A general optimal inequality for warped products in complex projective spaces and its applications

By Bang-Yen CHEN

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027, U. S. A. (Communicated by Heisuke HIRONAKA, M. J. A., April 14, 2003)

Abstract: We prove a general optimal inequality for warped products in complex projective spaces and determine warped products which satisfy the equality case of the inequality. Two non-immersion theorems are obtained as immediate applications.

Key words: Warped product; inequality; complex projective space; non-immersion theorem.

1. Introduction. Let N_1 and N_2 be Riemannian manifolds of positive dimension n_1 and n_2 , equipped with Riemannian metrics g_1 and g_2 , respectively. Let f be a positive function on N_1 . The warped product $N_1 \times_f N_2$ is defined to be the product manifold $N_1 \times N_2$ with the warped metric: $g = g_1 + f^2 g_2$ (see [7]).

For a warped product $N_1 \times_f N_2$, we denote by \mathcal{D}_1 the set of horizontal vector fields, i.e., vector fields on $N_1 \times_f N_2$ obtained from the horizonal lift of tangent vector fields of N_1 ; by \mathcal{D}_2 the set of vertical vector fields, i.e., vector fields obtained from the vertical lift of tangent vector fields of N_2 . Denote by \mathcal{H} and \mathcal{V} the vector bundles over $N_1 \times_f N_2$ consisting of vectors tangent to leaves and to fibers, respectively.

Let $\phi: N_1 \times_f N_2 \to M$ be an isometric immersion of a warped product into a Riemannian manifold. Denote by h the second fundamental form of ϕ . Let tr h_1 and tr h_2 be the trace of h restricted to N_1 and N_2 , respectively, i.e.,

tr
$$h_1 = \sum_{\alpha=1}^{n_1} h(e_\alpha, e_\alpha)$$
, tr $h_2 = \sum_{t=n_1+1}^{n_1+n_2} h(e_t, e_t)$

for orthonormal vector fields e_1, \ldots, e_{n_1} in \mathcal{H} and $e_{n_1+1}, \ldots, e_{n_1+n_2}$ in \mathcal{V} , respectively. The immersion ϕ is called mixed totally geodesic if h(X, Z) = 0 for any X in \mathcal{H} and Z in \mathcal{V} .

A submanifold N of a Kaehler manifold (M, g, J) is called totally real if the complex structure J carries each tangent space of N into its corresponding normal space [4]. A totally real submanifold N in M with dim_{**R**} $N = \dim_{$ **C** $} M$ is known as a

Lagrangian submanifold [1].

In [3], the author investigated warped products in complex hyperbolic spaces and obtain the following.

Theorem A. Let $\phi : N_1 \times_f N_2 \to CH^m(4c)$ be an isometric immersion of a warped product into the complex hyperbolic m-space $CH^m(4c)$. Then we have

(1.1)
$$\frac{\Delta f}{f} \le \frac{(n_1 + n_2)^2}{4n_2} H^2 + n_1 c_2$$

where $n_i = \dim N_i$ (i = 1, 2), H^2 is the squared mean curvature of ϕ , and Δ is the Laplacian of N_1 .

The equality sign of (1.1) holds identically if and only if we have (1) ϕ is mixed totally geodesic, (2) tr $h_1 = \text{tr } h_2$ and (3) $J\mathcal{H} \perp \mathcal{V}$.

In [3] the author applied Theorem A to obtain some non-immersion theorems.

In this article, we study warped products in complex projective spaces and obtain the following.

Theorem 1. Let $\phi: N_1 \times_f N_2 \to CP^m(4c)$ be an arbitrary isometric immersion of a warped product into the complex projective m-space $CP^m(4c)$ of constant holomorphic sectional curvature 4c. Then we have

(1.2)
$$\frac{\Delta f}{f} \le \frac{(n_1 + n_2)^2}{4n_2} H^2 + (3 + n_1)c.$$

The equality sign of (1.2) holds identically if and only if we have (1) $n_1 = n_2 = 1$, (2) f is an eigenfunction of the Laplacian of N_1 with eigenvalue 4c, and (3) ϕ is totally geodesic and holomorphic.

As an immediate application, we obtain the following non-immersion theorem.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 53B25.

Theorem 2. If f is a positive function on a Riemannian n_1 -manifold N_1 such that $(\Delta f)/f > 3 + n_1$ at some point $p \in N_1$, then, for any Riemannian manifold N_2 , the warped product $N_1 \times_f N_2$ does not admit any isometric minimal immersion into $CP^m(4)$ for any m.

For totally real minimal immersions, Theorem 2 can be sharpen as the following.

Theorem 3. If f is a positive function on a Riemannian n_1 -manifold N_1 such that $(\Delta f)/f > n_1$ at some point $p \in N_1$, then, for any Riemannian manifold N_2 , the warped product $N_1 \times_f N_2$ does not admit any isometric totally real minimal immersion into $CP^m(4)$ for any m.

In the last section, we provide examples to show that Theorems 1, 2 and 3 are sharp.

2. Preliminaries. Let N be an n-dimensional Riemannian manifold isometrically immersed in a Riemannian manifold M. We denote by \langle , \rangle the inner product for N as well as for M.

For any vector X tangent to N we put

$$JX = PX + FX,$$

where PX and FX are the tangential and the normal components of JX, respectively. Thus P is a welldefined endomorphism of the tangent bundle TN satisfying

$$\langle PX, Y \rangle = - \langle X, PY \rangle.$$

We denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of N and M, respectively. Then the Gauss and Weingarten formulas are given respectively by

(2.1)
$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

(2.2)
$$\nabla_X \xi = -A_\xi X + D_X \xi$$

for X, Y tangent to N and ξ normal to N, where h denotes the second fundamental form, D the normal connection and A the shape operator.

The mean curvature vector \vec{H} is defined by $\vec{H} = (1/n) \operatorname{tr} h$. The squared mean curvature is given by $H^2 = \langle \vec{H}, \vec{H} \rangle$. A submanifold N is called minimal (respectively, totally geodesic) if its mean curvature vector (respectively, its second fundamental form) vanishes identically.

For the second fundamental form h, we define

(2.3)
$$(\bar{\nabla}_X \sigma)(Y, Z) = D_X(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z).$$

The equation of Codazzi is given by

(2.4)
$$(\tilde{R}(X,Y)Z)^{\perp} = (\bar{\nabla}_X \sigma)(Y,Z) - (\bar{\nabla}_Y \sigma)(X,Z)$$

where $(\tilde{R}(X,Y)Z)^{\perp}$ is the normal component of $\tilde{R}(X,Y)Z$ and \tilde{R} is the curvature tensors of M.

The scalar curvature of N is given by

$$\tau = \sum_{1 \le i < j \le n} K(e_i \land e_j),$$

where $K(e_i \wedge e_j)$ is the sectional curvature of the plane section spanned by e_i and e_j .

For a differentiable function φ on N, the Laplacian of φ is defined by

$$\Delta \varphi = \sum_{j=1}^{n} \{ (\nabla_{e_j} e_j) \varphi - e_j e_j \varphi \},$$

where e_1, \ldots, e_n is an orthonormal frame.

The Riemann curvature tensor \tilde{R} of $CP^m(4c)$ is given by

$$\hat{R}(X, Y; Z, W) = c\{\langle X, W \rangle \langle Y, Z \rangle
(2.5) - \langle X, Z \rangle \langle Y, W \rangle + \langle JX, W \rangle \langle JY, Z \rangle
- \langle JX, Z \rangle \langle JY, W \rangle + 2 \langle X, JY \rangle \langle JZ, W \rangle \}.$$

For a submanifold N of $CP^m(4c)$, the equation of Gauss is given by

$$(2.6) \quad \begin{split} \langle R(X,Y)Z,W\rangle &= \langle h(X,W), h(Y,Z)\rangle \\ &- \langle h(X,Z), h(Y,W)\rangle + c\{\langle X,W\rangle \langle Y,Z\rangle \\ &- \langle X,Z\rangle \langle Y,W\rangle + \langle JY,Z\rangle \langle JX,W\rangle \\ &- \langle JX,Z\rangle \langle JY,W\rangle + 2 \langle X,JY\rangle \langle JZ,W\rangle \}, \end{split}$$

where R is the Riemannian curvature tensor of N. From (2.6) we know that the scalar curvature and the squared mean curvature of N satisfy

(2.7)
$$2\tau = n^2 H^2 - ||h||^2 + n(n-1)c + 3c ||P||^2,$$

where $||h||^2$ denotes the squared norm of the second fundamental form and

(2.8)
$$||P||^2 = \sum_{i,j=1}^n \langle e_i, Pe_j \rangle^2$$

is the squared norm of the endomorphism P.

Let $N_1 \times_f N_2$ be a warped product. Then, for unit vector fields X, Y in \mathcal{D}_1 and Z in \mathcal{D}_2 , we have

(2.9)
$$\nabla_X Z = \nabla_Z X = (X \ln f) Z$$
$$\langle \nabla_X Y, Z \rangle = 0$$

which implies that [7, page 210]

(2.10)
$$K(X \wedge Z) = \frac{1}{f} \{ (\nabla_X X)f - X^2 f \}$$

Thus, if e_1, \ldots, e_{n_1} are orthonormal horizontal vectors and z a unit vertical vector field, we have

(2.11)
$$\frac{\Delta f}{f} = \sum_{\alpha=1}^{n_1} K(e_\alpha \wedge z).$$

Let n be a natural number ≥ 2 and n_1, \ldots, n_k be k natural numbers. If $n_1 + \cdots + n_k = n$, then (n_1, \ldots, n_k) is called a partition of n.

We recall the following general algebraic lemma from [2].

Lemma 1. Let a_1, \ldots, a_n be *n* real numbers and let *k* be an integer in [2, n-1]. Then, for any partition (n_1, \ldots, n_k) of *n*, we have

$$\sum_{1 \le i_1 < j_1 \le n_1} a_{i_1} a_{j_1} + \sum_{n_1 + 1 \le i_2 < j_2 \le n_1 + n_2} a_{i_2} a_{j_2}$$

$$(2.12) + \dots + \sum_{n_1 \dots + n_{k-1} + 1 \le i_1 < j_1 \le n} a_{i_k} a_{j_k}$$

$$\ge \frac{1}{2k} \Big\{ (a_1 + \dots + a_n)^2 - k(a_1^2 + \dots + a_n^2) \Big\},$$

with the equality holding if and only if

(2.13)
$$a_1 + \dots + a_{n_1} = \dots \\ = a_{n_1 + \dots + n_{k-1} + 1} + \dots + a_n.$$

In this article, we use the following convention on the range of indices unless mentioned otherwise:

$$j, k, \ell = 1, \dots, n_1 + n_2;$$

 $\alpha, \beta = 1, \dots, n_1;$
 $s, t = n_1 + 1, \dots, n_1 + n_2.$

3. Proofs of Theorems 1, 2 and 3. Let $\phi: N_1 \times_f N_2 \to CP^m(4c)$ be an isometric immersion of a warped product $N_1 \times_f N_2$ into $CP^m(4c)$.

If we put

(3.1)
$$\eta = 2\tau - \frac{n^2}{2}H^2 - n(n-1)c - 3c||P||^2,$$

then (2.7) and (3.1) imply

(3.2)
$$n^2 H^2 = 2\eta + 2||h||^2.$$

Let e_1, \ldots, e_{2m} be an orthonormal frame such that e_1, \ldots, e_{n_1} are in $\mathcal{H}, e_{n_1+1}, \ldots, e_{n_1+n_2}$ are in \mathcal{V} , and e_{n+1} is in the direction of the mean curvature vector. Then (3.2) can be written as

(3.3)
$$\left(\sum_{j=1}^{n} h_{jj}^{n+1}\right)^2 - 2\sum_{j=1}^{n} \left(h_{jj}^{n+1}\right)^2$$
$$= 2\eta + 4\sum_{1 \le i < j \le n} \left(h_{ij}^{n+1}\right)^2 + 2\sum_{r=n+2i, j=1}^{2m} \sum_{i=1}^{n} \left(h_{ij}^r\right)^2.$$

Because (n_1, n_2) is a partition of $n_1 + n_2$, Lemma 1 implies that

(3.4)
$$\sum_{1 \le \alpha < \beta \le n_1} 4h_{\alpha\alpha}^{n+1}h_{\beta\beta}^{n+1} + \sum_{n_1+1 \le s < t \le n} 4h_{ss}^{n+1}h_{tt}^{n+1} + \sum_{j=1} (h_{jj}^{n+1})^{n+1} + \sum_{j=1} (h_{jj}^{n$$

with the equality holding if and only if

(3.5)
$$\sum_{\alpha=1}^{n_1} h_{\alpha\alpha}^{n+1} = \sum_{s=n_1+1}^n h_{ss}^{n+1}.$$

Combining (3.3) and (3.4) gives

(3.6)

$$\sum_{1 \le \alpha < \beta \le n_1} h_{\alpha\alpha}^{n+1} h_{\beta\beta}^{n+1} + \sum_{n_1+1 \le s < t \le n} h_{ss}^{n+1} h_{tt}^{n+1}$$

$$\ge \frac{\eta}{2} + \sum_{1 \le j < k \le n} (h_{jk}^{n+1})^2 + \frac{1}{2} \sum_{r=n+2}^{2m} \sum_{j,k=1}^n (h_{jk}^r)^2,$$

with the equality holding if and only if (3.5) occurs. On the other hand, (2.6) and (2.11) imply

$$(3.7) \qquad \frac{n_2 \Delta f}{f} = \tau - \frac{n_1(n_1 - 1)}{2}c - \frac{n_2(n_2 - 1)}{2}c \\ - \sum_{r=n+1}^{2m} \sum_{\alpha < \beta} \left(h_{\alpha\alpha}^r h_{\beta\beta}^r - (h_{\alpha\beta}^r)^2\right) \\ - \sum_{r=n+1}^{2m} \sum_{s < t} \left(h_{ss}^r h_{tt}^r - (h_{st}^r)^2\right) \\ - \sum_{\alpha < \beta} 3c \left\langle Pe_{\alpha}, e_{\beta} \right\rangle^2 - \sum_{s < t} 3c \left\langle Pe_s, e_t \right\rangle^2.$$

Therefore, by (3.1), (3.6) and (3.7), we find

$$(3.8) \quad \frac{n_2 \Delta f}{f} \leq \tau - \frac{n(n-1)}{2}c + n_1 n_2 c - \frac{\eta}{2}$$
$$- \sum_{r=n+1}^{2m} \sum_{\alpha,t} \left(h_{\alpha t}^r\right)^2 - \frac{1}{2} \sum_{r=n+2}^{2m} \left(\sum_{\alpha} h_{\alpha \alpha}^r\right)^2$$
$$- \frac{1}{2} \sum_{r=n+2}^{2m} \left(\sum_t h_{tt}^r\right)^2 - \sum_{\alpha < \beta} 3c \left\langle Pe_{\alpha}, e_{\beta} \right\rangle^2$$
$$- \sum_{s < t} 3c \left\langle Pe_s, e_t \right\rangle^2.$$

No. 4]

(

Hence, we have

(3.9)
$$\frac{n_2 \Delta f}{f} \leq \tau - \frac{n(n-1)}{2}c + n_1 n_2 c - \frac{\eta}{2} \\ -\sum_{\alpha < \beta} 3c \left\langle Pe_\alpha, e_\beta \right\rangle^2 - \sum_{s < t} 3c \left\langle Pe_s, e_t \right\rangle^2$$

with the equality holding if and only if ϕ is mixed totally geodesic and

(3.10)
$$\sum_{\alpha=1}^{n_1} h_{\alpha\alpha}^r = \sum_{t=n_1+1}^n h_{tt}^r = 0$$

for $r = n + 1, \dots, 2m$. Combining (3.1) and (3.9) yields

(3.11)
$$\frac{\Delta f}{f} \leq \frac{n^2}{4n_2} H^2 + n_1 c + \frac{3c}{n_2} \sum_{\alpha, t} \langle Pe_\alpha, e_t \rangle^2 \leq \frac{n^2}{4n_2} H^2 + n_1 c + 3c \min\left\{\frac{n_1}{n_2}, 1\right\}.$$

In particular, if $\phi : N_1 \times_f N_2 \to CP^m(4c)$ is totally real, (3.11) implies that

(3.12)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2}H^2 + n_1c$$

Now, we divide the proof into two cases.

Case (a): $n_1 \leq n_2$. In this case, (3.11) implies that

(3.13)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2} H^2 + (n_1 + 3) c.$$

Suppose that the equality case of (3.13) holds identically. Then we have

(a.1) $n_1 = n_2$,

- (a.2) $J\mathcal{H} = \mathcal{V}$, and
- (a.3) the immersion is mixed totally geodesic.

From (a.2) we know that $N_1 \times_f N_2$ is immersed as a complex submanifold. Hence, we obtain from conditions (a.2) and (a.3) that

(3.14)
$$h(X,Y) = -Jh(X,JY) = 0$$

for $X, Y \in \mathcal{H}$.

Similarly, we also have

(3.15)
$$h(Z,W) = 0 \text{ for } Z, W \in \mathcal{V}.$$

By combining (3.14) and (3.15) with (a.3), we know that the warped product is also totally geodesic. Hence, it is immersed as an open part of $CP^{n_1}(4c)$. Also, (a.2) implies that leaves and fibers of $N_1 \times_f N_2$ are immersed as Lagrangian submanifolds. By the fact that leaves are totally geodesic Lagrangian submanifolds of $CP^{n_1}(4c)$, we also know that N_1 is isometric to an open part of a real projective n_1 -space $RP^{n_1}(1)$ of constant curvature one.

On the other hand, since fibers are totally umbilical in $N_1 \times_f N_2$, they are totally umbilical Lagrangian submanifolds in $CP^{n_1}(4c)$. Hence, by applying Theorem 1 of [5], we conclude that either

(i) $n_1 = n_2 = 1$, or

(ii) fibers are totally geodesic in $N_1 \times_f N_2$.

If case (ii) occurs, then f is constant. But this cannot happen, since $CP^{n_1}(4c)$ is locally irreducible. So, we must have $n_1 = n_2 = 1$.

Since $N_1 \times_f N_2$ is totally geodesic in $CP^m(4c)$ and $n_1 = 1$, the equality case of (1.2) implies that fis an eigenfunction of Δ with eigenvalue 4c.

The converse is easy to verify.

Case (b): $n_1 > n_2$. In this case, (3.11) gives

3.16)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2}H^2 + (n_1 + 3)c$$

with equality holding if and only if we have

- (b.1) $J\mathcal{V} \subset \mathcal{H},$
- (b.2) ϕ is mixed totally geodesic, and
- (b.3) $\operatorname{tr} h_1 = \operatorname{tr} h_2 = 0.$

Now, assume that the equality sign of (3.16) holds identically.

For vertical vector fields Z, W in \mathcal{V} , we have $\tilde{\nabla}_{JZ}JW = J\tilde{\nabla}_{JZ}W$. Hence, (b.1), (b.2) and the formulas of Gauss and Weingarten imply that

(3.17)
$$\nabla_{JZ}(JW) + h(JZ, JW) = J\nabla_{JZ}W.$$

On the other hand, since leaves are totally geodesic in $N_1 \times_f N_2$, $\nabla_{JZ} W$ is always tangent to fibers for vertical vector fields Z, W. So, $J \nabla_{JZ} W$ is tangent to leaves according to (b.1). Thus, we obtain from (3.17) that

(3.18)
$$h(J\mathcal{V}, J\mathcal{V}) = \{0\}.$$

Assume that $n_2 > 1$. Let (p,q) be a fixed point in $N_1 \times N_2$ and let Z_1, Z_2 be two orthogonal nonzero vector fields in \mathcal{D}_2 with $|Z_1| = |Z_2|$. We choose a vector field X in \mathcal{D}_1 such that $X = JZ_1$ at (p,q) Since we have $h(\mathcal{H}, \mathcal{V}) = h(J\mathcal{V}, J\mathcal{V}) = \{0\}$ and $\langle X, Z_2 \rangle =$ $\langle X, JZ_2 \rangle = 0$ at (p,q), equation (2.6) of Gauss implies that

(3.19)
$$K(X, Z_1) = 4K(X, Z_2)$$
 at (p, q) .

On the other hand, from (2.10) we have $K(X, Z_1) = K(X, Z_2)$ which contradicts to (3.19). Hence, we must have $n_2 = 1$.

92

A general optimal inequality for warped products

Let

No. 4]

$$\mathcal{H} = \mathcal{L} \oplus J\mathcal{V}$$

be an orthogonal decomposition of \mathcal{H} . Since the rank of $J\mathcal{V}$ is one, there is a unit vector field η in $J\mathcal{V}$.

For any horizontal vector $X \in \mathcal{H}$, we obtain from (b.2) that

(3.20)
$$J\nabla_X \eta + Jh(X,\eta) = \nabla_X (J\eta).$$

Because $n_2 = 1$, the leaves are totally geodesic in $N_1 \times_f N_2$, and $J\eta$ is a unit vector normal field of the leaves, so Weingarten's formula gives

(3.21)
$$\nabla_X(J\eta) = -A^1_{J\eta}X + D^1_XJ\eta = 0,$$

where A^1 and D^1 denote the shape operator and the normal connection of leaves in $N_1 \times_f N_2$.

Combining (3.20) and (3.21) gives

$$(3.22) \nabla_X \eta = 0,$$

$$h(X,\eta) = 0$$

for $X \in \mathcal{H} = \mathcal{L} \oplus J\mathcal{V}$.

Equation (3.22) implies that both \mathcal{L} and $J\mathcal{V}$ are totally geodesic distributions. Hence, locally N_1 is the Riemannian product $L \times I$, where L and I are integral submanifolds of \mathcal{L} and $J\mathcal{V}$, respectively.

Choose a unit speed geodesic $\gamma = \gamma(s)$ in L. Let us consider the immersion:

$$\hat{\phi}: \gamma \times I \times N_2 \xrightarrow{\text{inclusion}} N_1 \times_f N_2 \xrightarrow{\phi} CP^m(4c).$$

With respect to the induced metric, $\gamma \times I \times N_2$ is also a warped product manifold $\gamma \times I \times_{\hat{f}} N_2$, where \hat{f} is the restriction of f on $\gamma \times I$.

Let σ denote the second fundamental form of $\gamma \times I \times_{\hat{f}} N_2$ in $N_1 \times_f N_2$ and let \hat{h}, \hat{A}, \ldots , etc., be the second fundamental form, the shape operator, ..., etc., of $\gamma \times I \times_{\hat{f}} N_2$ in $CP^m(4c)$, respectively. Then we have

(3.24)
$$\hat{h}(x,y) = h(x,y) + \sigma(x,y)$$

for x, y tangent to $\gamma \times I \times_{\hat{f}} N_2$. Since γ is a geodesic in L, Lemma 9 of [6] gives

(3.25)
$$\sigma(\gamma',\eta) = \sigma(\gamma',J\eta) = \sigma(\eta,\eta)$$
$$= \sigma(\eta,J\eta) = 0.$$

From (b.2), (3.17) and (3.23)-(3.25) we get

(3.26)
$$\hat{h}(\gamma',\eta) = \hat{h}(\gamma',J\eta) = \hat{h}(\eta,\eta)$$
$$= \hat{h}(\eta,J\eta) = 0.$$

Using (2.3) and (3.26) we find

(3.27)
$$(\bar{\nabla}_{\eta}\hat{h})(J\eta,\gamma') - (\bar{\nabla}_{J\eta}\hat{h})(\eta,\gamma') = \hat{h}(\eta,\hat{\nabla}_{J\eta}\gamma') - \hat{h}(J\eta,\hat{\nabla}_{\eta}\gamma'),$$

where $\hat{\nabla}$ is the Levi-Civita connection of $\gamma \times I \times_{\hat{f}} N_2$.

Equations (2.4), (2.5), (3.26), and (3.27) imply that ~ ,

$$2c = R(\eta, J\eta; \gamma', J\gamma')$$

$$(3.28) = \langle \hat{h}(\eta, \hat{\nabla}_{J\eta}\gamma'), J\gamma' \rangle - \langle \hat{h}(J\eta, \hat{\nabla}_{\eta}\gamma'), J\gamma' \rangle$$

$$= -\langle \hat{A}_{J\gamma'}J\eta, \hat{\nabla}_{\eta}\gamma' \rangle.$$

On the other hand, from (2.1), (2.2), (3.26) and (3.27), we find

(3.29)
$$J\hat{\nabla}_{\eta}\gamma' = \tilde{\nabla}_{\eta}J\gamma' = \hat{D}_{\eta}J\gamma'.$$

Since $\hat{A}_{J\gamma'}J\eta \in \text{Span}\{J\eta\}$ by (3.26), (3.29) implies (

(3.30)
$$\langle A_{J\gamma'} J\eta, \nabla_{\eta} \gamma' \rangle = 0$$

which contradicts to (3.28) due to the fact: c > 0. Hence, case (b) cannot occur. This completes the proof of Theorem 1.

Theorem 2 is an immediate consequence of inequality (1.2).

For the proof of Theorem 3, let us assume that f is a positive function on a Riemannian n_1 -manifold such that

(3.31)
$$\frac{\Delta f}{f} > n_1$$

at some point $p \in N_1$ and let N_2 be an arbitrary Riemannian manifold of positive dimension. If $N_1 \times_f N_2$ admits an isometric totally real minimal immersion into $CP^{m}(4)$, then (3.12) implies that

(3.32)
$$\frac{\Delta f}{f} \le n_1$$

at every point in N_1 which contradicts to (3.31). This proves Theorem 3.

4. Examples.

Example 1. Let $I = (-\pi/4, \pi/4), N_2 =$ $S^{1}(1)$ and $f = (1/2) \cos 2s$. Then the warped product

$$N_1 \times_f N_2 =: I \times_{(\cos 2s)/2} S^1(1)$$

has constant sectional curvature 4. Clearly, we have $(\Delta f)/f = 4$. If we define the complex structure J on the warped product by

(4.1)
$$J\left(\frac{\partial}{\partial s}\right) = 2(\sec 2s)\frac{\partial}{\partial t}$$

then $(I \times_{(\cos 2s)/2} S^1(1), g, J)$ is holomorphically isometric to a dense open subset of $CP^{1}(4)$.

Let $\phi : CP^1(4) \to CP^m(4)$ be a standard totally geodesic embedding of $CP^1(4)$ into $CP^m(4)$. Then the restriction of ϕ to $I \times_{(\cos 2s)/2} S^1(1)$ gives rise to a minimal isometric immersion of $I \times_{(\cos 2s)/2} S^1(1)$ into $CP^m(4c)$ which satisfies the equality case of (1.2) on $I \times_{(\cos 2s)/2} S^1(1)$ identically.

Example 2. Consider the same warped product $N_1 \times_f N_2 = I \times_{(\cos 2s)/2} S^1(1)$ as given in Example 1. Let $\phi : CP^1(4) \to CP^m(4)$ be the totally geodesic holomorphic embedding of $CP^1(4)$ into $CP^m(4)$. Then the restriction of ϕ to $N_1 \times_f N_2$ is an isometric minimal immersion of $N_1 \times_f N_2$ into $CP^m(4)$ which satisfies $(\Delta f)/f = 3 + n_1$ identically.

This example shows that the assumption $(\Delta f)/f > 3 + n_1$ at some point in N_1 " given in Theorem 2 is best possible.

Example 3. Let $S^{n-1}(1)$ denote the unit (n-1)-sphere and g_1 be the standard metric on $S^{n-1}(1)$. Denote by $N_1 \times_f N_2$ the warped product given by $N_1 = (-\pi/2, \pi/2), N_2 = S^{n-1}(1)$ and $f = \cos s$. Then the warped function of this warped product satisfies

(4.2)
$$\frac{\Delta f}{f} = n_1$$

identically. Moreover, it is easy to verify that this warped product is isometric to a dense open subset of $S^{n}(1)$.

Let

$$\phi: S^n(1) \xrightarrow{\text{projection}} RP^n(1)$$

$$\xrightarrow{\text{totally geodesic}} CP^n(4)$$

be a standard totally geodesic Lagrangian immersion of $S^n(1)$ into $CP^n(4)$. Then the restriction of ϕ to $N_1 \times_f N_2$ is a totally real minimal immersion.

This example illustrates that the assumption $(\Delta f)/f > n_1$ at some point in N_1 " given in Theorem 3 is also sharp.

References

- Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds. Taiwanese J. Math., 5, 681–723 (2001).
- [2] Chen, B.-Y.: Ricci curvature of real hypersurfaces in complex hyperbolic space. Arch. Math. (Brno), 38, 73–80 (2002).
- [3] Chen, B.-Y.: Non-immersion theorems for warped products in complex hyperbolic spaces. Proc. Japan Acad., 78A, 96–100 (2002).
- [4] Chen, B.-Y., and Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc., 193, 257– 266 (1974).
- [5] Chen, B.-Y., and Ogiue, K.: Two theorems on Kaehler manifolds. Michigan Math. J., 21, 225– 229 (1974).
- [6] Ejiri, N.: A generalization of minimal cones. Trans. Amer. Math. Soc., 276, 347–360 (1983).
- [7] O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983).

[Vol. 79(A),