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On a conjecture of W. Bergweiler

By Wei-Chuan Lin∗),∗∗) and Hong-Xun Yi∗)

(Communicated by Heisuke Hironaka, m. j. a., Feb. 12, 2003)

Abstract: In this paper it is discussed for which meromorphic functions f the homogeneous
differential f(z)f ′′(z)−a(f ′(z))2 has only finitely many zeros. It is shown that any transcendental
meromorphic functions f(z) have the form R(z) exp(P (z)) for a rational function R and a polyno-
mial P with the property if a �= 1, (n± 1)/n, n ∈ N . This result settles one conjecture proposed
by W. Bergweiler.
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1. Introduction and main results. W. K.
Hayman (see [1]) obtained in 1959 that if f is a
transcendental entire function and f(z)f ′′(z) �= 0,
then f has the form f(z) = exp(αz + β), where
α (�= 0) and β ∈ C. Afterwards E. Mues (see
[2]) obtained the result in the case for meromor-
phic function of finite lower order and recently J. K.
Langley (see [3]) proved it completely. If we put
f(z) = 1/(g(z)), where g(z) is an entire function,
then f ′′(z) = (2g′2 − gg′′)/(g3) so that W. Hayman
raised the open problem of whether differential poly-
nomials such as G(z) = g(z)g′′(z) − 2(g′(z))2 in the
transcendental entire function g(z) necessarily have
zeros except when g(z) = exp (az + b), (see [4]).

In 1978, E. Mues (see [5]) settled the open prob-
lem completely and showed that the problem does
not hold if a = 1 by some examples like f(z) =
cos z. Allowing f to be meromorphic, W. Bergweiler
in 1995 (see [6]) conjectured if f is a transcenden-
tal meromorphic function which is not of the form
f(z) = exp(αz + β) and if a �= 1 and a �= (n+ 1)/n,
then f(z)f ′′(z) − a(f ′(z))2 has at least one zero.
Moreover, he obtained the following result.

Theorem A. Let f be a meromorphic func-
tion of finite order and let a be as above. If
f(z)f ′′(z) − a(f ′(z))2 has only finitely many zeros,
then f has the form f(z) = R(z) exp(P (z)) for a
rational function R and a polynomial P .

Theorem B. Let f be a transcendental mero-
morphic function of finite order and let a be as above.
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If f(z)f ′′(z)−a(f ′(z))2 has no zero, then f is of the
form f(z) = exp(αz + β), where α, β ∈ C.

Recently, J. K. Langley (see [7]) improved the
above results in the case for function of finite lower
order. In this paper, we will exclude the additional
order restriction.

Theorem 1. Let f be a meromorphic func-
tion in the complex plane and let a �= 1, (n ± 1)/n,
where n ∈ N . If f(z)f ′′(z) − a(f ′(z))2 has only
finitely many zeros, then f has the form f(z) =
R(z) exp(P (z)) for a rational function R and a poly-
nomial P .

Corollary. Let f be a meromorphic function
in the complex plane and let a �= 1, (n± 1)/n, where
n ∈ N . If f(z)f ′′(z) − a(f ′(z))2 has no zero, then f

has one of the following forms:
(i) f(z) = exp(αz + β),
(ii) f(z) = αz + β,

(iii) f(z) = 1
(αz+β)n ,

where α (�= 0), β ∈ C.
2. A main proposition and some lemmas.

For a function f meromorphic in a domainD we shall
use the notation

Mf := f ′(f−1(0)) = {f ′(z) : z ∈ D and f(z) = 0}.
For r > 0 and a ∈ C we put D(a, r) := {z ∈ C :
|z − a| < r}.

In 1980, Y. X. Gu (see [8]) proved that the fam-
ily of meromorphic functions in one domainD is nor-
mal if for each f ∈ F , f(z) �= 0 and f ′(z) �= 1 in D.
Recently, W. Bergweiler (see [9]) extended the above
result by allowing f to have zeros. In this paper, we
obtain more general result as follows:

Proposition. Let A, B and ε be positive real
numbers. Let F be the family of all functions f mero-
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morphic in D which satisfy the following conditions:
1) If f ′(z) = 1, then |f(z)| ≥ A,

2) If f(z) = 0, then 0 < |f ′(z)| ≤ B,

3) If ∆ is a disk in D and if f has m ≥ 2 zeros
z1, z2, . . . , zm ∈ ∆, then

(1)
∣∣∣∣
m∑
j=1

f ′(zj)−1 − 1
∣∣∣∣ ≥ ε.

Then F is normal in D.
To prove the proposition, we need some lemmas.
Lemma 1 ([10]). Let g(z) be a transcendental

meromorphic function with finite order. If g(z) has
only finitely many critical values, then g(z) has only
finitely many asymptotic values.

Lemma 2 ([11]). Let g(z) be a transcenden-
tal meromorphic function and suppose that the set
of all finite critical and asymptotic values of g(z) is
bounded. Then there exists R > 0 such that if |z| >
R and |g(z)| > R, then

|g′(z)| ≥ |g(z)|
16π|z| log |g(z)|.

Lemma 3 ([12]). Let f(z)=anzn+an−1z
n−1+

· · ·+a0 +(p(z))/(q(z)), where a0, a1, . . . , an are con-
stants with an �= 0, p(z) and q(z) are two coprime
polynomials with deg p(z) < deg q(z), k be a positive
integer. If f(k)(z) �= 1, then

f(z) =
1
k!
zk + · · ·+ a0 +

1
(az + b)m

,

where a (�= 0), b are constants, m is a positive inte-
ger.

Lemma 4 ([13]). Let F be a family of mero-
morphic functions on the unit disc ∆, all of whose
zeroes have multiplicity at least k, and suppose there
exists A ≥ 1 such that |f(k)(z)| ≤ A whenever
f(z) = 0, f ∈ F . Then if F is not normal, there
exist, for each 0 ≤ α ≤ k,

a) a number r, 0 < r < 1,
b) points zn, |zn| < r,

c) functions fn ∈ F , and
d) positive numbers ρn → 0

such that
fn(zn + ρnξ)

ραn
= gn(ξ) → g(ξ)

locally uniformly with respect to the spherical metric,
where g is a meromorphic function on C such that
g#(ξ) ≤ g#(0) = kA+ 1.

Lemma 5. Let f be a transcendental mero-
morphic function with finite order, all of whose zeros

are of multiplicity (at least) k, and let A be a pos-
itive real number. If |f(k)(z)| ≤ A when f(z) = 0,
then for each l, 1 ≤ l ≤ k, f(l)(z) assumes any finite
nonzero value infinitely often.

Proof. Suppose that f(l)(z) assumes nonzero
value b finitely many.

Define g(z) = f(l−1)(z) − bz, then g′(z) =
f(l)(z) − b only has finitely many zeros. By Hay-
man’s inequality (see [4, Theorem 3.5]), we see
that f(z) has infinitely many zeroes, z1, z2, . . . , and
limn→∞ zn = ∞.

Since all zeros of f(z) are of multiplicity (at
least) k, and |f(k)(z)| ≤ A when f(z) = 0, we have

(2) g(zn) = −bzn, |g′(zn)| = |f(l)(zn) − b| ≤M,

where M = |b| when l < k or M = A + |b| when
l = k.

On the other hand, since g′(z) = f(l)(z) − b has
only finitely many zeros, by Lemma 1 we know that
g(z) has only finitely many asymptotic values. Thus,
by Lemma 2 we deduce that

(3) |g′(zn)| ≥ |g(zn)|
16π|zn| log |g(zn)|,

we get by (2) and (3) that

(4) |M | ≥ |b|
16π

log |bzn|.

On the right hand of (4), we find that log |bzn| → ∞
as n → ∞. This is a contradiction. Therefore the
conclusion of the lemma holds.

Remark. The lemma does not hold for l =
0, where f(0) :≡ f when l = 0. For instance, let
f(z) = (A(1 +Be−2z))/(1 −Be−2z), where A and B
are nonzero constants. Then f ′(z) = A when f(z) =
0, but f(z) �= ±A.

Proof of Proposition. Suppose that F is not
normal in D. Lemma 4 implies that there exist
{fn} ⊂ F , zn → z0(z0 ∈ D), ρn → 0 such that

(5) gn(ξ) :=
fn(zn + ρnξ)

ρn
→ g(ξ)

locally uniformly with respect to the spherical met-
ric, where g is a nonconstant meromorphic function.
Moreover, g#(ξ) ≤ g#(0) = B + 1

By (5), we have

(6) g′n(ξ) = f ′n(zn + ρnξ) → g′(ξ).

Suppose that g(ξ) is a polynomial. We distinguish
two cases.
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Case 1. Suppose that deg g ≥ 2. Let g′(w0) =
1, by Hurwitz’s Theorem, there exists a sequence
ξn, ξn → w0, and

g′n(ξn) = f ′n(zn + ρnξn) = 1.

Note that |f(z)| ≥ A when f ′(z) = 1, by (5) we
obtain g(w0) = ∞. This is a contradiction.

Case 2. Suppose that deg g = 1, i.e., g(ξ) =
az + b. It follows that |a| ≤ B and hence that

g#(0) =
|a|

1 + |b|2 ≤ |a| < B + 1,

which is also contradiction. This implies that g(ξ) is
not a polynomial. Moreover, we obtain that g′(ξ) �=
1 as above proof.

Let g(ξ0) = 0. Again using Huriwitz’s Theorem
and (6), from Condition 2) we can similarly derive
that Mg ⊂ D(0, B). Since g(ξ) is not a polynomial,
Lemma 5 implies that

g(ξ) = r(ξ) +
p(ξ)
q(ξ)

,

where r(ξ), p(ξ), q(ξ) are polynomials, p(z) and q(z)
are coprime polynomials with deg q > deg p. There-
fore, by Lemma 3 we have

(7) g(ξ) = ξ + a+
b

(ξ + c)l
,

where a, b, c ∈ C, b �= 0, l ∈ N .
Set m := l + 1 and R > max1≤j≤m |ξj|, where

for 1 ≤ j ≤m, ξj is the zero of g(ξ), counted accord-
ing to multiplicity. For large n we have m distinct
zeros ξj,n ∈ D(0, R) of gn(ξ) such that ξj,n → ξj for
1 ≤ j ≤ m. Write ζj,n := zn + ρnξj,n, then ζj,n
(1 ≤ j ≤ m) are the zeros of fn. Moreover, ζj,n ∈
∆n := D(zn, ρnR) for 1 ≤ j ≤m, and for sufficiently
large n, ∆n ⊂ D and fn has no further zeros in ∆n.
Therefore, by (6) we have

m∑
j=1

f ′n(ζj,n)−1 =
m∑
j=1

g′n(ξj,n)−1(8)

=
m∑
j=1

res
(

1
gn
, ξj,n

)
→

∑
ξ∈g−1(0)

res
(

1
g
, ξ

)
.

On the other hand, we have from (7) that

1
g(ξ)

=
1
ξ

+ O

(
1
ξ2

)

as ξ → ∞, and hence, by (7), (8) we obtain

m∑
j=1

f ′n(ζj,n)−1 → 1

as n → ∞. This is contradiction. Therefore, the
conclusion of Proposition holds.

3. Proof of Theorem 1. We start with the
following definition and lemma.

Definition 1. A meromorphic function f on
C is called a normal function if there exists a positive
number M such that

f#(z) ≤M

Here, as usual, f#(z) = |f ′(z)|/(1 + |f(z)|2) denotes
the spherical derivative.

From Definition 1, we obtain
Lemma 6. A normal meromorphic function

has order at most 2. Especially, a normal entire
function has order at most 1.

For proof of theorem, we also need the following
lemmas.

Lemma 7. Let {am} be an integer sequence
and a �= 1 ± (1/n), where n ∈ N . Then there exists
a positive number ε such that for each am,

|am(a− 1) − 1| ≥ ε.

In fact, since a �= 1 ± (1/n), we deduce that
am(a − 1) − 1 �= 0 for each am. Next, denote by
{akn} the sequence of all am(a− 1)− 1 by increasing
modulus, i.e., 0 < |a1

m| ≤ |a2
m| ≤ · · · ≤ |akm| ≤ · · · .

Obviously, the conclusion of lemma holds as that we
choose ε = |a1

m|.
Lemma 8. Let f be a meromorphic function

in the plane C and let a �= 1, (n± 1)/n, where n ∈
N . If f(z)f ′′(z) − a(f ′(z))2 has only finitely many
zeros, then h(z) is a normal function, where

h(z) :=
f(z)

(1 − a)f ′(z)
.

Proof. Suppose that h(z) is not a normal func-
tion in C. Then there exists a sequence zn such that
h#(zn) → ∞. Define

(9)

hn(z) := h(z + zn) =
f(z + zn)

(1 − a)f ′(z + zn)
, n ∈ N.

Then we obtain that {hn}∞1 is not normal at z0 = 0.
Now we shall discuss the normality of the family

{hn}∞1 in ∆ as follows:
From (9), we have
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(10)

h′n(z) =
1

1 − a

f ′(z + zn)2 − f(z + zn)f ′′(z + zn)
f ′(z + zn)2

=
af ′(z + zn)2 − f(z + zn)f ′′(z + zn)

(1 − a)f ′(z + zn)2
+ 1.

Let ξ be a zero of hn(z), then ξ is either a zero or
a pole of f(z + zn). If ξ is a zero of f(z + zn) with
multiplicity l, we get that h′n(ξ) = 1/(l(1 − a)). If ξ
is a pole of f(z) with multiplicitym, we have h′n(ξ) =
1/(m(a− 1)). Hence, 0 < |h′n(z)| ≤ 1/(|a− 1|) when
hn(z) = 0.

On the other hand, since af ′(z)2 − f(z)f ′′(z)
has only finitely many zeros, we denote them by
{w1, w2, . . . , wk} and define A := min1≤i≤k{|h(wi)|}.
Noting that a �= 1, (n± 1)/n and h′(wi) = 1, we can
deduce that h(wi) �= 0 for i = 1, 2, . . . , k, and hence
A > 0. Thus, we have from (10) that |hn(z)| ≥ A

when h′n(z) = 1 for n ∈ N .
Moreover, suppose that ∆1 ⊂ ∆ is a disk and

hn has m zeros u1, u2, . . . , um in ∆1. As above, we
obtain

(11)
∣∣∣∣
m∑
j=1

h′n(uj)
−1 − 1

∣∣∣∣ = |am(a− 1) − 1|,

where am is an integer number.
By Lemma 7, there exists a positive number ε

such that for hn,∣∣∣∣
m∑
j=1

h′n(uj)
−1 − 1

∣∣∣∣ ≥ ε.

Above all, by Proposition, we deduce that
{hn}∞1 is normal in ∆. This is a contradiction to
that {hn}∞1 is not normal at 0. Therefore, the con-
clusion of Lemma 8 holds.

Now we are going to prove Theorem 1.
Define h := f/((1 − a)f ′). Lemma 8 implies

that h(z) is a normal function in C. Therefore,
λ(h) ≤ 2.

Similar to the proof of Lemma 8, we get that
h(z) satisfies the condition of Lemma 5. Therefore,
h(z) is a rational function, i.e., 1/(h(z)) is also a ra-
tional function with no multiple pole points. There-
fore, we can deduce that f(z) has the form f(z) =
R(z) exp(P (z)) for a rational function R and a poly-
nomial P .

To prove the corollary, we have that f(z)f ′′(z)−
a(f ′(z))2 �= 0, proceed as above, we find that h(z) is
a rational function.

According to the assumption of corollary, we get
that h′(z) �= 1, and hence, by Lemma 3 we obtain
that h(z) has the form h(z) = αz + b or

(12) h(z) = z + β +
b

(z + c)l
,

where α (�= 1), β, b, c are constants.

Suppose that h(z) = z + β + b/((z + c)l). Let
z1, z2, . . . , zm are the zeros of h(z), here m = l +
1. Then as the proof of Proposition we obtain∑m

j=1 h
′(zj)−1 = 1, but from the proof of Lemma 8,

we know that there exists a positive number ε such
that |∑m

j=1 h
′(z)−1 − 1| ≥ ε. This gives a contradic-

tion, and hence, h(z) = αz + b.

Now we distinguish the following cases.

If α = 0, then f(z) has the form (i).

If α �= 0, by the definition of h(z) we deduce that
f(z) = (αz+β)n. Note that f(z)f ′′(z)−a(f ′(z))2 �=
0, we obtain that f(z) has the form (ii) or (iii).

This completes the proof of the corollary.

4. Remarks. As we know, one interesting
problem on uniqueness of meromorphic function is
what can be said about the case when a single finite
value is shared by a meromorphic function and its
first two derivatives. In 1986, G. Jank, E. Mues and
L. Volkmann (see [15]) obtained.

Theorem C. Let f be meromorphic in C, not
a constant, and a ∈ C \ {0}. If f, f ′, f ′′ share the
value a CM (counting multiplicities), then f = f ′.

Afterwards, K. Tohge discussed the case when
a = 0 by adding some conditions (see [16]).

It follows from the proof of the corollary and
Lemma 8 that if we define h := (f/f ′), then we can
deduce that h satisfies the condition of Proposition
when f , f ′, f ′′ share 0 IM (ignoring multiplicities).
We thus also obtain the following result.

Theorem 2. Let f be meromorphic in C, not
a constant. If f, f ′, f ′′ share the value 0 IM (ignoring
multiplicities), then f = exp (Az + B) or (Az+B)n ,
where n ∈ Z \ {0, 1, 2} and A (�= 0), B ∈ C.
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