A Laplacian comparison theorem and its applications

By Takeshi Kura

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Communicated by Heisuke HIRONAKA, M. J. A., Jan. 15, 2002)

Abstract: A Laplacian comparison theorem is given. As applications we show a volume comparison theorem and a criterion for the hyperbolicity of Riemannian manifolds.

Key words: Laplacian comparison theorem; volume comparison theorem; hyperbolicity of Riemannian manifolds.

1. Introduction. Let M be a smooth connected complete Riemannian n-manifold, $n \geq 2$, without boundary. Let P be a fixed point in M and define h(x) = d(x, P) for all $x \in M$, where d denotes the geodesic distance. Let K_M and Ric_M denote the sectional curvature and the Ricci curvature of M, respectively. Let $0 < l \leq \infty$ and $\gamma : [0, l) \to M$ be a minimal geodesic with $\gamma(0) = P$, $|\gamma'(0)| = 1$. Let $k, r : [0, \infty) \to \mathbf{R}$ be two continuous functions. We assume that k satisfies

(1)
$$K_M(\gamma'(t), X) \le k(t),$$

for $\forall t \in (0, l), \ \forall X \in M_{\gamma(t)}, \ X \perp \gamma'(t)$. Let f be a solution of

$$(2) \quad \begin{cases} f'' + k(t)f = 0, \ f(t) > 0, \ (0 < t < l), \\ f(0) = 0, \ f'(0) = 1. \end{cases}$$

The Hessian comparison theorem (cf. Kasue [6, Lemma 2.18]) shows that

(3)
$$\Delta h(\gamma(t)) \ge (n-1)\frac{f'(t)}{f(t)}, \quad \forall t \in (0, l).$$

The purpose of this note is to improve the above inequality. We see from (1) that

$$\operatorname{Ric}_M(\gamma'(t), \gamma'(t)) \le (n-1)k(t).$$

We impose the assumption that

(4)
$$\operatorname{Ric}_{M}(\gamma'(t), \gamma'(t)) \leq r(t) \leq (n-1)k(t),$$

for $\forall t \in (0, l)$. Let f_1 be a solution of

(5)
$$\begin{cases} f_1'' + \{r(t) - (n-2)k(t)\}f_1 = 0, & (0 < t < l), \\ f_1(0) = 0, & f_1'(0) = 1. \end{cases}$$

Our main result is the following

Theorem 1. If $f'(t) \ge 0$ on (0, l), then

(6)
$$f_1(t) \ge f(t), \ \frac{f_1'(t)}{f_1(t)} \ge \frac{f'(t)}{f(t)}, \quad \forall t \in (0, l).$$

(7)
$$\Delta h(\gamma(t)) \ge (n-2)\frac{f'(t)}{f(t)} + \frac{f'_1(t)}{f_1(t)}, \quad \forall t \in (0,l).$$

Theorem 1 also generalizes the inequality of Borbély ([1, Lemma 2]), which is the motivation of this note. As applications of Theorem 1 we obtain the volume comparison theorem – Theorem 2 – and a criterion for the hyperbolicity of Riemannian manifolds, i.e., the existence of the Green's function of Laplacian – Theorem 3 and Theorem 4.

2. Proof of Theorem 1. We need the following lemma.

Lemma 1 ([1, Proposition 4]). Let $n \in \mathbb{N}$, $a \ge 0$, and $b \ge na^2$. Let S be the set

$$\left\{ (x_1, \dots, x_n) \in \mathbf{R}^n \,\middle|\, a \le x_1 \le \dots \le x_n, \sum_{j=1}^n x_j^2 \ge b \right\}.$$

Define $f: S \to \mathbf{R}$ by $f(x_1, \dots, x_n) = x_1 + \dots + x_n$. Then

$$\min f(S) > (n-1)a + \{b - (n-1)a^2\}^{1/2}.$$

We will follow Chavel's notation [2, pp. 63–67] as in [1] and [8]. Let $v=\gamma'(0),\ M_t^\perp$ denote the orthogonal complement of $\gamma'(t)$ in $M_{\gamma(t)}$, and define $R(t):M_t^\perp\to M_t^\perp$ by $R(t)X=R(\gamma'(t),X)\gamma'(t)$, where $R(\ ,\)$ is the curvature tensor of M. Let $\tau_t:M_p\to M_{\gamma(t)}$ be the parallel translation along γ and define $\mathcal{R}(t):v^\perp\to v^\perp$ by $\mathcal{R}(t)X=(\tau_t)^{-1}R(t)\tau_t(X)$. Let A be the solution of

$$A'' + \mathcal{R}A = 0$$
 on $(0, l)$, $A(0) = 0$, $A'(0) = I$.

Let g_{ij} be the components of the Riemannian metric of M with respect to the normal coordinate system

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C21; Secondary 31C12.

around P, $U(t) = A'(t)A(t)^{-1}$, and define $g(t, w) = t^{2(n-1)} \det g_{ij} \circ \exp(tw)$. We note that U and R are selfadjoint and that g, A, U, and R have the following properties:

(8)
$$\sqrt{g(t,v)} = \det A(t).$$

(9)
$$U' + U^2 + \mathcal{R} = 0 \text{ on } (0, l).$$

(10)
$$\operatorname{tr} U(t) = \frac{d}{dt} \log \det A(t) = \Delta h(\gamma(t)).$$

(11)
$$\operatorname{tr} \mathcal{R}(t) = \operatorname{Ric}_{M}(\gamma'(t), \gamma'(t)).$$

We see from Sturm's comparison theorem that $f_1(t) > 0$ on (0, l). Let F(t) = f'(t)/f(t) and $F_1(t) = f'_1(t)/f_1(t)$. Then the Riccati equations

$$F' + F^2 + k = 0$$
, $F'_1 + F^2_1 + r - (n-2)k = 0$

hold on (0, l). Since $\lim_{t\to +0}(F_1(t)-F(t))=0$ we infer from [4, Theorem] that $F_1(t)\geq F(t)$ on (0, l), which implies $f_1(t)\geq f(t)$ on (0, l) because $\lim_{t\to +0}f_1(t)/f(t)=1$. Let $v(t)=\operatorname{tr} U(t)$ and $\alpha_1,\ldots,\alpha_{n-1}$ be the eigenvalues of U. From (9) we have

$$v' + \alpha_1^2 + \dots + \alpha_{n-1}^2 + \operatorname{tr} \mathcal{R} = 0.$$

We see from [4, Theorem] that $\alpha_j(t) \geq F(t) \geq 0$ $(1 \leq j \leq n-1)$. Applying Lemma 1 we find that

$$v \ge (n-2)F + \sqrt{\alpha_1^2 + \dots + \alpha_{n-1}^2 - (n-2)F^2}$$

= $(n-2)F + \sqrt{-v' - \operatorname{tr} \mathcal{R} - (n-2)F^2}$.

Let V = v - (n-2)F. Then we have

$$V' + V^2 \ge -\operatorname{tr} \mathcal{R} + (n-2)k$$
$$\ge -r + (n-2)k$$
$$= F'_1 + F^2_1.$$

Since $\liminf_{t\to +0}(V(t)-F_1(t))\geq 0$ and $V(t)+F_1(t)\geq 0$, we conclude from [4, Theorem] that $V(t)\geq F_1(t)$ on (0,l) and the proof of Theorem 1 is complete.

3. Applications. Let $B(t) = \{x \in M \mid d(x,P) < t\}$ and vol(B(t)) be the volume of B(t). We have the following volume comparison theorem.

Theorem 2. Let $f'(t) \ge 0$ on (0, l) and $T = \min\{l, \text{ the injectivity radius of P}\}$. Assume that k and r satisfy

$$K_M(\gamma'(t), X) \le k(t),$$

and

$$\operatorname{Ric}_M(\gamma'(t), \gamma'(t)) \le r(t) \le (n-1)k(t)$$

for any minimal geodesic $\gamma:[0,T)\to M$ with $\gamma(0)=P$ and $|\gamma'(0)|=1$, $\forall t\in(0,T)$, and $\forall X\in M_{\gamma(t)}$ with $X\perp\gamma'(t)$. Then

$$(0,T) \ni t \longmapsto \operatorname{vol}(B(t)) / \int_0^t f_1(s) f(s)^{n-2} ds$$

is a nondecreasing function.

Proof. We will follow Chavel's notation [3, p. 107]. Let g_{ij} be as in the proof of Theorem 1 and H_{n-1} be the (n-1)-dimensional Hausdorff measure of M_p . We define

$$F(t) = t^{n-1} \int_{S(\mathbf{P};1)} \sqrt{\det g_{ij} \circ \exp(tx)} dH_{n-1}(x)$$

for 0 < t < T. From Theorem 1 we have

$$t^{n-1} \sqrt{\det g_{ij} \circ \exp(tx)} / f_1(t) f(t)^{n-2}$$

$$\geq s^{n-1} \sqrt{\det g_{ij} \circ \exp(sx)} / f_1(s) f(s)^{n-2}$$

for 0 < s < t < T, $x \in S(P; 1)$. Therefore F/f_1f^{n-2} is nondecreasing on (0, T). The Theorem follows by applying [3, Lemma 3.1].

We assume that $l=\infty$ in (2) and (5) and that the injectivity radius of P is infinity. Let ω_{n-1} be the volume of the unit (n-1)-sphere in \mathbf{R}^n . The following theorem improves [5, Theorem 2.2] and [6, Theorem 5.3] in case $f' \geq 0$, whose condition holds if $k \leq 0$ or $k \geq 0$.

Theorem 3. Let $f'(t) \ge 0$ on $(0, \infty)$. Assume that k and r satisfy

$$K_M(\gamma'(t), X) \le k(t),$$

and

$$\operatorname{Ric}_M(\gamma'(t), \gamma'(t)) \le r(t) \le (n-1)k(t)$$

for any geodesic $\gamma:[0,\infty)\to M$ with $\gamma(0)=\mathrm{P}$ and $|\gamma'(0)|=1, \ \forall t\in(0,\infty), \ and \ \forall X\in M_{\gamma(t)}$ with $X\perp\gamma'(t)$. If

$$\int_{T}^{\infty} \frac{dt}{f_1(t)f(t)^{n-2}} < \infty$$

for some T > 0, then the Green's function G(x, P) of M with a pole at P exists and satisfies

$$G(x,p) \le \frac{1}{\omega_{n-1}} \int_{h(x)}^{\infty} \frac{dt}{f_1(t)f(t)^{n-2}}$$

for all $x \in M$, $x \neq P$.

Proof. We define

$$F(t) = \omega_{n-1}^{-1} \int_{t}^{\infty} f_1(s)^{-1} f(s)^{2-n} ds$$

for t > 0. From Theorem 1 we see that

$$\Delta F(h(x)) = F''(h(x)) + F'(h(x))\Delta h(x) \le 0$$

for $x \in M \setminus \{P\}$. We can prove the theorem after the proof of [6, Theorem 4.3].

Let $1 < \alpha \le n$ be a constant. We define k_{α} and c_2 as in [7]. The following theorem improves [7, Theorem 1].

Theorem 4. Let $f'(t) \ge 0$ on $(0, \infty)$. Assume that k and r satisfy

$$K_M(\gamma'(t), X) \le k(t),$$

and

$$\operatorname{Ric}_{M}(\gamma'(t), \gamma'(t)) \le r(t) \le (n-1)k(t)$$

for any geodesic $\gamma:[0,\infty)\to M$ with $\gamma(0)=\mathrm{P}$ and $|\gamma'(0)|=1, \ \forall t\in(0,\infty), \ and \ \forall X\in M_{\gamma(t)} \ with \ X\perp\gamma'(t).$ If

$$\int_{T}^{\infty} f_1(t)^{-1/(\alpha - 1)} f(t)^{(2-n)/(\alpha - 1)} dt < \infty$$

for some T > 0, then the α -Green's function G(x, P) of M with a pole at P exists and satisfies

$$G(x, P) \le k_{\alpha} c_2 \int_{h(x)}^{\infty} f_1(t)^{-1/(\alpha - 1)} f(t)^{(2-n)/(\alpha - 1)} dt$$

for all $x \in M$, $x \neq P$.

Proof. We define

$$F(t) = \int_{t}^{\infty} f_1(s)^{-1/(\alpha - 1)} f(s)^{(2-n)/(\alpha - 1)} ds$$

for t > 0. Let u(x) = F(d(x)), then

$$\operatorname{div}(|\nabla u|^{\alpha-2}\nabla u)$$

$$= -|F(d)|^{\alpha-2}(|F'(d)|\Delta h - (\alpha-1)F''(d)) \le 0$$

in $M\setminus\{P\}$. We can prove the theorem after the proof of [7, Theorem 1].

References

- [1] Borbély, A.: On the spectrum of the Laplacian in negatively curved manifolds. Studia Sci. Math. Hungar., **30**, 375–378 (1995).
- [2] Chavel, J.: Eigenvalues in Riemannian Geometry. Academic Press, London (1984).
- [3] Chavel, J.: Riemannian Geometry A Modern Introduction. Cambridge Univ. Press, Cambridge (1993).
- [4] Eschenburg, J.-H., and Heintze, E.: Comparison theory for Ricci equations. Manuscripta Math., 68, 209–214 (1990).
- [5] Ichihara, K.: Curvature, geodesics and the Brownian motion on a Riemannian manifold I. Nagoya Math. J., 87, 101–114 (1982).
- [6] Kasue, A.: A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold. Japan J. Math., 8, 309–341 (1982).
- [7] Kura, T.: On the Green function of the p-Laplace equation for Riemannian manifolds. Proc. Japan Acad., 75A, 37–38 (1999).
- [8] Setti, A. G.: A lower bound for the spectrum of the Laplacian in terms of sectional and Ricci curvature. Proc. Amer. Math. Soc., 112, 277–282 (1991).