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Abstract:

A Laplacian comparison theorem is given. As applications we show a volume

comparison theorem and a criterion for the hyperbolicity of Riemannian manifolds.
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1. Introduction. Let M be a smooth con-
nected complete Riemannian n-manifold, n > 2,
without boundary. Let P be a fixed point in M and
define h(z) = d(x,P) for all x € M, where d denotes
the geodesic distance. Let Kj; and Ricps denote the
sectional curvature and the Ricci curvature of M, re-
spectively. Let 0 < I < oo and 7 : [0,]) — M be a
minimal geodesic with v(0) = P, |y/(0)] = 1. Let
k,r : [0,00) — R be two continuous functions. We
assume that k satisfies

(1) KM(’VI(t)vX) < k(t)v

for vVt € (0,1), VX € My, X L o/(t). Let f be a
solution of

9 f"+Ek@)f=0, f(t) >0, (0<t<I),
@ {ﬂmaf«»L

The Hessian comparison theorem (cf. Kasue [6,
Lemma 2.18]) shows that

f't)
f@)”

The purpose of this note is to improve the above
inequality. We see from (1) that

Ricar(7/(£),7' (1)) < (n — Dk(?).
We impose the assumption that
(4)  Rien(¥'(1),7' (1)) < r(t) < (n = Dk(1),
for Vt € (0,1). Let f1 be a solution of

U4 () — (0 - 2k} =0,
<m{ﬁm>o_mmL 1

Our main result is the following

vt € (0,1).

3)  Ar(y() = (n—1)

0<t<l),
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Theorem 1. If f'(t) >0 on (0,1), then
f@) o (@)
(6) fi(t) > f(1), 0 > OB vt € (0,1)
o) fi®)

Theorem 1 also generalizes the inequality of
Borbély ([1, Lemma 2]), which is the motivation of
this note. As applications of Theorem 1 we obtain
the volume comparison theorem — Theorem 2 — and
a criterion for the hyperbolicity of Riemannian man-
ifolds, i.e., the existence of the Green’s function of
Laplacian — Theorem 3 and Theorem 4.

2. Proof of Theorem 1. We need the fol-
lowing lemma.

Lemma 1 ([1, Proposition 4]).
a>0, and b > na?®. Let S be the set

Let n € N,

n
{(wh...,xn)GR” a<x1<--~<xmzx§>b}.
j=1

Define f: S — R by f(x1,...
Then

min £(S) > (n — 1)a + {b — (n — 1)a®}/2.

We will follow Chavel’s notation [2, pp. 63-67]
as in [1] and [8]. Let v = ~/(0), M;- denote the
orthogonal complement of 4/(t) in M, and define
R(t) - M — M by R(OX = R(Y (1), X)),
where R( , ) is the curvature tensor of M. Let 7; :
M, — M, ) be the parallel translation along v and
define R(t) : v+ — vt by R(t)X = () " R(t)7:(X).
Let A be the solution of

A" +RA=0on (0,1), A(0)=0, A'(0)=1.

7$n):$1++$n

Let g;; be the components of the Riemannian metric
of M with respect to the normal coordinate system
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around P, U(t) = A’(t)A(t)~, and define g(t,w) =
t2(n=1) det gij © exp(tw). We note that U and R are
selfadjoint and that g, A, U, and R have the following
properties:

(8) Vg(t,v) = det A(t).
9) U +U?+R=0on (0,0).

(
(10) trU@#) = %log det A(t) = Ah(v(1)).
(

11) trR(t) = Riea (7/(1),7/(1)):

We see from Sturm’s comparison theorem that
fi(t) > 0on (0,1). Let F(t) = f/(t)/f(t) and Fy(¢t) =
f1(t)/ f1(t). Then the Riccati equations

F'4+F*+k=0, F{+Fl4+r—(n-2k=0

hold on (0,1). Since lim;,o(Fi(t) — F(t)) = 0
we infer from [4, Theorem] that Fy(t) > F(t) on
(0,1), which implies f1(t) > f(¢t) on (0,1) because
limy 10 f1(t)/f(t) = 1. Let v(t) = trU(t) and
a1,-..,0an_1 be the eigenvalues of U. From (9) we
have

vV Fai oo FtrR=0.

We see from [4, Theorem] that a;(t) > F(t) > 0
(1<j<n-1). Applying Lemma 1 we find that

v2(n—2)F+\/a%+--~+oz%_1—(n—2)F2
=(n—2)F4+/—v —trR— (n—2)F2.

Let V =v— (n—2)F. Then we have
V' 4+ V2> —trR+ (n—2)k
>—r+(n—-2)k
F{ + F}.

Since liminf; . o(V(t) — Fi(t)) > 0 and V() +
Fi(t) > 0, we conclude from [4, Theorem] that
V(t) > Fi(t) on (0,1) and the proof of Theorem 1
is complete.

3. Applications. Let B(t) = {x € M |
d(xz,P) < t} and vol(B(t)) be the volume of B().
We have the following volume comparison theorem.

Theorem 2. Let f'(t) > 0 on (0,1) and T =
min{l, the injectivity radius of P}. Assume that k
and T satisfy

and

[Vol. 78(A),

for any minimal geodesic v : [0,T) — M with v(0) =
P and |y/(0)] = 1, Vt € (0,T), and ¥X € M., with
X L+(t). Then

(0.7) 5 t — vol(B(1)) / /0 Fu() f(s)"2ds

s a nondecreasing function.

Proof. We will follow Chavel’s notation [3, p.
107]. Let g;; be as in the proof of Theorem 1 and
H,,_1 be the (n — 1)-dimensional Hausdorff measure
of M,. We define

F(t)=t""! / det g;; o exp(tx)dH, —1(x)
S(P;1)

for 0 <t < T. From Theorem 1 we have

"~y /det g;j o exp(ta?)/ﬁ (t) ()2

> 51 faet gy o exp(sz) / i(5) (5)"

for 0 < s <t<T, z€S(P;1). Therefore F/f, fr=2
is nondecreasing on (0,7"). The Theorem follows by
applying [3, Lemma 3.1]. L]
We assume that [ = oo in (2) and (5) and that
the injectivity radius of P is infinity. Let w,_1 be
the volume of the unit (n — 1)-sphere in R™. The
following theorem improves [5, Theorem 2.2] and [6,
Theorem 5.3] in case f’ > 0, whose condition holds
ifk<0Oork>0.
Theorem 3.
that k and r satisfy

K (7 (1), X) < k(t),

Let f'(t) > 0 on (0,00). Assume

and
Ricar (7/(t), 7/ (1)) < 7(t) < (n — 1)k(t)

for any geodesic v : [0,00) — M with v(0) =P and
V' (0)] =1, Vt € (0,00), and VX € My with X L
V@) If

[N
v [it)f(t)"?

for some T > 0, then the Green’s function G(x,P)
of M with a pole at P exists and satisfies

G(z,p) <

1 o dt
Wn—1 ~/h(ac) @) f(E)—

forallz e M, x #P.
Proof. We define

F(t) = wi, / " fi(s) (s> s
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for ¢ > 0. From Theorem 1 we see that
AF(h(x)) = F"(h(x)) + F'(h(z))Ah(z) <0

for x € M\ {P}. We can prove the theorem after the
proof of [6, Theorem 4.3]. [
Let 1 < a < n be a constant. We define k,,
and ¢y as in [7]. The following theorem improves [7,
Theorem 1].
Theorem 4. Let f'(t) > 0 on (0,00). Assume
that k and r satisfy

K (7/(t), X) < k(t),
and
Ricar (v/(),7' (1)) < r(t) < (n — 1)k(t)
for any geodesic v : [0,00) — M with v(0) =P and
Y (0)] =1, Vt € (0,00), and VX € My with X L
V(@) If

/ F() V@D p() @/ D) gy < o
T

for some T > 0, then the a-Green’s function G(z,P)
of M with a pole at P exists and satisfies

G(z,P) < kyco
h(z

forallx e M, x #P.
Proof. We define

) = /too fl(s)_1/(a—1)f(s)(Q—n)/(a—l)dS

for t > 0. Let u(xz) = F(d(z)), then

fl(t)fl/(afl)f(t)(%n)/(afl)dt
)
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div(|Vu|*™2Vu)
= —|F(d)|*7*(|F"(d)|Ah — (@ = 1)F"(d)) <0

in M\{P}. We can prove the theorem after the proof
of [7, Theorem 1]. [l

References

[1] Borbély, A.: On the spectrum of the Laplacian in
negatively curved manifolds. Studia Sci. Math.
Hungar., 30, 375-378 (1995).

Chavel, J.: Eigenvalues in Riemannian Geometry.
Academic Press, London (1984).

Chavel, J.: Riemannian Geometry — A Modern In-
troduction. Cambridge Univ. Press, Cambridge
(1993).

Eschenburg, J.-H., and Heintze, E.: Comparison
theory for Ricci equations. Manuscripta Math.,
68, 209214 (1990).

Ichihara, K.: Curvature, geodesics and the Brown-
ian motion on a Riemannian manifold I. Nagoya
Math. J., 87, 101-114 (1982).

Kasue, A.: A Laplacian comparison theorem and
function theoretic properties of a complete Rie-
mannian manifold. Japan J. Math., 8, 309-341
(1982).

Kura, T.: On the Green function of the p-Laplace
equation for Riemannian manifolds. Proc. Japan
Acad., T5A, 37-38 (1999).

Setti, A. G.: A lower bound for the spectrum of
the Laplacian in terms of sectional and Ricci cur-
vature. Proc. Amer. Math. Soc., 112, 277-282
(1991).





