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Elliptic Hecke algebras and modified Cherednik algebras
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Abstract: The elliptic Hecke algebras associated to the 1-codimensional elliptic root sys-
tems have been defined by H. Yamada [10], which are subalgebras of Cherednik’s double affine
Hecke algebras [2, 3]. The elliptic Hecke algebras associated to the elliptic root systems of type
X(1,1) have been defined similarly by the author [11] in terms of generators and relations associ-
ated to the completed elliptic diagram. On the other hand, M. Kapranov [6] has defined modified
Cherednik algebras associated to the double coset decomposition of the group schemes over 2-
dimensional local field. In this paper, we see that modified Cherednik algebras are isomorphic to
elliptic Hecke algebras of type X(1,1).

Key words: Double affine Hecke algebras; elliptic Hecke algebras; modified Cherednik
algebras.

1. Introduction. Let G be a Chevalley
group over a p-adic field K associated to a complex
semi-simple Lie algebra gC, and G′ be the commu-
tator subgroup of G. Let B ⊂ G be a Borel sub-
group and B′ = B ∩ G′, then N. Iwahori and H.
Matsumoto [4] examined the structure of the dou-
ble coset decomposition of G′, G, with respect to
B′, B, respectively. The decompositions (so called
the Bruhat decompositions) G′ =

⋃
σ∈�W ′ B

′w(σ)B′

and G =
⋃
σ∈�W Bw(σ)B induce the structure of the

affine Hecke algebra H (G′, B′), and the extended
affine Hecke algebra H (G,B), where W̃ ′ and W̃

are the affine and the extended affine Weyl group,
and we have W̃ ∼= W̃ ′ � Π, by using a finite abelian
group Π isomorphic to P∨/Q∨ (where Q∨ and P∨

are the coroot and coweight lattices of gC). The
group Π acts on H (G′, B′) as a group of automor-
phism and H (G,B) is isomorphic to the “twisted”
tensor product Z[Π] ⊗Z H (G′, B′), with respect to
this action. Recently, I. Cherednik defined “the dou-
ble affine Hecke algebra” [2]. This is an algebra gen-
erated by three set of variables; Ti (i = 1, . . . , l),
Yλ (λ ∈ P∨), Xµ (µ ∈ P ), and the central ele-
ment q±1/m, where Yλ, Ti satisfy the relations of
the extended affine Hecke algebra. In this construc-
tion, the generators Yλ, Ti (i = 1, . . . , l) are replaced
with Π, T0, . . . , Tl which generate the same extended
affine Hecke algebra, and the subalgebra generated
by T1, . . . , Tl, Xµ (µ ∈ P ) satisfy the relations of
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the extended affine Hecke algebra for the root sys-
tem R∨ (where R∨ is the dual root system of R)
(see A. Kirillov [9]). But the double affine Hecke
algebra is also differently defined by the generators
T0, . . . , Tl, Π, Xµ (µ ∈ P∨) and q±1/m [3]. In this
case Q∨ ⊂ P∨ and in the previous case, by consid-
ering the embedding of lattices Q∨ ↪→ P , we can
consider the subalgebra generated by the elements
Ti (0 ≤ i ≤ l), Xβ (β ∈ Q∨) and q±1. We will
see that this subalgebra is isomorphic to the elliptic
Hecke algebra of type X(1,1) defined by the author in
[11]. Similarly to the case of the p-adic field (i.e., 1-
dimensional local field), in the case of 2-dimensional
local field K, for the group scheme G(K), one can
consider the problem to decompose G(K) to the dou-
ble coset spaces with respect to a Borel subgroup (see
A. N. Parshin [8]), and to describe the associated
Hecke algebra. M. Kapranov [6] has given one an-
swer to this problem, and constructed the modified
Cherednik algebra H (Γ,∆1) which is a subalgebra
of the double affine Hecke algebra. In this article, we
will show that H (Γ,∆1) is isomorphic to the elliptic
Hecke algebra of type X(1,1).

2. Double affine Hecke algebras and el-
liptic Hecke algebras. Let R be a root system of
type X (X = Al, Bl, . . . , G2), and Q∨, P∨ be the co-
root lattice, the coweight lattice of R. Let R̃ := R×
Z and R̂ := R × Z × Z be the affine root system of
type X(1) and the elliptic root system of type X(1,1)

(see [1]), respectively. Let W be the Weyl group as-
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sociated to R, then the elliptic Weyl group and the
extended elliptic Weyl group of type X(1,1) are real-
ized by the semi-direct product W � (Q∨ ×Q∨) and
W � (P∨ × P∨), respectively. The quotient group
P∨/Q∨ ∼= Π acts on the system of simple roots of
the affine root system R̃ by permutations. Now let
us recall the definiton of the double affine Hecke al-
gebras [3]. Let Cq,t be the field of rational functions
in terms of independent variables q1/m, {t1/2j := t

1/2
αj

(0 ≤ j ≤ l)}, where m = 2 for D2k and C2k+1, m =
1 for C2k, Bl, otherwise m = |Π |. Let α1, . . . , αl
be the basis of simple roots in R, and α0 = −θ +
δ, α1, . . . , αl be the basis of simple roots in R̃, where
θ ∈ R is the maximal root.

Definition 2.1 (I. Cherednik [3]). The double
affine Hecke algebra H is generated over the field
Cq,t by the elements {Tj, 0 ≤ j ≤ l}, pairweise com-
mutative {Xβ∨ , β∨ ∈ P∨} (β∨ := 2β/〈β, β〉), group
Π and the central element q±1/m. Let Xβ∨+kδ :=
Xβ∨qk for β∨ ∈ P∨, k ∈ (1/m)Z. Then the follow-
ing relations are imposed.

(0) (Tj − t
1/2
j )(Tj + t

−1/2
j ) = 0, 0 ≤ j ≤ l,

(i) TiTjTi · · · = TjTiTj · · · ,
mij factors on each side,

(mij = 2, 3, 4, 6 if αi and αj are joined
by 0, 1, 2, 3 laces respectively),

(ii) πrTiπ
−1
r = Tj if πr(αi) = αj,

(iii) TiXβ∨Ti = Xβ∨−α∨
i

if 〈β∨, αi〉 = 1, 1 ≤ i ≤ l,

(iv) T0Xβ∨T0 = Xs0(β∨) if 〈β∨, θ〉 = −1,

(v) TiXβ∨ = Xβ∨Ti

if 〈β∨, αi〉 = 0 for 0 ≤ i ≤ l,

(vi) πrXβ∨π−1
r = Xπr (β∨).

Let us introduce the element Xα∨
0

:= X−n1
α∨

1
· · ·

X−nl

α∨
l
q for α∨

0 := −n1α
∨
1 − · · ·−nlα

∨
l + δ, and define

the algebra Hel which is a subalgebra of the double
affine Hecke algebra H as follows:

Definition 2.2. Let Ct be the field of rational
functions of the variables t1/2j = t

1/2
αj (0 ≤ j ≤ l),

then we define the algebra Hel by the following set
of generators and relations.

Generators : Tα for α ∈ {α0, . . . , αl}, Xα∨ for
α∨ ∈ Q∨ and q±1.

Relations : Xα∨Xβ∨ = Xβ∨Xα∨ for α∨, β∨ ∈
Q∨ and



(0) (Tα − t
1/2
α )(Tα + t

−1/2
α ) = 0,

(i) TαTγTα · · · = TγTαTγ · · · ,
mαγ factors on each side,

(mαγ = 2, 3, 4, 6 if α and γ are joined
by 0, 1, 2, 3 laces respectively),

(ii) TαX−β∨Tα = X−β∨−α∨ if 〈β∨, α〉 = −1,

TαX−β∨ = X−β∨Tα if 〈β∨, α〉 = 0.

Remark 2.3. The inner product 〈·, ·〉 is nor-
malized by 〈α, α〉 = 2 for long roots α, and this in-
duces that 〈α0, α0〉 = 2 for all root system R.

Remark 2.4. By the following reformulation,

Tα0Xβ∨Tα0 = Xs0(β∨) if 〈β∨, θ〉 = −1
⇔ Tα0Xβ∨Tα0 = Xs0(β∨) if 〈β∨, α0〉 = 1
⇔ Tα0Xβ∨Tα0 = Xβ∨−α∨

0
if 〈β∨, α0〉 = 1

⇔ Tα0X−β∨Tα0 = X−β∨−α∨
0

if 〈β∨, α0〉 = −1

the relations (iii) and (iv) in H are reduced to the
first relation of (ii) in Hel.

Remark 2.5. By the inner products
〈α∨, β〉 = −1, 〈α, β∨〉 = −t for the diagram

� ��
tα β

the relations (0), (i) and (ii) in Hel

are easily described in terms of the Dynkin diagram
as follows:

(Tα − t
1/2
α )(Tα + t

−1/2
α ) = 0.=⇒�

α

� �

α β

=⇒
TαTβ = TβTα,

TαX−β∨ = X−β∨Tα,

TβX−α∨ = X−α∨Tβ.

� �∞
α β

=⇒ TαX−α∨−β∨ = X−α∨−β∨Tα,

TβX−α∨−β∨ = X−α∨−β∨Tβ .

� �

α β

=⇒
TαTβTα = TβTαTβ,

TαX−β∨Tα = X−β∨−α∨,

TβX−α∨Tβ = X−α∨−β∨ .

� �

α β

�
2

=⇒
(TαTβ)2 = (TβTα)2,
TαX−α∨−β∨ = X−α∨−β∨Tα,

TβX−α∨Tβ = X−α∨−β∨ .

� �

α β

�
3

=⇒
(TαTβ)3 = (TβTα)3,

TαX−α∨−β∨Tα = X−2α∨−β∨ ,

TβX−α∨Tβ = X−α∨−β∨ .
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Here we set T ∗
α := Tα∗ := T−1

α X−α∨, and a, b
denote one of the elements {α, α∗}, {β, β∗} respec-
tively, then we obtain the following.

Proposition 2.6. The algebra Hel is de-
scribed by the following set of generators and rela-
tions:

Generators : Tα, Tα∗ for α ∈ {α0, . . . , αl}.
Relations :

(I)

�

α

=⇒ (Ta − t
1/2
α )(Ta + t

−1/2
α ) = 0,

(tα∗ = tα).

TaTb = TbTa.� =⇒
α β

�

� �

α β

=⇒

TaTbTa = TbTaTb,

T ∗
αTβT

∗
β = TβT

∗
βTα,

T ∗
βTαT

∗
α = TαT

∗
αTβ ,

TαT
∗
αTβT

∗
β = TβT

∗
βTαT

∗
α .

� ��
2α β

=⇒

(TaTb)2 = (TbTa)2,

T ∗
αTβT

∗
βTα = TβT

∗
βTαT

∗
α ,

T ∗
βTαT

∗
α = TαT

∗
αTβ ,

TαT
∗
αTβT

∗
β = TβT

∗
βTαT

∗
α .

� ��
3α β

=⇒

(TaTb)3 = (TbTa)3,

T ∗
αTαT

∗
αTβT

∗
β = TαT

∗
αTβT

∗
βTα,

T ∗
βTαT

∗
α = TαT

∗
αTβ ,

TαT
∗
αTβT

∗
β = TβT

∗
βTαT

∗
α .

� �

∞α β

=⇒ TαT
∗
αTβT

∗
β = T ∗

αTβT
∗
βTα

= TβT
∗
βTαT

∗
α = T ∗

βTαT
∗
αTβ .

(II)

A
(1,1)
l (l ≥ 1) =⇒ T0T

∗
0 T1T

∗
1 · · ·TlT ∗

l = q−1,

B
(1,1)
l (l ≥ 3) =⇒ T0T

∗
0 T1T

∗
1 (T2T

∗
2 · · ·Tl−1T

∗
l−1)

2

TlT
∗
l = q−1,

C
(1,1)
l (l ≥ 2) =⇒ T0T

∗
0 T1T

∗
1 · · ·TlT ∗

l = q−1,

D
(1,1)
l (l ≥ 4) =⇒ T0T

∗
0 T1T

∗
1 (T2T

∗
2 · · ·Tl−2T

∗
l−2)

2

Tl−1T
∗
l−1TlT

∗
l = q−1,

E
(1,1)
6 =⇒ T0T

∗
0 T1T

∗
1 (T2T

∗
2 )2(T3T

∗
3 )3(T4T

∗
4 )2

T5T
∗
5 (T6T

∗
6 )2 = q−1,

E
(1,1)
7 =⇒ T0T

∗
0 T1T

∗
1 (T2T

∗
2 )2(T3T

∗
3 )3(T4T

∗
4 )4

(T5T
∗
5 )3(T6T

∗
6 )2(T7T

∗
7 )2 = q−1,

E
(1,1)
8 =⇒ T0T

∗
0 (T1T

∗
1 )2(T2T

∗
2 )3(T3T

∗
3 )2T4T

∗
4

= q−1,

F
(1,1)
4 =⇒ T0T

∗
0 (T1T

∗
1 )2(T2T

∗
2 )3(T3T

∗
3 )2T4T

∗
4

= q−1,

G
(1,1)
2 =⇒ T0T

∗
0 (T1T

∗
1 )2T2T

∗
2 = q−1.

Proof. From X−α∨ = TαT
∗
α, we obtain the fol-

lowing relations:

Xα∨Xβ∨ = Xβ∨Xα∨

=⇒ TαT
∗
αTβT

∗
β = TβT

∗
βTαT

∗
α,

TαX−α∨−β∨ = X−α∨−β∨Tα
=⇒ TαT

∗
αTβT

∗
β = T ∗

αTβT
∗
βTα,

TαX−β∨Tα = X−α∨−β∨

=⇒ TβT
∗
βTα = T ∗

αTβT
∗
β ,

and from Xα∨
0

= X−n1
α∨

1
· · ·X−nl

α∨
l
q, we obtain

T0T
∗
0 (T1T

∗
1 )n1(T2T

∗
2 )n2 · · · (TlT ∗

l )nl = q−1.

Further, in the next cases, from the relations of the
left hand side, we can obtain the relations of the right
hand side, which has been already proved in [11] (in
the proof of Proposition 4.2).
TαTβTα = TβTαTβ

T ∗
αTβT

∗
β = TβT

∗
βTα

T ∗
βTαT

∗
α = TαT

∗
αTβ

TαT
∗
αTβT

∗
β = TβT

∗
βTαT

∗
α

⇒


TαT

∗
βTα = T ∗

βTαT
∗
β

TβT
∗
αTβ = T ∗

αTβT
∗
α

T ∗
αT

∗
βT

∗
α = T ∗

βT
∗
αT

∗
β

(TαTβ)2 = (TβTα)2

T ∗
αTβT

∗
βTα = TαT

∗
αTβT

∗
β

T ∗
βTαT

∗
α = TαT

∗
αTβ

TαT
∗
αTβT

∗
β = TβT

∗
βTαT

∗
α

⇒


(TαT ∗

β )2 = (T ∗
βTα)2

(TβT ∗
α)2 = (T ∗

αTβ)2

(T ∗
αT

∗
β )2 = (T ∗

βT
∗
α)2



(TαTβ)3 = (TβTα)3

T ∗
αTαT

∗
αTβT

∗
β

= TαT
∗
αTβT

∗
βTα

T ∗
βTαT

∗
α = TαT

∗
αTβ

TαT
∗
αTβT

∗
β = TβT

∗
βTαT

∗
α

⇒


(TαT ∗

β )3 = (T ∗
βTα)3

(TβT ∗
α)3 = (T ∗

αTβ)3

(T ∗
αT

∗
β )3 = (T ∗

βT
∗
α)3

so the proof is completed.
Remark 2.7. From Proposition 2.6, we see

that the algebra Hel is isomorphic to the elliptic
Hecke algebra of type X(1,1) defined in [11].
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3. Modified Cherednik algebras. Let us
recall the results in [5, 6] and [7]. Let G be a split
simple, simply-connected algebraic group (over Z),
T ⊂ G the fixed maximal torus, and we regard G, T
as group schemes. Let L = Hom(Gm, T ) and L∨ =
Hom(T,Gm) be the coweight and weight lattices of
G, R ⊂ L∨ be the root system. Let T∨ = Spec C[L]
be the complex torus dual to T . Let Laff = Z ⊕
L be the lattice of affine coweight of G. Let W and
Waff := W�L be the Weyl group and the affine Weyl
group of G. Let Wel := W � (L ⊕ L) be the elliptic
Weyl group (double affine Weyl group) and W̃ :=
Waff � Laff be its central extension (double affine
Heisenberg-Weyl group). Let T∨

aff = Spec C[Laff ] be
the affine torus corresponding to T∨. Here we note
that as G is simply connected, in the notation of the
previous section, we can identify L = Q∨, L∨ = P .
Set Paff = P ⊕ (1/m)Z, T̃aff = Spec C[Paff ], where
m ∈ Z+ is the smallest integer such thatm〈λ, µ〉 ∈ Z
for every λ ∈ P∨, µ ∈ P . Let C(T∨

aff ) and C(T̃aff )
be the field of rational functions on T∨

aff and T̃aff , re-
spectively, then the double affine Hecke algebra H
is realized by the subalgebra consisting of finite lin-
ear combinations

∑
w∈W�P∨ fw(t)[w] with fw(t) ∈

C(T̃aff ) satisfying certain residue conditions (see [6]).
Classically, for a locally compact group G and its
compact subgroup ∆, the Hecke algebra H (G,∆)
can be defined as the algebra compactly supported
double ∆-invariant continuous functions of G with
the operation given by the convolution with respect
to the Haar measure on G. In the case of G(K)
with 2-dimensional local fieldK, for that purpose, M.
Kapranov defined the Hecke algebra H (Γ,∆1), for
the central extension Γ of G(K) and an appropriate
subgroup ∆1 ⊂ Γ. Further he showed that H (Γ,∆1)
is a subalgebra of the double affine Hecke algebra H
consisting of linear combinations as above but going
over W �Q∨ ⊂ W � P∨ with fw(t) ∈ C(T∨

aff ), and
called H (Γ,∆1) “the modified Cherednik algebra”.
From these arguments, we have the following.

Proposition 3.1. The modified Cherednik al-
gebra H (Γ,∆1) is isomorphic to the elliptic Hecke
algebra of type X(1,1).

Proof. We use the definition ([2, 6]) of the
Cherednik algebra Hr with generators

Y(b,n) := Yb q
n, (b, n) ∈ Paff = P ⊕ 1

m
Z,

τw, w ∈ Ŵ := W �Q∨, and τπ, π ∈ Π.

From Remark 2.7, we see that the elliptic Hecke al-
gebra of type X(1,1) is isomorphic to the subalgebra
of Hr generated by Y(b,n) for (b, n) ∈ Q∨ ⊕ Z and
τi (0 ≤ i ≤ l) with the relations in Definition 2.2 by
the correspondence Y(b,n) ↔ Xbq

n, τi ↔ Ti. Here
we note that {τw, w ∈ W � Q∨} ∼= {τ0, τ1, . . . , τl
(τi := τsi)}. From the results in [6]

C(T̃ aff )[W � P∨] ∼= C(T̃ aff )[W �Q∨][Π̆],

and
Hr

∼= {
the subalgebra in C(T̃ aff )[W � P∨]
consisting of

∑
fw(λ)[w] such that fw

satisfy the certain residue conditions ([6])
}
.

The correspondence of the generators of the both
algebras has been given by ([5, 6]);

Y(b,n) ↔ t(b,n) := tbζn

τi ↔ σi :=
(ζtαi − ζ−1

tαi − 1

)
[si] − ζ − ζ−1

tαi − 1
[1]

τπ ↔ [π].

The modified Cherednik algebra H (Γ,∆1) is
the subalgebra in C(T∨

aff )[W � Q∨] consisting of∑
fw(λ)[w] such that fw satisfy the same residue

conditions as Hr, and owing to the result [6] (Theo-
rem 3.3.8), which is isomorphic to C(T∨

aff )[W�Q∨]∩
Hr. Therefore we see that H (Γ,∆1) is the algebra
generated by the elements

t(b,n) = tbζn, (b, n) ∈ Q∨
aff = Q∨ ⊕ Z

and σi (i = 0, . . . , l),

with the relations in Definition 2.2, and which com-
pletes the proof.
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