A general optimal inequality for warped products in complex projective spaces and its applications

By Bang-Yen Chen
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027, U. S. A.
(Communicated by Heisuke Hironaka, m. J. a., April 14, 2003)

Abstract

We prove a general optimal inequality for warped products in complex projective spaces and determine warped products which satisfy the equality case of the inequality. Two non-immersion theorems are obtained as immediate applications.

Key words: Warped product; inequality; complex projective space; non-immersion theorem.

1. Introduction. Let N_{1} and N_{2} be Riemannian manifolds of positive dimension n_{1} and n_{2}, equipped with Riemannian metrics g_{1} and g_{2}, respectively. Let f be a positive function on N_{1}. The warped product $N_{1} \times{ }_{f} N_{2}$ is defined to be the product manifold $N_{1} \times N_{2}$ with the warped metric: $g=$ $g_{1}+f^{2} g_{2}($ see $[7])$.

For a warped product $N_{1} \times{ }_{f} N_{2}$, we denote by \mathcal{D}_{1} the set of horizontal vector fields, i.e., vector fields on $N_{1} \times_{f} N_{2}$ obtained from the horizonal lift of tangent vector fields of N_{1}; by \mathcal{D}_{2} the set of vertical vector fields, i.e., vector fields obtained from the vertical lift of tangent vector fields of N_{2}. Denote by \mathcal{H} and \mathcal{V} the vector bundles over $N_{1} \times{ }_{f} N_{2}$ consisting of vectors tangent to leaves and to fibers, respectively.

Let $\phi: N_{1} \times_{f} N_{2} \rightarrow M$ be an isometric immersion of a warped product into a Riemannian manifold. Denote by h the second fundamental form of ϕ. Let $\operatorname{tr} h_{1}$ and $\operatorname{tr} h_{2}$ be the trace of h restricted to N_{1} and N_{2}, respectively, i.e.,

$$
\operatorname{tr} h_{1}=\sum_{\alpha=1}^{n_{1}} h\left(e_{\alpha}, e_{\alpha}\right), \quad \operatorname{tr} h_{2}=\sum_{t=n_{1}+1}^{n_{1}+n_{2}} h\left(e_{t}, e_{t}\right)
$$

for orthonormal vector fields $e_{1}, \ldots, e_{n_{1}}$ in \mathcal{H} and $e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}}$ in \mathcal{V}, respectively. The immersion ϕ is called mixed totally geodesic if $h(X, Z)=0$ for any X in \mathcal{H} and Z in \mathcal{V}.

A submanifold N of a Kaehler manifold (M, g, J) is called totally real if the complex structure J carries each tangent space of N into its corresponding normal space [4]. A totally real submanifold N in M with $\operatorname{dim}_{\mathbf{R}} N=\operatorname{dim}_{\mathbf{C}} M$ is known as a

[^0]Lagrangian submanifold [1].
In [3], the author investigated warped products in complex hyperbolic spaces and obtain the following.

Theorem A. Let $\phi: N_{1} \times_{f} N_{2} \rightarrow$ CH $^{m}(4 c)$ be an isometric immersion of a warped product into the complex hyperbolic m-space $C H^{m}(4 c)$. Then we have

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{\left(n_{1}+n_{2}\right)^{2}}{4 n_{2}} H^{2}+n_{1} c \tag{1.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} N_{i}(i=1,2), H^{2}$ is the squared mean curvature of ϕ, and Δ is the Laplacian of N_{1}.

The equality sign of (1.1) holds identically if and only if we have (1) ϕ is mixed totally geodesic, (2) $\operatorname{tr} h_{1}=\operatorname{tr} h_{2}$ and (3) JH $\perp \mathcal{V}$.

In [3] the author applied Theorem A to obtain some non-immersion theorems.

In this article, we study warped products in complex projective spaces and obtain the following.

Theorem 1. Let $\phi: N_{1} \times_{f} N_{2} \rightarrow C P^{m}(4 c)$ be an arbitrary isometric immersion of a warped product into the complex projective m-space $C P^{m}(4 c)$ of constant holomorphic sectional curvature $4 c$. Then we have

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{\left(n_{1}+n_{2}\right)^{2}}{4 n_{2}} H^{2}+\left(3+n_{1}\right) c . \tag{1.2}
\end{equation*}
$$

The equality sign of (1.2) holds identically if and only if we have (1) $n_{1}=n_{2}=1$, (2) f is an eigenfunction of the Laplacian of N_{1} with eigenvalue $4 c$, and (3) ϕ is totally geodesic and holomorphic.

As an immediate application, we obtain the following non-immersion theorem.

Theorem 2. If f is a positive function on a Riemannian n_{1}-manifold N_{1} such that $(\Delta f) / f>$ $3+n_{1}$ at some point $p \in N_{1}$, then, for any Riemannian manifold N_{2}, the warped product $N_{1} \times{ }_{f} N_{2}$ does not admit any isometric minimal immersion into $C P^{m}(4)$ for any m.

For totally real minimal immersions, Theorem 2 can be sharpen as the following.

Theorem 3. If f is a positive function on a Riemannian n_{1}-manifold N_{1} such that $(\Delta f) / f>n_{1}$ at some point $p \in N_{1}$, then, for any Riemannian manifold N_{2}, the warped product $N_{1} \times{ }_{f} N_{2}$ does not admit any isometric totally real minimal immersion into $C P^{m}(4)$ for any m.

In the last section, we provide examples to show that Theorems 1, 2 and 3 are sharp.
2. Preliminaries. Let N be an n dimensional Riemannian manifold isometrically immersed in a Riemannian manifold M. We denote by \langle,$\rangle the inner product for N$ as well as for M.

For any vector X tangent to N we put

$$
J X=P X+F X
$$

where $P X$ and $F X$ are the tangential and the normal components of $J X$, respectively. Thus P is a welldefined endomorphism of the tangent bundle $T N$ satisfying

$$
\langle P X, Y\rangle=-\langle X, P Y\rangle
$$

We denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of N and M, respectively. Then the Gauss and Weingarten formulas are given respectively by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}\\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{align*}
$$

for X, Y tangent to N and ξ normal to N, where h denotes the second fundamental form, D the normal connection and A the shape operator.

The mean curvature vector \vec{H} is defined by $\vec{H}=$ $(1 / n) \operatorname{tr} h$. The squared mean curvature is given by $H^{2}=\langle\vec{H}, \vec{H}\rangle$. A submanifold N is called minimal (respectively, totally geodesic) if its mean curvature vector (respectively, its second fundamental form) vanishes identically.

For the second fundamental form h, we define

$$
\begin{align*}
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)= & D_{X}(\sigma(Y, Z)) \tag{2.3}\\
& -\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)
\end{align*}
$$

The equation of Codazzi is given by

$$
\begin{align*}
& (\tilde{R}(X, Y) Z)^{\perp} \tag{2.4}\\
& \quad=\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)-\left(\bar{\nabla}_{Y} \sigma\right)(X, Z)
\end{align*}
$$

where $(\tilde{R}(X, Y) Z)^{\perp}$ is the normal component of $\tilde{R}(X, Y) Z$ and \tilde{R} is the curvature tensors of M.

The scalar curvature of N is given by

$$
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)
$$

where $K\left(e_{i} \wedge e_{j}\right)$ is the sectional curvature of the plane section spanned by e_{i} and e_{j}.

For a differentiable function φ on N, the Laplacian of φ is defined by

$$
\Delta \varphi=\sum_{j=1}^{n}\left\{\left(\nabla_{e_{j}} e_{j}\right) \varphi-e_{j} e_{j} \varphi\right\}
$$

where e_{1}, \ldots, e_{n} is an orthonormal frame.
The Riemann curvature tensor \tilde{R} of $C P^{m}(4 c)$ is given by

$$
\begin{align*}
& \tilde{R}(X, Y ; Z, W)=c\{\langle X, W\rangle\langle Y, Z\rangle \\
& \quad-\langle X, Z\rangle\langle Y, W\rangle+\langle J X, W\rangle\langle J Y, Z\rangle \tag{2.5}\\
& \quad-\langle J X, Z\rangle\langle J Y, W\rangle+2\langle X, J Y\rangle\langle J Z, W\rangle\} .
\end{align*}
$$

For a submanifold N of $C P^{m}(4 c)$, the equation of Gauss is given by

$$
\begin{align*}
& \langle R(X, Y) Z, W\rangle=\langle h(X, W), h(Y, Z)\rangle \\
& \quad-\langle h(X, Z), h(Y, W)\rangle+c\{\langle X, W\rangle\langle Y, Z\rangle \\
& \quad-\langle X, Z\rangle\langle Y, W\rangle+\langle J Y, Z\rangle\langle J X, W\rangle \tag{2.6}\\
& \quad-\langle J X, Z\rangle\langle J Y, W\rangle+2\langle X, J Y\rangle\langle J Z, W\rangle\},
\end{align*}
$$

where R is the Riemannian curvature tensor of N. From (2.6) we know that the scalar curvature and the squared mean curvature of N satisfy

$$
\begin{equation*}
2 \tau=n^{2} H^{2}-\|h\|^{2}+n(n-1) c+3 c\|P\|^{2} \tag{2.7}
\end{equation*}
$$

where $\|h\|^{2}$ denotes the squared norm of the second fundamental form and

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{n}\left\langle e_{i}, P e_{j}\right\rangle^{2} \tag{2.8}
\end{equation*}
$$

is the squared norm of the endomorphism P.
Let $N_{1} \times_{f} N_{2}$ be a warped product. Then, for unit vector fields X, Y in \mathcal{D}_{1} and Z in \mathcal{D}_{2}, we have

$$
\begin{align*}
& \nabla_{X} Z=\nabla_{Z} X=(X \ln f) Z \\
& \left\langle\nabla_{X} Y, Z\right\rangle=0 \tag{2.9}
\end{align*}
$$

which implies that [7, page 210]

$$
\begin{equation*}
K(X \wedge Z)=\frac{1}{f}\left\{\left(\nabla_{X} X\right) f-X^{2} f\right\} \tag{2.10}
\end{equation*}
$$

Thus, if $e_{1}, \ldots, e_{n_{1}}$ are orthonormal horizontal vectors and z a unit vertical vector field, we have

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{\alpha=1}^{n_{1}} K\left(e_{\alpha} \wedge z\right) \tag{2.11}
\end{equation*}
$$

Let n be a natural number ≥ 2 and n_{1}, \ldots, n_{k} be k natural numbers. If $n_{1}+\cdots+n_{k}=n$, then $\left(n_{1}, \ldots, n_{k}\right)$ is called a partition of n.

We recall the following general algebraic lemma from [2].

Lemma 1. Let a_{1}, \ldots, a_{n} be n real numbers and let k be an integer in $[2, n-1]$. Then, for any partition $\left(n_{1}, \ldots, n_{k}\right)$ of n, we have

$$
\begin{gather*}
\sum_{1 \leq i_{1}<j_{1} \leq n_{1}} a_{i_{1}} a_{j_{1}}+\sum_{n_{1}+1 \leq i_{2}<j_{2} \leq n_{1}+n_{2}} a_{i_{2}} a_{j_{2}} \\
+\cdots+\sum_{n_{1} \cdots+n_{k-1}+1 \leq i_{1}<j_{1} \leq n} a_{i_{k}} a_{j_{k}} \tag{2.12}\\
\geq \frac{1}{2 k}\left\{\left(a_{1}+\cdots+a_{n}\right)^{2}-k\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\right\}, \tag{3.6}
\end{gather*}
$$

$$
\begin{aligned}
& \left(\sum_{j=1}^{n} h_{j j}^{n+1}\right)^{2}-2 \sum_{j=1}^{n}\left(h_{j j}^{n+1}\right)^{2} \\
& =2 \eta+4 \sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+2 \sum_{r=n+2, j=1}^{2 m} \sum_{i j}^{n}\left(h_{i j}^{r}\right)^{2} .
\end{aligned}
$$

Because $\left(n_{1}, n_{2}\right)$ is a partition of $n_{1}+n_{2}$, Lemma 1 implies that

$$
\begin{align*}
& \quad \sum_{1 \leq \alpha<\beta \leq n_{1}} 4 h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+\sum_{n_{1}+1 \leq s<t \leq n} 4 h_{s s}^{n+1} h_{t t}^{n+1} \\
& \geq\left(\sum_{j=1}^{n} h_{j j}^{n+1}\right)^{2}-2 \sum_{j=1}^{n}\left(h_{j j}^{n+1}\right)^{2} \tag{3.4}
\end{align*}
$$

with the equality holding if and only if

$$
\begin{equation*}
\sum_{\alpha=1}^{n_{1}} h_{\alpha \alpha}^{n+1}=\sum_{s=n_{1}+1}^{n} h_{s s}^{n+1} \tag{3.5}
\end{equation*}
$$

Combining (3.3) and (3.4) gives

$$
\begin{gathered}
\sum_{1 \leq \alpha<\beta \leq n_{1}} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+\sum_{n_{1}+1 \leq s<t \leq n} h_{s s}^{n+1} h_{t t}^{n+1} \\
\geq \\
\frac{\eta}{2}+\sum_{1 \leq j<k \leq n}\left(h_{j k}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{j, k=1}^{n}\left(h_{j k}^{r}\right)^{2}
\end{gathered}
$$

with the equality holding if and only if (3.5) occurs.
On the other hand, (2.6) and (2.11) imply

$$
\begin{aligned}
& \frac{n_{2} \Delta f}{f}=\tau-\frac{n_{1}\left(n_{1}-1\right)}{2} c-\frac{n_{2}\left(n_{2}-1\right)}{2} c \\
& \quad-\sum_{r=n+1}^{2 m} \sum_{\alpha<\beta}\left(h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-\left(h_{\alpha \beta}^{r}\right)^{2}\right) \\
& \quad-\sum_{r=n+1}^{2 m} \sum_{s<t}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right) \\
& \quad-\sum_{\alpha<\beta} 3 c\left\langle P e_{\alpha}, e_{\beta}\right\rangle^{2}-\sum_{s<t} 3 c\left\langle P e_{s}, e_{t}\right\rangle^{2}
\end{aligned}
$$

Therefore, by (3.1), (3.6) and (3.7), we find

$$
\begin{aligned}
& \frac{n_{2} \Delta f}{f} \leq \tau-\frac{n(n-1)}{2} c+n_{1} n_{2} c-\frac{\eta}{2} \\
& \quad-\sum_{r=n+1}^{2 m} \sum_{\alpha, t}\left(h_{\alpha t}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{\alpha} h_{\alpha \alpha}^{r}\right)^{2} \\
& \quad-\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{t} h_{t t}^{r}\right)^{2}-\sum_{\alpha<\beta} 3 c\left\langle P e_{\alpha}, e_{\beta}\right\rangle^{2} \\
& \quad-\sum_{s<t} 3 c\left\langle P e_{s}, e_{t}\right\rangle^{2} .
\end{aligned}
$$

Hence, we have

$$
\begin{align*}
& \frac{n_{2} \Delta f}{f} \leq \tau-\frac{n(n-1)}{2} c+n_{1} n_{2} c-\frac{\eta}{2} \tag{3.9}\\
& \quad-\sum_{\alpha<\beta} 3 c\left\langle P e_{\alpha}, e_{\beta}\right\rangle^{2}-\sum_{s<t} 3 c\left\langle P e_{s}, e_{t}\right\rangle^{2}
\end{align*}
$$

with the equality holding if and only if ϕ is mixed totally geodesic and

$$
\begin{equation*}
\sum_{\alpha=1}^{n_{1}} h_{\alpha \alpha}^{r}=\sum_{t=n_{1}+1}^{n} h_{t t}^{r}=0 \tag{3.10}
\end{equation*}
$$

for $r=n+1, \ldots, 2 m$. Combining (3.1) and (3.9) yields

$$
\begin{align*}
\frac{\Delta f}{f} & \leq \frac{n^{2}}{4 n_{2}} H^{2}+n_{1} c+\frac{3 c}{n_{2}} \sum_{\alpha, t}\left\langle P e_{\alpha}, e_{t}\right\rangle^{2} \tag{3.11}\\
& \leq \frac{n^{2}}{4 n_{2}} H^{2}+n_{1} c+3 c \min \left\{\frac{n_{1}}{n_{2}}, 1\right\}
\end{align*}
$$

In particular, if $\phi: N_{1} \times_{f} N_{2} \rightarrow C P^{m}(4 c)$ is totally real, (3.11) implies that

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}} H^{2}+n_{1} c \tag{3.12}
\end{equation*}
$$

Now, we divide the proof into two cases.
Case (a): $n_{1} \leq n_{2}$. In this case, (3.11) implies that

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}} H^{2}+\left(n_{1}+3\right) c \tag{3.13}
\end{equation*}
$$

Suppose that the equality case of (3.13) holds identically. Then we have
(a.1) $n_{1}=n_{2}$,
(a.2) $J \mathcal{H}=\mathcal{V}$, and
(a.3) the immersion is mixed totally geodesic.

From (a.2) we know that $N_{1} \times_{f} N_{2}$ is immersed as a complex submanifold. Hence, we obtain from conditions (a.2) and (a.3) that

$$
\begin{equation*}
h(X, Y)=-J h(X, J Y)=0 \tag{3.14}
\end{equation*}
$$

for $X, Y \in \mathcal{H}$.
Similarly, we also have

$$
\begin{equation*}
h(Z, W)=0 \quad \text { for } \quad Z, W \in \mathcal{V} \tag{3.15}
\end{equation*}
$$

By combining (3.14) and (3.15) with (a.3), we know that the warped product is also totally geodesic. Hence, it is immersed as an open part of $C P^{n_{1}}(4 c)$. Also, (a.2) implies that leaves and fibers of $N_{1} \times{ }_{f} N_{2}$ are immersed as Lagrangian submanifolds. By the fact that leaves are totally geodesic Lagrangian submanifolds of $C P^{n_{1}}(4 c)$, we also know that N_{1} is iso-
metric to an open part of a real projective n_{1}-space $R P^{n_{1}}(1)$ of constant curvature one.

On the other hand, since fibers are totally umbilical in $N_{1} \times_{f} N_{2}$, they are totally umbilical Lagrangian submanifolds in $C P^{n_{1}}(4 c)$. Hence, by applying Theorem 1 of [5], we conclude that either
(i) $n_{1}=n_{2}=1$, or
(ii) fibers are totally geodesic in $N_{1} \times{ }_{f} N_{2}$.

If case (ii) occurs, then f is constant. But this cannot happen, since $C P^{n_{1}}(4 c)$ is locally irreducible. So, we must have $n_{1}=n_{2}=1$.

Since $N_{1} \times_{f} N_{2}$ is totally geodesic in $C P^{m}(4 c)$ and $n_{1}=1$, the equality case of (1.2) implies that f is an eigenfunction of Δ with eigenvalue $4 c$.

The converse is easy to verify.
Case (b): $n_{1}>n_{2}$. In this case, (3.11) gives

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}} H^{2}+\left(n_{1}+3\right) c \tag{3.16}
\end{equation*}
$$

with equality holding if and only if we have
(b.1) $J \mathcal{V} \subset \mathcal{H}$,
(b.2) ϕ is mixed totally geodesic, and
(b.3) $\operatorname{tr} h_{1}=\operatorname{tr} h_{2}=0$.

Now, assume that the equality sign of (3.16) holds identically.

For vertical vector fields Z, W in \mathcal{V}, we have $\tilde{\nabla}_{J Z} J W=J \tilde{\nabla}_{J Z} W$. Hence, (b.1), (b.2) and the formulas of Gauss and Weingarten imply that

$$
\begin{equation*}
\nabla_{J Z}(J W)+h(J Z, J W)=J \nabla_{J Z} W \tag{3.17}
\end{equation*}
$$

On the other hand, since leaves are totally geodesic in $N_{1} \times_{f} N_{2}, \nabla_{J Z} W$ is always tangent to fibers for vertical vector fields Z, W. So, $J \nabla_{J Z} W$ is tangent to leaves according to (b.1). Thus, we obtain from (3.17) that

$$
\begin{equation*}
h(J \mathcal{V}, J \mathcal{V})=\{0\} \tag{3.18}
\end{equation*}
$$

Assume that $n_{2}>1$. Let (p, q) be a fixed point in $N_{1} \times N_{2}$ and let Z_{1}, Z_{2} be two orthogonal nonzero vector fields in \mathcal{D}_{2} with $\left|Z_{1}\right|=\left|Z_{2}\right|$. We choose a vector field X in \mathcal{D}_{1} such that $X=J Z_{1}$ at (p, q) Since we have $h(\mathcal{H}, \mathcal{V})=h(J \mathcal{V}, J \mathcal{V})=\{0\}$ and $\left\langle X, Z_{2}\right\rangle=$ $\left\langle X, J Z_{2}\right\rangle=0$ at (p, q), equation (2.6) of Gauss implies that

$$
\begin{equation*}
K\left(X, Z_{1}\right)=4 K\left(X, Z_{2}\right) \quad \text { at }(p, q) \tag{3.19}
\end{equation*}
$$

On the other hand, from (2.10) we have $K\left(X, Z_{1}\right)=K\left(X, Z_{2}\right)$ which contradicts to (3.19). Hence, we must have $n_{2}=1$.

Let

$$
\mathcal{H}=\mathcal{L} \oplus J \mathcal{V}
$$

$$
\begin{align*}
& \left(\bar{\nabla}_{\eta} \hat{h}\right)\left(J \eta, \gamma^{\prime}\right)-\left(\bar{\nabla}_{J \eta} \hat{h}\right)\left(\eta, \gamma^{\prime}\right) \tag{3.27}\\
& =\hat{h}\left(\eta, \hat{\nabla}_{J \eta} \gamma^{\prime}\right)-\hat{h}\left(J \eta, \hat{\nabla}_{\eta} \gamma^{\prime}\right)
\end{align*}
$$

where $\hat{\nabla}$ is the Levi-Civita connection of $\gamma \times I \times{ }_{\hat{f}} N_{2}$.
Equations (2.4), (2.5), (3.26), and (3.27) imply
be an orthogonal decomposition of \mathcal{H}. Since the rank of $J \mathcal{V}$ is one, there is a unit vector field η in $J \mathcal{V}$.

For any horizontal vector $X \in \mathcal{H}$, we obtain from (b.2) that

$$
\begin{equation*}
J \nabla_{X} \eta+J h(X, \eta)=\nabla_{X}(J \eta) \tag{3.20}
\end{equation*}
$$

Because $n_{2}=1$, the leaves are totally geodesic in $N_{1} \times_{f} N_{2}$, and $J \eta$ is a unit vector normal field of the leaves, so Weingarten's formula gives

$$
\begin{equation*}
\nabla_{X}(J \eta)=-A_{J \eta}^{1} X+D_{X}^{1} J \eta=0 \tag{3.21}
\end{equation*}
$$

where A^{1} and D^{1} denote the shape operator and the normal connection of leaves in $N_{1} \times{ }_{f} N_{2}$.

Combining (3.20) and (3.21) gives

$$
\begin{align*}
& \nabla_{X} \eta=0 \tag{3.22}\\
& h(X, \eta)=0 \tag{3.23}
\end{align*}
$$

for $X \in \mathcal{H}=\mathcal{L} \oplus J \mathcal{V}$.
Equation (3.22) implies that both \mathcal{L} and $J \mathcal{V}$ are totally geodesic distributions. Hence, locally N_{1} is the Riemannian product $L \times I$, where L and I are integral submanifolds of \mathcal{L} and $J \mathcal{V}$, respectively.

Choose a unit speed geodesic $\gamma=\gamma(s)$ in L. Let us consider the immersion:

$$
\hat{\phi}: \gamma \times I \times N_{2} \xrightarrow{\text { inclusion }} N_{1} \times_{f} N_{2} \xrightarrow{\phi} C P^{m}(4 c)
$$

With respect to the induced metric, $\gamma \times I \times N_{2}$ is also a warped product manifold $\gamma \times I \times_{\hat{f}} N_{2}$, where \hat{f} is the restriction of f on $\gamma \times I$.

Let σ denote the second fundamental form of $\gamma \times I \times{ }_{\hat{f}} N_{2}$ in $N_{1} \times{ }_{f} N_{2}$ and let \hat{h}, \hat{A}, \ldots, etc., be the second fundamental form, the shape operator, ..., etc., of $\gamma \times I \times_{\hat{f}} N_{2}$ in $C P^{m}(4 c)$, respectively. Then we have

$$
\begin{equation*}
\hat{h}(x, y)=h(x, y)+\sigma(x, y) \tag{3.24}
\end{equation*}
$$

for x, y tangent to $\gamma \times I \times_{\hat{f}} N_{2}$. Since γ is a geodesic in L, Lemma 9 of [6] gives

$$
\begin{align*}
& \sigma\left(\gamma^{\prime}, \eta\right)=\sigma\left(\gamma^{\prime}, J \eta\right)=\sigma(\eta, \eta) \\
& =\sigma(\eta, J \eta)=0 \tag{3.25}
\end{align*}
$$

From (b.2), (3.17) and (3.23)-(3.25) we get

$$
\begin{align*}
& \hat{h}\left(\gamma^{\prime}, \eta\right)=\hat{h}\left(\gamma^{\prime}, J \eta\right)=\hat{h}(\eta, \eta) \tag{4.1}\\
& =\hat{h}(\eta, J \eta)=0 \tag{3.26}
\end{align*}
$$

Using (2.3) and (3.26) we find

$$
\begin{aligned}
2 c & =\tilde{R}\left(\eta, J \eta ; \gamma^{\prime}, J \gamma^{\prime}\right) \\
& =\left\langle\hat{h}\left(\eta, \hat{\nabla}_{J \eta} \gamma^{\prime}\right), J \gamma^{\prime}\right\rangle-\left\langle\hat{h}\left(J \eta, \hat{\nabla}_{\eta} \gamma^{\prime}\right), J \gamma^{\prime}\right\rangle \\
& =-\left\langle\hat{A}_{J \gamma^{\prime}} J \eta, \hat{\nabla}_{\eta} \gamma^{\prime}\right\rangle .
\end{aligned}
$$

On the other hand, from (2.1), (2.2), (3.26) and (3.27), we find

$$
\begin{equation*}
J \hat{\nabla}_{\eta} \gamma^{\prime}=\tilde{\nabla}_{\eta} J \gamma^{\prime}=\hat{D}_{\eta} J \gamma^{\prime} \tag{3.29}
\end{equation*}
$$

Since $\hat{A}_{J \gamma^{\prime}} J \eta \in \operatorname{Span}\{J \eta\}$ by (3.26), (3.29) implies

$$
\begin{equation*}
\left\langle\hat{A}_{J \gamma^{\prime}} J \eta, \hat{\nabla}_{\eta} \gamma^{\prime}\right\rangle=0 \tag{3.30}
\end{equation*}
$$

which contradicts to (3.28) due to the fact: $c>0$. Hence, case (b) cannot occur. This completes the proof of Theorem 1.

Theorem 2 is an immediate consequence of inequality (1.2).

For the proof of Theorem 3, let us assume that f is a positive function on a Riemannian n_{1}-manifold such that

$$
\begin{equation*}
\frac{\Delta f}{f}>n_{1} \tag{3.31}
\end{equation*}
$$

at some point $p \in N_{1}$ and let N_{2} be an arbitrary Riemannian manifold of positive dimension. If $N_{1} \times{ }_{f} N_{2}$ admits an isometric totally real minimal immersion into $C P^{m}(4)$, then (3.12) implies that

$$
\begin{equation*}
\frac{\Delta f}{f} \leq n_{1} \tag{3.32}
\end{equation*}
$$

at every point in N_{1} which contradicts to (3.31). This proves Theorem 3.

4. Examples.

Example 1. Let $I=(-\pi / 4, \pi / 4), N_{2}=$ $S^{1}(1)$ and $f=(1 / 2) \cos 2 s$. Then the warped product

$$
N_{1} \times_{f} N_{2}=: I \times_{(\cos 2 s) / 2} S^{1}(1)
$$

has constant sectional curvature 4 . Clearly, we have $(\Delta f) / f=4$. If we define the complex structure J on the warped product by

$$
J\left(\frac{\partial}{\partial s}\right)=2(\sec 2 s) \frac{\partial}{\partial t}
$$

then $\left(I \times_{(\cos 2 s) / 2} S^{1}(1), g, J\right)$ is holomorphically isometric to a dense open subset of $C P^{1}(4)$.

Let $\phi: C P^{1}(4) \rightarrow C P^{m}(4)$ be a standard totally geodesic embedding of $C P^{1}(4)$ into $C P^{m}(4)$. Then the restriction of ϕ to $I \times{ }_{(\cos 2 s) / 2} S^{1}(1)$ gives rise to a minimal isometric immersion of $I \times(\cos 2 s) / 2$ $S^{1}(1)$ into $C P^{m}(4 c)$ which satisfies the equality case of (1.2) on $I \times(\cos 2 s) / 2 S^{1}(1)$ identically.

Example 2. Consider the same warped product $N_{1} \times_{f} N_{2}=I \times{ }_{(\cos 2 s) / 2} S^{1}(1)$ as given in Example 1. Let $\phi: C P^{1}(4) \rightarrow C P^{m}(4)$ be the totally geodesic holomorphic embedding of $C P^{1}(4)$ into $C P^{m}(4)$. Then the restriction of ϕ to $N_{1} \times_{f} N_{2}$ is an isometric minimal immersion of $N_{1} \times f N_{2}$ into $C P^{m}(4)$ which satisfies $(\Delta f) / f=3+n_{1}$ identically.

This example shows that the assumption $"(\Delta f) / f>3+n_{1}$ at some point in $N_{1} "$ given in Theorem 2 is best possible.

Example 3. Let $S^{n-1}(1)$ denote the unit ($n-$ 1)-sphere and g_{1} be the standard metric on $S^{n-1}(1)$. Denote by $N_{1} \times_{f} N_{2}$ the warped product given by $N_{1}=(-\pi / 2, \pi / 2), N_{2}=S^{n-1}(1)$ and $f=\cos s$. Then the warped function of this warped product satisfies

$$
\begin{equation*}
\frac{\Delta f}{f}=n_{1} \tag{4.2}
\end{equation*}
$$

identically. Moreover, it is easy to verify that this warped product is isometric to a dense open subset of $S^{n}(1)$.

Let

$$
\phi: S^{n}(1) \xrightarrow[2: 1]{\text { projection }} R P^{n}(1)
$$

$$
\xrightarrow[\text { totally real }]{\text { totally geodesic }} C P^{n}(4)
$$

be a standard totally geodesic Lagrangian immersion of $S^{n}(1)$ into $C P^{n}(4)$. Then the restriction of ϕ to $N_{1} \times{ }_{f} N_{2}$ is a totally real minimal immersion.

This example illustrates that the assumption " $(\Delta f) / f>n_{1}$ at some point in N_{1} " given in Theorem 3 is also sharp.

References

[1] Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds. Taiwanese J. Math., 5, 681-723 (2001).
[2] Chen, B.-Y.: Ricci curvature of real hypersurfaces in complex hyperbolic space. Arch. Math. (Brno), 38, 73-80 (2002).
[3] Chen, B.-Y.: Non-immersion theorems for warped products in complex hyperbolic spaces. Proc. Japan Acad., 78A, 96-100 (2002).
[4] Chen, B.-Y., and Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc., 193, 257266 (1974).
[5] Chen, B.-Y., and Ogiue, K.: Two theorems on Kaehler manifolds. Michigan Math. J., 21, 225229 (1974).
[6] Ejiri, N.: A generalization of minimal cones. Trans. Amer. Math. Soc., 276, 347-360 (1983).
[7] O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983).

[^0]: 2000 Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 53B25.

