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Abstract: We prove a general optimal inequality for warped products in complex projec-
tive spaces and determine warped products which satisfy the equality case of the inequality. Two
non-immersion theorems are obtained as immediate applications.
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1. Introduction. Let N1 and N2 be Rie-
mannian manifolds of positive dimension n1 and n2,
equipped with Riemannian metrics g1 and g2, respec-
tively. Let f be a positive function on N1. The
warped product N1 ×f N2 is defined to be the prod-
uct manifold N1 ×N2 with the warped metric: g =
g1 + f2g2 (see [7]).

For a warped productN1×fN2, we denote by D1

the set of horizontal vector fields, i.e., vector fields on
N1 ×f N2 obtained from the horizonal lift of tangent
vector fields of N1; by D2 the set of vertical vector
fields, i.e., vector fields obtained from the vertical lift
of tangent vector fields ofN2. Denote by H and V the
vector bundles over N1 ×f N2 consisting of vectors
tangent to leaves and to fibers, respectively.

Let φ : N1 ×f N2 → M be an isometric immer-
sion of a warped product into a Riemannian mani-
fold. Denote by h the second fundamental form of φ.
Let trh1 and trh2 be the trace of h restricted to N1

and N2, respectively, i.e.,

tr h1 =
n1∑
α=1

h(eα, eα), trh2 =
n1+n2∑
t=n1+1

h(et, et)

for orthonormal vector fields e1, . . . , en1 in H and
en1+1, . . . , en1+n2 in V, respectively. The immersion
φ is called mixed totally geodesic if h(X,Z) = 0 for
any X in H and Z in V.

A submanifold N of a Kaehler manifold
(M, g, J) is called totally real if the complex struc-
ture J carries each tangent space of N into its cor-
responding normal space [4]. A totally real subman-
ifold N in M with dimRN = dimCM is known as a
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Lagrangian submanifold [1].
In [3], the author investigated warped products

in complex hyperbolic spaces and obtain the follow-
ing.

Theorem A. Let φ : N1 ×f N2 → CHm(4c)
be an isometric immersion of a warped product into
the complex hyperbolic m-space CHm(4c). Then we
have

∆f
f

≤ (n1 + n2)2

4n2
H2 + n1c,(1.1)

where ni = dimNi (i = 1, 2), H2 is the squared mean
curvature of φ, and ∆ is the Laplacian of N1.

The equality sign of (1.1) holds identically if
and only if we have (1) φ is mixed totally geodesic,
(2) trh1 = trh2 and (3) JH ⊥ V.

In [3] the author applied Theorem A to obtain
some non-immersion theorems.

In this article, we study warped products in
complex projective spaces and obtain the following.

Theorem 1. Let φ : N1×f N2 → CPm(4c) be
an arbitrary isometric immersion of a warped prod-
uct into the complex projective m-space CPm(4c) of
constant holomorphic sectional curvature 4c. Then
we have

∆f
f

≤ (n1 + n2)2

4n2
H2 + (3 + n1)c.(1.2)

The equality sign of (1.2) holds identically if and
only if we have (1) n1 = n2 = 1, (2) f is an eigen-
function of the Laplacian of N1 with eigenvalue 4c,
and (3) φ is totally geodesic and holomorphic.

As an immediate application, we obtain the fol-
lowing non-immersion theorem.
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Theorem 2. If f is a positive function on a
Riemannian n1-manifold N1 such that (∆f)/f >

3 + n1 at some point p ∈ N1, then, for any Rie-
mannian manifold N2, the warped product N1 ×f N2

does not admit any isometric minimal immersion
into CPm(4) for any m.

For totally real minimal immersions, Theorem 2
can be sharpen as the following.

Theorem 3. If f is a positive function on a
Riemannian n1-manifold N1 such that (∆f)/f > n1

at some point p ∈ N1, then, for any Riemannian
manifold N2, the warped product N1 ×f N2 does not
admit any isometric totally real minimal immersion
into CPm(4) for any m.

In the last section, we provide examples to show
that Theorems 1, 2 and 3 are sharp.

2. Preliminaries. Let N be an n-
dimensional Riemannian manifold isometrically
immersed in a Riemannian manifold M . We denote
by 〈 , 〉 the inner product for N as well as for M .

For any vector X tangent to N we put

JX = PX + FX,

where PX and FX are the tangential and the normal
components of JX, respectively. Thus P is a well-
defined endomorphism of the tangent bundle TN sat-
isfying

〈PX, Y 〉 = −〈X, PY 〉 .
We denote by ∇ and ∇̃ the Levi-Civita connec-

tions of N and M , respectively. Then the Gauss and
Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X, Y ),(2.1)

∇̃Xξ = −AξX +DXξ(2.2)

for X, Y tangent to N and ξ normal to N , where h
denotes the second fundamental form, D the normal
connection and A the shape operator.

The mean curvature vector
−→
H is defined by

−→
H =

(1/n) trh. The squared mean curvature is given by
H2 =

〈−→
H,

−→
H

〉
. A submanifold N is called mini-

mal (respectively, totally geodesic) if its mean cur-
vature vector (respectively, its second fundamental
form) vanishes identically.

For the second fundamental form h, we define

(2.3)
(∇̄Xσ)(Y, Z) = DX(σ(Y, Z))

− σ(∇XY, Z) − σ(Y,∇XZ).

The equation of Codazzi is given by

(2.4)
(R̃(X, Y )Z)⊥

= (∇̄Xσ)(Y, Z) − (∇̄Y σ)(X,Z)

where (R̃(X, Y )Z)⊥ is the normal component of
R̃(X, Y )Z and R̃ is the curvature tensors of M .

The scalar curvature of N is given by

τ =
∑

1≤i<j≤n
K(ei ∧ ej),

where K(ei ∧ ej) is the sectional curvature of the
plane section spanned by ei and ej .

For a differentiable function ϕ on N , the Lapla-
cian of ϕ is defined by

∆ϕ =
n∑
j=1

{(∇ejej)ϕ− ejejϕ},

where e1, . . . , en is an orthonormal frame.
The Riemann curvature tensor R̃ of CPm(4c) is

given by

(2.5)

R̃(X, Y ;Z,W ) = c{〈X,W 〉 〈Y, Z〉
− 〈X,Z〉 〈Y,W 〉 + 〈JX,W 〉 〈JY, Z〉
− 〈JX, Z〉 〈JY,W 〉 + 2 〈X, JY 〉 〈JZ,W 〉}.

For a submanifold N of CPm(4c), the equation
of Gauss is given by

(2.6)

〈R(X, Y )Z,W 〉 = 〈h(X,W ), h(Y, Z)〉
− 〈h(X,Z), h(Y,W )〉 + c{〈X,W 〉 〈Y, Z〉
− 〈X,Z〉 〈Y,W 〉 + 〈JY, Z〉 〈JX,W 〉
− 〈JX, Z〉 〈JY,W 〉 + 2 〈X, JY 〉 〈JZ,W 〉},

where R is the Riemannian curvature tensor of N .
From (2.6) we know that the scalar curvature and
the squared mean curvature of N satisfy

2τ = n2H2 − ||h||2 + n(n− 1)c+ 3c ||P ||2,(2.7)

where ||h||2 denotes the squared norm of the second
fundamental form and

||P ||2 =
n∑

i,j=1

〈ei, P ej〉2(2.8)

is the squared norm of the endomorphism P .
Let N1 ×f N2 be a warped product. Then, for

unit vector fields X, Y in D1 and Z in D2, we have

(2.9)
∇XZ = ∇ZX = (X ln f)Z,

〈∇XY, Z〉 = 0

which implies that [7, page 210]
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(2.10) K(X ∧ Z) =
1
f

{
(∇XX)f −X2f

}
.

Thus, if e1, . . . , en1 are orthonormal horizontal vec-
tors and z a unit vertical vector field, we have

(2.11)
∆f
f

=
n1∑
α=1

K(eα ∧ z).

Let n be a natural number ≥ 2 and n1, . . . , nk
be k natural numbers. If n1 + · · · + nk = n, then
(n1, . . . , nk) is called a partition of n.

We recall the following general algebraic lemma
from [2].

Lemma 1. Let a1, . . . , an be n real numbers
and let k be an integer in [2, n− 1]. Then, for any
partition (n1, . . . , nk) of n, we have

(2.12)

∑
1≤i1<j1≤n1

ai1aj1 +
∑

n1+1≤i2<j2≤n1+n2

ai2aj2

+ · · ·+
∑

n1···+nk−1+1≤i1<j1≤n
aikajk

≥ 1
2k

{
(a1 + · · ·+ an)2 − k(a2

1 + · · ·+ a2
n)
}
,

with the equality holding if and only if

(2.13)
a1 + · · ·+ an1 = · · ·

= an1+···+nk−1+1 + · · ·+ an.

In this article, we use the following convention
on the range of indices unless mentioned otherwise:

j, k, � = 1, . . . , n1 + n2;

α, β = 1, . . . , n1;

s, t = n1 + 1, . . . , n1 + n2.

3. Proofs of Theorems 1, 2 and 3. Let
φ : N1×f N2 → CPm(4c) be an isometric immersion
of a warped product N1 ×f N2 into CPm(4c).

If we put

η = 2τ − n2

2
H2 − n(n− 1)c− 3c||P ||2,(3.1)

then (2.7) and (3.1) imply

n2H2 = 2η + 2||h||2.(3.2)

Let e1, . . . , e2m be an orthonormal frame such
that e1, . . . , en1 are in H, en1+1, . . . , en1+n2 are in V,
and en+1 is in the direction of the mean curvature
vector. Then (3.2) can be written as

(3.3)

(
n∑
j=1

hn+1
jj

)2

− 2
n∑
j=1

(
hn+1
jj

)2

= 2η + 4
∑

1≤i<j≤n

(
hn+1
ij

)2 + 2
2m∑

r=n+2

n∑
i,j=1

(
hrij

)2
.

Because (n1, n2) is a partition of n1 + n2,
Lemma 1 implies that

(3.4)

∑
1≤α<β≤n1

4hn+1
αα hn+1

ββ +
∑

n1+1≤s<t≤n
4hn+1

ss hn+1
tt

≥
(

n∑
j=1

hn+1
jj

)2

− 2
n∑
j=1

(
hn+1
jj

)2
,

with the equality holding if and only if
n1∑
α=1

hn+1
αα =

n∑
s=n1+1

hn+1
ss .(3.5)

Combining (3.3) and (3.4) gives

(3.6)

∑
1≤α<β≤n1

hn+1
αα hn+1

ββ +
∑

n1+1≤s<t≤n
hn+1
ss hn+1

tt

≥ η

2
+

∑
1≤j<k≤n

(
hn+1
jk

)2 +
1
2

2m∑
r=n+2

n∑
j,k=1

(
hrjk

)2
,

with the equality holding if and only if (3.5) occurs.
On the other hand, (2.6) and (2.11) imply

(3.7)

n2∆f
f

= τ − n1(n1 − 1)
2

c− n2(n2 − 1)
2

c

−
2m∑

r=n+1

∑
α<β

(
hrααh

r
ββ − (hrαβ)

2
)

−
2m∑

r=n+1

∑
s<t

(
hrssh

r
tt − (hrst)

2
)

−
∑
α<β

3c 〈Peα, eβ〉2 −
∑
s<t

3c 〈Pes, et〉2 .

Therefore, by (3.1), (3.6) and (3.7), we find

(3.8)

n2∆f
f

≤ τ − n(n− 1)
2

c+ n1n2c − η

2

−
2m∑

r=n+1

∑
α,t

(
hrαt

)2 − 1
2

2m∑
r=n+2

(∑
α

hrαα

)2

− 1
2

2m∑
r=n+2

(∑
t

hrtt

)2

−
∑
α<β

3c 〈Peα, eβ〉2

−
∑
s<t

3c 〈Pes, et〉2 .
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Hence, we have

(3.9)

n2∆f
f

≤ τ − n(n− 1)
2

c+ n1n2c− η

2

−
∑
α<β

3c 〈Peα, eβ〉2 −
∑
s<t

3c 〈Pes, et〉2

with the equality holding if and only if φ is mixed
totally geodesic and

(3.10)
n1∑
α=1

hrαα =
n∑

t=n1+1

hrtt = 0

for r = n + 1, . . . , 2m. Combining (3.1) and (3.9)
yields

(3.11)

∆f
f

≤ n2

4n2
H2 + n1c+

3c
n2

∑
α,t

〈Peα, et〉2

≤ n2

4n2
H2 + n1c+ 3cmin

{
n1

n2
, 1

}
.

In particular, if φ : N1 ×f N2 → CPm(4c) is totally
real, (3.11) implies that

(3.12)
∆f
f

≤ n2

4n2
H2 + n1c.

Now, we divide the proof into two cases.
Case (a): n1 ≤ n2. In this case, (3.11) implies

that

(3.13)
∆f
f

≤ n2

4n2
H2 + (n1 + 3) c.

Suppose that the equality case of (3.13) holds
identically. Then we have

(a.1) n1 = n2,
(a.2) JH = V, and
(a.3) the immersion is mixed totally geodesic.
From (a.2) we know that N1 ×f N2 is immersed

as a complex submanifold. Hence, we obtain from
conditions (a.2) and (a.3) that

(3.14) h(X, Y ) = −Jh(X, JY ) = 0

for X, Y ∈ H.
Similarly, we also have

(3.15) h(Z,W ) = 0 for Z,W ∈ V.
By combining (3.14) and (3.15) with (a.3), we know
that the warped product is also totally geodesic.
Hence, it is immersed as an open part of CP n1(4c).
Also, (a.2) implies that leaves and fibers of N1×f N2

are immersed as Lagrangian submanifolds. By the
fact that leaves are totally geodesic Lagrangian sub-
manifolds of CP n1(4c), we also know that N1 is iso-

metric to an open part of a real projective n1-space
RP n1(1) of constant curvature one.

On the other hand, since fibers are totally um-
bilical in N1 ×f N2, they are totally umbilical La-
grangian submanifolds in CP n1(4c). Hence, by ap-
plying Theorem 1 of [5], we conclude that either

(i) n1 = n2 = 1, or
(ii) fibers are totally geodesic in N1 ×f N2.
If case (ii) occurs, then f is constant. But this

cannot happen, since CP n1(4c) is locally irreducible.
So, we must have n1 = n2 = 1.

Since N1 ×f N2 is totally geodesic in CPm(4c)
and n1 = 1, the equality case of (1.2) implies that f
is an eigenfunction of ∆ with eigenvalue 4c.

The converse is easy to verify.
Case (b): n1 > n2. In this case, (3.11) gives

∆f
f

≤ n2

4n2
H2 + (n1 + 3) c(3.16)

with equality holding if and only if we have
(b.1) JV ⊂ H,
(b.2) φ is mixed totally geodesic, and
(b.3) trh1 = trh2 = 0.
Now, assume that the equality sign of (3.16)

holds identically.
For vertical vector fields Z,W in V, we have

∇̃JZJW = J∇̃JZW . Hence, (b.1), (b.2) and the
formulas of Gauss and Weingarten imply that

(3.17) ∇JZ(JW ) + h(JZ, JW ) = J∇JZW.

On the other hand, since leaves are totally
geodesic in N1 ×f N2, ∇JZW is always tangent to
fibers for vertical vector fields Z,W . So, J∇JZW is
tangent to leaves according to (b.1). Thus, we obtain
from (3.17) that

(3.18) h(JV, JV) = {0}.
Assume that n2 > 1. Let (p, q) be a fixed point

in N1 ×N2 and let Z1, Z2 be two orthogonal nonzero
vector fields in D2 with |Z1| = |Z2|. We choose a vec-
tor field X in D1 such that X = JZ1 at (p, q) Since
we have h(H,V) = h(JV, JV) = {0} and 〈X,Z2〉 =
〈X, JZ2〉 = 0 at (p, q), equation (2.6) of Gauss im-
plies that

(3.19) K(X,Z1) = 4K(X,Z2) at (p, q).

On the other hand, from (2.10) we have
K(X,Z1) = K(X,Z2) which contradicts to (3.19).
Hence, we must have n2 = 1.
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Let

H = L ⊕ JV
be an orthogonal decomposition of H. Since the rank
of JV is one, there is a unit vector field η in JV.

For any horizontal vector X ∈ H, we obtain
from (b.2) that

(3.20) J∇Xη + Jh(X, η) = ∇X(Jη).

Because n2 = 1, the leaves are totally geodesic
in N1 ×f N2, and Jη is a unit vector normal field of
the leaves, so Weingarten’s formula gives

(3.21) ∇X(Jη) = −A1
JηX +D1

XJη = 0,

where A1 and D1 denote the shape operator and the
normal connection of leaves in N1 ×f N2.

Combining (3.20) and (3.21) gives

∇Xη = 0,(3.22)

h(X, η) = 0(3.23)

for X ∈ H = L ⊕ JV.
Equation (3.22) implies that both L and JV are

totally geodesic distributions. Hence, locally N1 is
the Riemannian product L × I, where L and I are
integral submanifolds of L and JV, respectively.

Choose a unit speed geodesic γ = γ(s) in L. Let
us consider the immersion:

φ̂ : γ × I ×N2
inclusion−−−−−→ N1 ×f N2

φ−→ CPm(4c).

With respect to the induced metric, γ × I × N2 is
also a warped product manifold γ × I ×f̂ N2, where
f̂ is the restriction of f on γ × I.

Let σ denote the second fundamental form of
γ×I×f̂ N2 in N1×fN2 and let ĥ, Â, . . . , etc., be the
second fundamental form, the shape operator, . . . ,
etc., of γ × I ×f̂ N2 in CPm(4c), respectively. Then
we have

ĥ(x, y) = h(x, y) + σ(x, y)(3.24)

for x, y tangent to γ× I ×f̂ N2. Since γ is a geodesic
in L, Lemma 9 of [6] gives

(3.25)
σ(γ′, η) = σ(γ′, Jη) = σ(η, η)

= σ(η, Jη) = 0.

From (b.2), (3.17) and (3.23)–(3.25) we get

(3.26)
ĥ(γ′, η) = ĥ(γ′, Jη) = ĥ(η, η)

= ĥ(η, Jη) = 0.

Using (2.3) and (3.26) we find

(3.27)
(∇̄ηĥ)(Jη, γ′) − (∇̄Jηĥ)(η, γ′)

= ĥ(η, ∇̂Jηγ
′) − ĥ(Jη, ∇̂ηγ

′),

where ∇̂ is the Levi-Civita connection of γ×I×f̂N2.
Equations (2.4), (2.5), (3.26), and (3.27) imply

that

(3.28)

2c = R̃(η, Jη; γ′, Jγ′)

= 〈ĥ(η, ∇̂Jηγ
′), Jγ′〉 − 〈ĥ(Jη, ∇̂ηγ

′), Jγ′〉
= −〈ÂJγ′Jη, ∇̂ηγ

′〉.
On the other hand, from (2.1), (2.2), (3.26) and

(3.27), we find

(3.29) J∇̂ηγ
′ = ∇̃ηJγ

′ = D̂ηJγ
′.

Since ÂJγ′Jη ∈ Span {Jη} by (3.26), (3.29) implies

(3.30)
〈
ÂJγ′Jη, ∇̂ηγ

′〉 = 0

which contradicts to (3.28) due to the fact: c > 0.
Hence, case (b) cannot occur. This completes the
proof of Theorem 1.

Theorem 2 is an immediate consequence of in-
equality (1.2).

For the proof of Theorem 3, let us assume that
f is a positive function on a Riemannian n1-manifold
such that

∆f
f

> n1(3.31)

at some point p ∈ N1 and let N2 be an arbitrary Rie-
mannian manifold of positive dimension. If N1×fN2

admits an isometric totally real minimal immersion
into CPm(4), then (3.12) implies that

(3.32)
∆f
f

≤ n1

at every point inN1 which contradicts to (3.31). This
proves Theorem 3.

4. Examples.
Example 1. Let I = (−π/4, π/4), N2 =

S1(1) and f = (1/2) cos 2s. Then the warped prod-
uct

N1 ×f N2 =: I ×(cos 2s)/2 S
1(1)

has constant sectional curvature 4. Clearly, we have
(∆f)/f = 4. If we define the complex structure J

on the warped product by

J

(
∂

∂s

)
= 2(sec 2s)

∂

∂t
,(4.1)

then (I ×(cos 2s)/2 S
1(1), g, J) is holomorphically iso-

metric to a dense open subset of CP 1(4).
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Let φ : CP 1(4) → CPm(4) be a standard to-
tally geodesic embedding of CP 1(4) into CPm(4).
Then the restriction of φ to I ×(cos 2s)/2 S

1(1) gives
rise to a minimal isometric immersion of I ×(cos 2s)/2

S1(1) into CPm(4c) which satisfies the equality case
of (1.2) on I ×(cos 2s)/2 S

1(1) identically.
Example 2. Consider the same warped prod-

uct N1 ×f N2 = I ×(cos 2s)/2 S
1(1) as given in Ex-

ample 1. Let φ : CP 1(4) → CPm(4) be the to-
tally geodesic holomorphic embedding of CP 1(4)
into CPm(4). Then the restriction of φ to N1 ×f N2

is an isometric minimal immersion of N1 ×f N2 into
CPm(4) which satisfies (∆f)/f = 3 + n1 identically.

This example shows that the assumption
“(∆f)/f > 3 + n1 at some point in N1” given in
Theorem 2 is best possible.

Example 3. Let Sn−1(1) denote the unit (n−
1)-sphere and g1 be the standard metric on Sn−1(1).
Denote by N1 ×f N2 the warped product given by
N1 = (−π/2, π/2), N2 = Sn−1(1) and f = cos s.
Then the warped function of this warped product
satisfies

∆f
f

= n1(4.2)

identically. Moreover, it is easy to verify that this
warped product is isometric to a dense open subset
of Sn(1).

Let

φ :Sn(1) projection−−−−−−→
2:1

RP n(1)

totally geodesic−−−−−−−−−−→
totally real

CP n(4)

be a standard totally geodesic Lagrangian immersion
of Sn(1) into CP n(4). Then the restriction of φ to
N1 ×f N2 is a totally real minimal immersion.

This example illustrates that the assumption
“(∆f)/f > n1 at some point in N1” given in Theo-
rem 3 is also sharp.
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