whether the map
Φr is a homeomorphism or not when the o-minimal
structure is not polynomially bounded. However,
we can show the natural continuous mapping Φ0 :
Sper(C0

df(M)) → Spec(C0
df(M)) is bijective. They

are the main results of the present paper.
In the present paper, r denotes the nonnegative

integer. We abbreviate the sets {x ∈ M ; f(x) ≥ 0},
{x ∈ M ; f(x) ≥ 0, g(x) ≥ 0} et al. to {f ≥ 0},
{f ≥ 0, g ≥ 0} et al. when the domain of functions
M is clear in the context. The notations f(α) > 0,
f(α) = 0 and f(α) ≤ 0 denote the conditions f ∈
α \ supp(α), f ∈ supp(α) and −f ∈ α, respectively.

2. Artin-Lang property for definable Cr

functions. Consider an o-minimal expansion R̃ of
the real field. Let M be an affine definable Cr man-
ifold or a closed definable set when r = 0. By
the same proof of [vdDM, Proposition C.9, Theo-
rem C.11], we can show the following lemmas. We
omit the proofs.

Lemma 2.1. Let f, g : M → R be continuous
definable functions which are of class Cr on M \
g−1(0) with f−1(0) ⊂ g−1(0). Then there exist an
odd increasing definable Cr function φ : R → R
and a definable Cr function h : M → R such that
φ is a bijection and r-flat at 0 and φ ◦ g = h · f .
Furthermore, if R̃ is polynomially bounded, we can
choose a polynomial function x �→ xn as φ for some
odd n ∈ N.
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Lemma 2.2. Let A be a closed definable set of
M , then A is the zero set of a definable Cr function
on M .

As a corollary of the above two lemmas, we can
show the following lemma.

Lemma 2.3. Let f be a definable Cr function
on M . Set A := {x ∈ M ; f(x) ≥ 0}. Then there
exist definable Cr functions g, h : M → R such that

g|A ≡ 0, h−1(0) ⊂ f−1(0) and h2(x)f(x)+g(x) ≥ 0

for all x ∈M .
Proof. First define a continuous definable func-

tion F : M → R by

F (x) :=

{√−f(x) if x �∈ A

0 if x ∈ A.

Remark that F is of class Cr outside of F−1(0).
There exists a definable Cr function G : M →
R with G−1(0) = A by Lemma 2.2. Hence, by
Lemma 2.1, there exist a definable Cr function h :
M → R and an odd increasing definable bijection
φ : R → R of class Cr with φ ◦ G = h · F . Set
g := (φ ◦G)2, then g−1(0) = A. In this setting, it is
obvious that h−1(0) ⊂ f−1(0) and h2f + g = h2f +
h2F 2 ≥ 0.

Let VM denote the lattice consisting of all closed
definable subsets of M . Define CM as the family of
all prime VM -filters. Consider CM as a topological
space as follows: A subset U of CM is an open basis
if there exists a finite sequence f1, . . . , fk ∈ Cr

df(M)
such that U = {F ∈ CM ;V �∈ F}, where V :=⋃k

i=1{x ∈M ; fi(x) ≤ 0}.
We define maps between the space of all proper

ideals of Cr
df(M) and the space of all VM -filters.

Proposition 2.4. For an ideal I of Cr
df(M),

the family Z(I) of definable closed subsets of M de-
fined as follows is a VM -filter.

Z(I) := {f−1(0); f ∈ I}
Conversely, for a VM -filter F , the subset I(F) of
Cr

df(M) defined as follows is an ideal.

I(F) := {f ∈ Cr
df(M); f−1(0) ∈ F}.

Furthermore, if F is a prime filter, the ideal I(F) is
prime and the induced map

I : CM → Spec(Cr
df(M))

is continuous.
Proof. We first show the first statement. Let

A,B ∈ Z(I), then A = f−1(0) and B = g−1(0) for

some f, g ∈ I. A∩B = (f2+g2)−1(0) ∈ Z(I). If C ∈
VM and A ⊂ C, there exists a definable Cr function
h : M → R with C = h−1(0) by Lemma 2.2. Then
C = (h ·f)−1(0) ∈ Z(I). It is obvious that ∅ �∈ Z(I).

We next show the second statement. Let f, g ∈
I(F) and h ∈ Cr

df(M). Set A = f−1(0) and B =
g−1(0), then A ∩ B ∈ F . Then F � A ∩ B ⊂ (f +
g)−1(0) ∈ F by the definition of a VM -filter. Hence
f + g ∈ I(F). The product h · f is an element of
I(F) because F � A ⊂ (h · f)−1(0) ∈ F .

We show the last statement. Assume that F is
a prime VM -filter. Let f, g ∈ Cr

df(M) with f · g ∈
I(F). Then f−1(0) ∪ g−1(0) ∈ F . Since F is prime,
f−1(0) ∈ F or g−1(0) ∈ F . Hence f ∈ I(F) or g ∈
I(F).

Let f ∈ Cr
df(M). Then

I−1({p ∈ Spec(Cr
df(M)); f ∈ p})

= {F ∈ CM ; f−1(0) ∈ F}.
Hence I is a continuous map.

It is obvious that I ⊂ I(Z(I)) for any ideal I of
Cr

df(M). Hence there exists a one-to-one correspon-
dence between the space of all VM -ultrafilters and
Specmax(Cr

df(M)).
Corollary 2.5. A prime ideal of Cr

df(M) is
contained in only one maximal ideal.

Proof. Let p be a prime ideal of Cr
df(M). Let

m1 and m2 be two distinct maximal ideals containing
p. There exist two distinct VM -ultrafilters F1 and
F2 such that m1 = I(F1) and m2 = I(F2) as above.
Since F1 and F2 are ultrafilters, there exist closed
definable subsets A1 ∈ F1 and A2 ∈ F2 with A1 ∩
A2 = ∅. Choose large definable closed subsets V1 and
V2 of M such that A1 ⊂ V1, A2 ⊂ V2, M = V1 ∪ V2,
A2 ∩ V1 = ∅ and A1 ∩ V2 = ∅. There exist definable
Cr functions f1, f2 : M → R such that V1 = f−1

1 (0)
and V2 = f−1

2 (0) by Lemma 2.2. By the definition,
f1 · f2 ≡ 0, m1 � f1 �∈ m2 and m1 �� f2 ∈ m2. Since
p is real, f1 ∈ p or f2 ∈ p. This contradicts the
assumption that p ⊂ m1 ∩m2.

Lemma 2.6. Let F be a prime VM -filter. Set

α(F) := {f ∈ Cr
df(M); f−1([0,+∞)) ∈ F}.

Then α(F) is a prime cone with supp(α) = I(F).
Proof. It is easy to show this lemma. Hence

we omit the proof.
Lemma 2.7. Let f be a nonnegative definable

Cr function on M and α be a prime cone of Cr
df(M)

such that supp(α) = I(F) for some prime VM -filter
F . Then f ∈ α.
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Proof. We may assume that f �∈ supp(α). De-
fine a continuous definable function F : M → R by

F (x) :=

{√
f(x) if f(x) > 0

0 elsewhere.

There exists a definable Cr function G : M → R
with G−1(0) = F−1(0) by Lemma 2.2. By Lemma
2.1, there exist a definable Cr function h : M → R
and an odd increasing definable bijection φ : R → R
of class Cr with φ◦G = h ·F . Hence h2f = (hF )2 =
(φ ◦ G)2 ∈ α. Since h−1(0) ⊂ f−1(0), h �∈ supp(α),
and therefore, h2 ∈ α \ supp(α). Therefore, f ∈ α.

Proposition 2.8. Let F be a prime VM -filter,
then there exists a unique prime cone α of Cr

df(M)
with supp(α) = I(F).

Proof. The existence of α follows from Lemma
2.6.

We next show the uniqueness of α. Let β be a
prime cone of Cr

df(M) with supp(β) = I(F).
We will show that β ⊂ α. Choose an arbitrary

f ∈ β. We may assume without loss of generality
that f �∈ I(F). We lead contradiction under the
assumption that f �∈ α, namely, {f ≥ 0} �∈ F . Since
F is prime, {f ≤ 0} ∈ F . By Lemma 2.3, there
exists g, h ∈ Cr

df(M) such that g ∈ I(F), h �∈ I(F)
and h2f +g ≤ 0 on M . Since g ∈ supp(α), h2f +g ∈
α. On the other hand, by Lemma 2.7, −(h2f + g) ∈
α. Therefore, h2f+g ∈ supp(α). Since f �∈ supp(α),
h must be contained in supp(α). This contradicts the
condition h−1(0) ⊂ f−1(0).

We will show the opposite inclusion α ⊂ β. Let
f ∈ α. By the definition, {f ≥ 0} ∈ F . We may
assume that f �∈ I(F). There exist h �∈ supp(β) and
g ∈ supp(β) with h2f + g ∈ β by Lemma 2.3 and
Lemma 2.7. Hence, h2f ∈ β. Since h �∈ supp(β),
f ∈ β.

We consider the case when R̃ is polynomially
bounded in the rest of this section.

Lemma 2.9. Assume that R̃ is polynomially
bounded. Let p be a prime ideal of Cr

df(M), then the
equation p = I(Z(p)) holds true.

Proof. Set F := Z(p). We have only to show
that p = I(F). It is obvious that p ⊂ I(F). We
show the opposite inclusion.

Let g ∈ I(F), then g−1(0) ∈ F . By the defini-
tion of F , there exists f ∈ p with f−1(0) = g−1(0).
There exist n ∈ N and h ∈ Cr

df(M) with gn = hf by
Lemma 2.1. Since p is prime, g ∈ p

Lemma 2.10. Assume that R̃ is polynomially
bounded. Let p be a prime ideal of Cr

df(M), then
Z(p) is a prime VM -filter. Furthermore, the induced
map

Z : Spec(Cr
df(M)) → CM

is continuous.
Proof. We show the first statement. Let

A,B ∈ VM such that A ∪ B ∈ Z(p). There exist
f, g ∈ Cr

df(M) and h ∈ p with f−1(0) = A, g−1(0) =
B and h−1(0) = A ∪ B by Lemma 2.2. By Lemma
2.1, there exist n ∈ N and u ∈ Cr

df(M) with (fg)n =
uh ∈ p. Since p is prime, f ∈ p or g ∈ p, that is to
say, A ∈ Z(p) or B ∈ Z(p).

We next show the last statement. Let U be an
open basis of CM . There exists a finite sequence
f1, . . . , fk ∈ Cr

df(M) such that U = {F ∈ CM ;V �∈
F}, where V :=

⋃k
i=1{x ∈ M ; fi(x) ≥ 0}. By

Lemma 2.2, there exists a definable Cr function g

on M with g−1(0) = V . We have only to show the
equation

Z−1(U) = {p ∈ Spec(Cr
df(M)); g �∈ p}

to show the last statement of this lemma. Let p be
a prime ideal of Cr

df(M). First assume that g ∈ p.
Then V = g−1(0) ∈ Z(p). Hence Z(p) �∈ U . We next
assume that Z(p) �∈ U , namely, V ∈ Z(p). Then g ∈
I(Z(p)) = p by Lemma 2.9. We have shown the
above equation and that the map Z is continuous.

Theorem 2.11. Consider a polynomially
bounded o-minimal expansion of the real field. Fix
a nonnegative integer r. Let M be an affine defin-
able Cr manifold or a closed definable set when r =
0. Then the natural continuous map

Φr : Sper(Cr
df(M)) → Spec(Cr

df(M))

is a homeomorphism and its inverse map is α ◦ Z.
Proof. Since α and Z are continuous maps,

we have only to show that β = α(Z(supp(β))) and
supp(α(Z(p))) = p for all prime cones β of Cr

df(M).
However, this equation is obvious by Proposition 2.8
and Lemma 2.9.

Corollary 2.12 (Artin-Lang Property for de-
finable Cr functions). Consider a polynomially
bounded o-minimal expansion of the real field. Fix
a nonnegative integer r. Let M be an affine de-
finable Cr manifold or a closed definable set when
r = 0. Then the continuous map
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α : CM → Sper(Cr
df(M))

is a homeomorphism.
Proof. The mapping Z is a homeomorphism by

Proposition 2.4, Lemma 2.9. Hence this corollary is
obvious by Theorem 2.11.

3. Real spectrum of ring of continu-
ous definable functions. We showed the one-to-
one correspondence between CM and Spec(Cr

df(M))
when R̃ is polynomially bounded. However, this cor-
respondence does not hold true when R̃ is not poly-
nomially bounded. The following example reveals
this fact.

Example 3.1. Let R̃ be an o-minimal ex-
pansion of the real field which is not polynomially
bounded. Remember that the exponential function
exp : R → R is definable in R̃ by [M2]. Fix a non-
negative integer r. Let e : R → R be the definable
C∞ function defined by

e(x) :=


exp
( 1
x

)
if x < 0

0 if x = 0

exp
(
− 1
x

)
if x > 0.

We define an ideal I of Cr
df(R) as follows: A definable

Cr function f : R → R is contained in I if, for any
n ∈ N and C > 0, there exists t > 0 such that
|f(x)| ≤ C · xn for 0 < x < t. It is easy to see that
I is a prime ideal. By the definition, e(x) ∈ I and
x �∈ I. We next define a prime ideal J of Cr

df(R)
as follows: A definable Cr function f : R → R is
contained in J if f(0) = 0. It is obvious that I �=
J = I(Z(I)) and J = I(Z(J)). Hence Z is not
injective and Z is not surjective.

Lemma 3.2. Consider an o-minimal expan-
sion of the real field and let M be a definable closed
set. Let F be a prime VM -filter and f be a contin-
uous definable function on M . Then the following
condtions are equivalent.

1. {x ∈M ; f(x) ≥ 0} ∈ F
2. There exists g ∈ C0

df(M) such that f − g2 ∈
I(F).
Proof. First assume that {f ≥ 0} ∈ F . Define

continuous definable functions g, h : M → R by

g(x) =

{√
f(x) if f(x) > 0

0 elsewhere

and

h(x) =

{
f(x) if f(x) < 0
0 elsewhere.

Then h ∈ I(F) and f − g2 = h.
Conversely assume that h := f−g2 ∈ I(F). Set

A := h−1(0) ∈ F . Then f is nonnegative on A by
the assumption. Hence A ⊂ {f ≥ 0}, and therefore:
{f ≥ 0} ∈ F .

Lemma 3.3. Consider an o-minimal expan-
sion of the real field and let M be a definable closed
set. Let p be a proper ideal of C0

df(M). We define a
subfamily F(p) of VM as follows: The empty set is
not contained in F(p) by definition and a nonempty
closed definable subset S of M is an element of F(p)
if and only if the ideal

I(S) = {f ∈ C0
df(M); f(x) = 0(∀x ∈ S)}

is contained in p.
Then the family F(p) is a VM -filter. Further-

more, if p is prime, so is F(p).
Proof. We first show that F(p) is a VM -filter.

By the definition, ∅ �∈ F(p). Let S ∈ F and T be
a closed definable subset of M containing S. Since
I(T ) ⊂ I(S), I(T ) ⊂ p, namely, T ∈ F(p).

Let A,B ∈ F(p). We will show that A ∩ B ∈
F(p). We have only to show that a continuous de-
finable function f : M → R with A ∩ B ⊂ f−1(0)
is contained in p. Define the continuous definable
function G : A ∪B → R as follows:

G(x) =

{
0 x ∈ A

f(x) x ∈ B
.

There exists a continuous definable function g : M →
R with g|A∪B ≡ G by [vdD2, Corollary 8.3.10]. By
the definition of g, g ∈ I(A) and it is also obvious
that f − g ∈ I(B). Since I(A) ⊂ p and I(B) ⊂ p

by the definition, f ∈ p. We have shown that I(A ∩
B) ⊂ p and finished to show that F(p) is a VM -filter.

We next show the last statement of this lemma.
Let V and W be definable closed subsets of M such
that V ∪W ∈ F(p). We lead the contradiction un-
der the assumption that V,W �∈ F(p). There exist
definable continuous functions u ∈ I(V ) \ p and v ∈
I(W )\p. Then the function u ·v vanishes on V ∪W ,
hence, u ·v ∈ I(V ∪W ) ⊂ p. Since p is a prime ideal,
u ∈ p or v ∈ p. Contradiction.

Lemma 3.4. Consider an o-minimal expan-
sion of the real field and let M be a definable closed
set. Let p be a prime ideal of C0

df(M) and F(p) be
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the prime VM -filter defined in Lemma 3.3. Let f be
a continuous definable function on M such that

{x ∈M ; |f(x)| ≤ g(x)} ∈ F(p)

for some g ∈ p. Then f ∈ p.
Proof. We first reduce to the case when {|f | ≤

g} = M . Set h(x) := max(0, |f(x)| − g(x)), then
h ∈ I(F(p)) ⊂ p. Replace g with g + h, then the
condition {|f | ≤ g} = M holds true.

First consider the case when g−1(0) ∈ F(p).
Then f−1(0) ∈ F(p) because g−1(0) ⊂ f−1(0).
Hence f ∈ I(F(p)) ⊂ p.

We next consider the case when g−1(0) �∈ F(p).
There exists h ∈ C0

df(M) with h �∈ p and h−1(0) =
g−1(0) by the definition of F(p). Define a definable
function φ : M → R by

φ(x) :=


f(x) · h(x)

g(x)
if g(x) �= 0

0 if g(x) = 0.

The definable function φ is continuous because the
function f/g on {x ∈ M ; g(x) �= 0} is bounded.
Hence hf = φg ∈ p. Since h �∈ p, f ∈ p.

Theorem 3.5. Consider an o-minimal expan-
sion of the real field and let M be a closed definable
set or an affine definable manifold. Then the natural
continuous mapping

Φ0 : Sper(C0
df(M)) → Spec(C0

df(M))

is bijective.
Proof. We first reduce to the case when M is

a closed definable set. Let M be an affine definable
manifold. We may assume that M is bounded in Rn.
Set T = M \M . There exists a continuous definable
function v : Rn → R with v−1(0) = T . Identify M

with the image of M under the map (id, 1/v) : M →
Rn, then we may assume that M is closed in Rn.

We have only to show that, for any prime ideal
p of C0

df(M), there exists a unique prime cone β of
C0

df(M) with supp(β) = p. Let F(p) denote the
prime filter defined in Lemma 3.3. Set β := p ∪
α(F(p)). We will show that β is a prime cone of
C0

df(M). It is obvious that −1 �∈ β. It is also easy
to see that ab ∈ β if a, b ∈ β. Let a, b ∈ C0

df(M).
Assume that ab ∈ β and a �∈ β. If ab ∈ p, then
b ∈ p because p is a prime ideal. Hence −b ∈ p ⊂ β.
If ab ∈ α(F(p)), then −b ∈ α(F(p)) ⊂ β because
α(F(p)) is a prime cone.

We next show that a + b ∈ β if a, b ∈ β. The
claim is obvious when a, b ∈ α(F(p)) or a, b ∈ p.

Hence we may assume that a ∈ α(F(p)) \ p and b ∈
p \ α(F(p)). We will show that a + b ∈ α(F(p)).
Assume the contrary, namely, that A = {a + b ≤
0} ∈ F(p). Set B = {a ≥ 0} ∈ F(p). Since A ∩
B ⊂ {|a| ≤ −b}, {|a| ≤ −b} ∈ F(p). By Lemma 3.4,
a ∈ p. Contradiction. We have shown that β is a
prime cone. It is obvious that supp(β) = p.

Let β′ be a prime cone of C0
df(M) with p =

supp(β′). Then β′ = β. We will show this fact. We
have only to show that f ∈ β′ if and only if {f ≥ 0} ∈
F(p) for any f �∈ p. If {f ≥ 0} ∈ F(p), then f−g2 ∈
I(F(p)) ⊂ p for some g ∈ C0

df(M) by Lemma 3.2.
Since g2 ∈ β′ by the definition of prime cones, f ∈
β′. Assume conversely that {f ≥ 0} �∈ F(p). Since
F(p) is prime, {−f ≥ 0} ∈ F(p). We can show that
−f ∈ β′ in the same way as above, using Lemma 3.2.
Since f �∈ supp(β′), f �∈ β′.
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