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Homogeneity, quasi-homogeneity and differentiability of domains
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Abstract: In this paper we show that any convex quasi-homogeneous projective domain
whose boundary is everywhere twice differentiable except possibly at a finite number of points is
homogeneous.
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1. Introduction. A quasi-homogeneous
projective domain is an open subset Ω of RPn

which has a compact subset K ⊂ Ω and a subgroup
G of Aut(Ω) such that GK = Ω, where Aut(Ω)
is a subgroup of PGL(n + 1, R) consisting of all
projective transformations preserving Ω. We say Ω
is homogeneous if we can choose K as a point.

Quasi-homogeneous projective domains are
closely related to compact projectively flat mani-
folds. A projectively flat manifold M is a manifold
which is locally modelled on the projective space
with its natural projective geometry, i.e., M ad-
mits a cover of coordinate charts into the projective
space RPn whose coordinate transitions are projec-
tive transformations. By an analytic continuation
of coordinate maps from its universal covering M̃ ,
we obtain a developing map from M̃ into RPn and
this map is rigid in the sense that it is determined
only by a local data. Therefore the deck transforma-
tion action on M̃ induces the holonomy action via
the developing map by rigidity. (See [3, 6] and [7],
etc for more details). Immediately we can see that
the developing image of a compact projectively flat
manifold is a quasi-homogeneous domain. Particu-
larly when the developing map is a diffeomorphism
onto the developing image Ω, Ω is a divisible domain,
i.e., its automorphism group contains a cocompact
discrete subgroup acting properly and freely. So the
study about quasi-homogeneous projective domains
may be helpful to understand projectively flat man-
ifolds.

There are many quasi-homogeneous domains
which are not homogeneous domains. So we have
a natural question “When is a quasi-homogeneous
domain homogeneous?”.
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Differentiability of the boundary seems to be re-
lated to the homogeneity and quasi-homogeneity of
domains. For examples, B. Colbois and P. Verovic [2]
proved that if Ω is a strictly convex (in the sense
that Hessian is positive definite) domain with C3

boundary which has a cofinite volume discrete sub-
group action, then Ω is an ellipsoid. In [4] we showed
that any quasi-homogeneous strictly convex domain
Ω in RPn has a continuously differentiable bound-
ary and it must be an ellipsoid if ∂Ω is twice dif-
ferentiable. Furthermore such quasi-homogeneous
strictly convex domain Ω fails to be twice differ-
entiable on a dense subset if it is not an ellipsoid.
By Proposition 5.15 of [4], any strictly convex quasi-
homogeneous domain Ω which is not an ellipsoid has
a discrete automorphism group Aut(Ω) and so can-
not be homogeneous. It is well known there exist in-
finitely many such non-homogeneous strictly convex
quasi-homogeneous projective domains (see [3, 5, 8]).

For an old result on this problem, Vinberg and
Kats [8] showed in 2-dimensional case that if a convex
quasi-homogeneous domain Ω does not contain any
complete line and the boundary of Ω is everywhere
twice differentiable except possibly at a finite number
of points, then Ω must be homogeneous, that is, Ω
is either an ellipse or a triangle. We will show in
this paper that this is true for arbitrary dimensional
cases.

2. Preliminaries. The purpose of this sec-
tion is to present some of the basic materials that
we will need, which can be mostly found in [4]. We
begin with some basic definitions.

The real projective space RPn is the quotient
space of Rn+1\{0} by the action of R∗ = R\{0}. In
an affine space, we usually denote the affine subspace
generated by a subset A by 〈A〉. So we will use the
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same notation for a subset of RPn, i.e., for each
subset B of RPn 〈B〉 means the projectivization of
the affine subspace generated by π−1(B) in Rn+1,
where π is the quotient map from Rn+1 \ {0} onto
RPn and we will call 〈B〉 the support of B.

An open subset Ω of RPn is called convex if
there exists an affine space H ⊂ RPn such that Ω is
a convex affine subset of H . For a convex projective
domain Ω ⊂ RPn, we define an equivalence relation
on Ω as follows:
(1) x ∼ y if x �= y and Ω has an open line segment

l containing both x and y.
(2) x ∼ y if x = y.
An equivalence class with respect to this equivalence
relation is called a face of Ω. Note that a face is rel-
atively open in its support and Ω is a disjoint union
of all faces. A convex domain Ω in RPn is called
properly convex if there is no non-constant projec-
tive map of R into Ω and strictly convex if ∂Ω has
no line segment. From this definition we see that any
strictly convex domain is a properly convex domain.

It is clear that the intersection of any family of
convex sets of an affine space is again convex. There-
fore, for any subset A of an affine space H there is a
smallest convex set containing A in H , namely, the
intersection of all convex sets containing A. This
convex set is called the convex set spanned by A, or
the convex hull of A, and is denoted by CH(A). For
a subset A of RPn which is contained in some affine
space H ⊂ RPn, we can also define the convex hull
of A. But there might be many different affine spaces
in RPn containing A. This implies that CH(A) de-
pends on the choice of an affine space H containing
A, but even so they are all projectively equivalent
and therefore CH(A) is well-defined up to projec-
tive transformations.

Since PM(n+1, R), which is the projectivization
of the group of all n + 1 by n +1 matrices, is a com-
pactification of PGL(n+1, R), any infinite sequence
of non singular projective transformations contains a
convergent subsequence. Note that the limit projec-
tive transformation may be singular in general. For
a singular projective transformation g we will denote
the projectivization of the kernel and range of g by
K(g) and R(g). Then g maps RPn \K(g) onto R(g)
and the images of any closed set in RPn \ K(g) un-
der the convergent sequence gi, converge uniformly
to the image under the limit transformation g of gi

(See [1]).
Now we state a useful lemma whose proof can

be found in [4].
Lemma 1. Let Ω be a quasi-homogeneous

properly convex domain in RPn and G a subgroup
of Aut(Ω) acting on Ω syndetically. Then for each
point p ∈ ∂Ω, there exists a sequence {gi} ⊂ G and
x ∈ Ω such that gi(x) converges to p. Furthermore
for any accumulation point g of gi, R(g) is the pro-
jective subspace generated by the face containing p

and satisfies the following:

K(g) ∩ Ω = ∅ and K(g) ∩ Ω �= ∅.
The following definitions are originally intro-

duced by Benzécri in [1] using some complicated ter-
minology.

Definition 2.
(i) Let Ω be a properly convex domain in RPn and

Ω1 and Ω2 convex domains in 〈Ω1〉 and 〈Ω2〉
respectively. Ω is called a convex sum of Ω1 and
Ω2, which will be denoted by Ω = Ω1 + Ω2, if
〈Ω1〉 ∩ 〈Ω2〉 = ∅ and Ω is the union of all open
line segments joining points in Ω1 to points in
Ω2.

(ii) A k-dimensional face F of an n-dimensional con-
vex domain Ω is called conic if there exist n− k

supporting hyperplanes H1, H2, . . . , Hn−k such
that

H1 � H1 ∩ H2 � · · · � H1 ∩ · · · ∩ Hn−k = 〈F 〉.
The following theorem will be used later.
Theorem 3 (Benzécri). Let Ω be a prop-

erly convex quasi-homogeneous projective domain in
RPn. Then
(i) Suppose Ω = Ω1 + Ω2. Then Ω is homoge-

neous (respectively, quasi-homogeneous) if and
only if Ωi is homogeneous (respectively, quasi-
homogeneous) for i = 1, 2.

(ii) If F is a conic face of Ω then there exists a sup-
plementary properly convex domain B such that
Ω = F + B.

(iii) Let L be a linear subspace of RPn of dimension
r such that L∩Ω has a conic face F . Then there
exists a section which is projectively equivalent
to an r-dimensional properly convex domain F +
B for some suitable properly convex domain B

of dimension r − (dim(F ) + 1).
Here a section means an intersection of a projective
subspace and Ω.

From (ii) of the above theorem, we get immedi-
ately
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Corollary 4. Any quasi-homogeneous prop-
erly convex projective domain Ω whose boundary ∂Ω
has a line segment, that is, Ω is not strictly convex.
Then Ω has a triangular section ∆abc.

Proof. See Corollary 2.9 of [4].
3. Quasi-homogeneous convex projective

domains. This section is devoted to prove that
twice differentiability of ∂Ω with exception of fi-
nite points implies homogeneity of a properly convex
quasi-homogeneous projective domain Ω.

There are many n-dimensional polyhedras if n >

1, but the following proposition implies that a quasi-
homogeneous polyhedron is unique up to projective
equivalence.

Proposition 5. Simplices are the only quasi-
homogeneous polyhedras in RPn.

Proof. We proceed by induction on n = dimen-
sion of polyhedron with the case n = 1 being triv-
ial. If n > 1 and the proposition is true for all i <

n, choose any vertex v of n-dimensional polyhedron
Ω. Then v is a conic face and thus Ω = v + Ω′ for
some (n − 1)-dimensional quasi-homogeneous prop-
erly convex domain by Theorem 3. Since Ω is an
n-dimensional polyhedron, Ω′ is also a polyhedron
of dimension (n − 1). Induction hypothesis implies
that Ω′ is a (n − 1)-dimensional simplex. This com-
pletes the proof.

For a quasi-homogeneous projective domain
having twice differentiable boundary, we get the fol-
lowing.

Theorem 6. Let Ω be a properly convex quasi-
homogeneous projective domain whose boundary is
twice differentiable. Then Ω is an ellipsoid.

Proof. This is an immediate consequence of
Theorem 5.1 and Proposition 5.10 of [4].

The above thoerem means that any properly
convex quasi-homogeneous projective domain is ho-
mogeneous if its boundary is twice differentiable.
Then what can we say for convex quasi-homogeneous
projective domains whose boundary is not twice
differentiable everywhere? Now we can prove the
following theorem, which is a generalization of 2-
dimensional result of Vinberg and Kats [8]. Since
their proof cannot be applied directly in arbitrary
dimensional cases, we apply some different technique
using the results of Benzécri [1].

Theorem 7. Let Ω be a properly convex quasi-
homogeneous projective domain in RPn such that the
boundary of Ω is everywhere twice differentiable ex-
cept possibly at a finite number of points. Then Ω is

homogeneous. Furthermore Ω is an ellipsoid if n ≥ 3
and Ω is either an ellipse or a triangle if n = 2 and
Ω is an interval if n = 1.

Proof. By Theorem 6, Ω is an ellipsoid if it is
twice differentiable everywhere. So we may assume
that S = {p1, . . . , pk} is the set of all points at which
the boundary of Ω is not twice differentiable. Then
S and CH(S) are invariant subset.

Suppose that CH(S) is a proper subset of Ω.
Since Ω is the convex hull of the set of all extreme
points of Ω we can take another extreme point q of Ω
and so q has a neighborhood on which the boundary
of Ω is twice differentiable. By Lemma 1, we can take
a sequence {gi} ⊂ Aut(Ω) such that limi→∞ gi = g

and R(g) = p since p is extremal. Suppose ∂Ω has a
line segment. Then Ω has a triangular section ∆ by
Corollary 4. Since K(g) ∩ Ω = ∅ by Lemma 1, there
is a vertex v of ∆ which does not contained in K(g).
Notice that gn(v) converges to p and thus gn(v) be-
longs to U ∩ ∂Ω for sufficiently large n. But ∂Ω is
not differentiable at gn(v) and U ∩∂Ω is twice differ-
entiable, which is a contradiction. So a polyhedron
CH(S) must be equal to Ω. By Proposition 5, Ω
must be a simplex. Obviously, a triangle and an in-
terval are all simplex such that its boundary is twice
differentiable with finite point exception.

Remark 8. The above proof says actually
that any quasi-homogeneous properly convex projec-
tive domain with an extreme point p having differ-
entiable neighborhood Up in ∂Ω is a strictly convex
domain, and furthermore if Up is twice differentiable
then Ω is an ellipsoid by Theorem 5.1 in [4].

Corollary 9. Let Ω be a quasi-homogeneous
domain in RPn. Suppose that the closure of the
convex hull CH(Ω) of Ω is contained in an affine
space, that is, CH(Ω) is properly convex. Then Ω
is homogeneous if the boundary of Ω is everywhere
twice differentiable except possibly at a finite number
of points.

Proof. It is well known that Ω is properly con-
vex if the closure of the convex hull CH(Ω) of Ω
is contained in an affine space (see Prop. 2 in Sec-
tion II.3 of [1] or Vinberg and Kats [8]). So the con-
clusion is follows from the above theorem.

4. Remarks. For dimension ≥ 3, the as-
sumption in Theorem 7 that ∂Ω is everywhere twice
differentiable except possibly finite points seems to
be too strong. There must be a weaker condition
implying the homogeneity.

In two-dimensional case, it is well known that
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a properly convex quasi-homogeneous projective do-
main is either an ellipse, or a triangle, or a strictly
convex domain whose boundary is not twice differen-
tiable. But we know that any strictly convex quasi-
homogeneous projective domain Ω has a C1 bound-
ary (see [4]) and we can show that f is twice differ-
entiable almost everywhere and f ′′(x) = 0 for any
twice differentiable point x, where f is a local defin-
ing function of ∂Ω: if there exists x ∈ ∂Ω such
that f ′′(x) �= 0, then f ′′(x) must be positive by
strict convexity of f and thus we can show that it
must be an ellipsoid by the same argument with the
proof of Theorem 5.1 of [4]. From this classification
of 2-dimensional properly convex quasi-homogeneous
projective domains, we see that a properly convex
quasi-homogeneous projective domain may not be
homogeneous even if ∂Ω is twice differentiable on a
dense subset.

But if we strengthen the condition somewhat, it
seems to imply the homogeneity. Observe that any n-
simplex has infinitely many non-differentiable point
for n > 2 but the set of twice differentiable points is
an open dense subset . All other known examples for
homogeneous domains have this property.

On the other hand, the proof of Theorem 7 says
actually that any quasi-homogeneous properly con-
vex projective domain with an extreme point p hav-
ing twice differentiable neighborhood Up in ∂Ω is
homogeneous (see Remark 8). But this fact does
not imply that a properly convex quasi-homogeneous
projective domain Ω is homogeneous if ∂Ω is twice
differentiable on some neighborhood of a boundary
point. An easy example is a strictly convex quasi-
homogeneous cone which is not an elliptic cone: Ev-

ery strictly convex quasi-homogeneous cone has a
boundary which is twice differentiable on some neigh-
borhood of a point in their maximal dimensional
proper face. But it is not homogeneous if it is not an
elliptic cone. We will show in another paper that a
quasi-homogeneous convex projective domain is ho-
mogeneous if the boundary is twice differentiable on
some special kind of neighborhood of a boundary
point (it is called a ‘pocket’ which is introduced by
Benzécri at first).
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