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A note on the mean value of the zeta and L-functions. XII
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Abstract: In the present and the next notes of this series, we shall try to illuminate a
geometric structure behind the interactions that have recently been observed between mean values
of zeta-functions and automorphic representations. Our discussion is hoped to be a precursor of
a unified theory of mean values of automorphic L-functions that we are going to forge. In this
note we shall deal with the spectral structure over the modular group. In the next note the Picard
group will be treated, as a typical case in the complex situation. We stress that we have been
inspired by the work [2] due to Cogdell and Pyatetskii-Shapiro.
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1. Introduction. The functional equation
for the Riemann zeta-function ζ(s) and the Poisson
summation formula over Z are equivalent. The the-
ory of unitary representations puts the latter as a
means to compute, in terms of seed functions, pro-
jections of Poincaré series over Z\R to irreducible
subspaces of L2(Z\R). The kernel function, i.e.,
cos(2πx), x ∈ R, of the relevant integral transform of
seed functions is precisely the Mellin inverse of the
Gamma-factor of the functional equation for ζ(s).
Generalizing the setting, given a pair of a Lie group
G and its discrete subgroup Γ , one may wonder what
the analogue will be. The central problem is, of
course, to find a way to compute explicitly the pro-
jection of a given Poincaré series over Γ\G to an ar-
bitrary irreducible subspace of L2(Γ\G). The above
suggests that the solution should be closely related
to the Gamma and Bessel functions of representa-
tions of G. Here we shall report about the case G =
PSL2(R) and Γ = PSL2(Z), which is the most ba-
sic in applications in Analytic Number Theory. It
will be observed that in place of a single functional
equation for the pair R and Z a family of infinitely
many functional equations, interlaced with the spec-
tral resolution of the Casimir operator, govern the
whole structure. This seems to lead us to a better
understanding of the explicit spectral decomposition
for the fourth moment of ζ(s), which is established
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in [6]. We shall, however, leave the report on this
aspect of our investigation for future notes, and here
rather concentrate on the description of basic prin-
ciples except brief observations given in Concluding
remark below.

Our discussion is related to that of [2], but can
be read independently. Ours is closer than theirs
to the traditional treatment of problems in Analytic
Number Theory concerning functional equations of
L-functions, which are perhaps best represented by
Voronöı formulas. In fact, the geometric structure we
are describing is an extension of the Voronöı scheme
to PSL2(R). Details of our discussion below are
available in [7], which is intended for publication.

2. Motivation. The author has been trying
to have a direct proof of his result on the fourth
power moment of ζ(s)∫ ∞

−∞

∣∣∣∣ζ (
1
2

+ it

)∣∣∣∣4 g(t)dt,(1)

where g is supposed to be sufficiently smooth. Here
the word direct suggests that it is wished to find a
way to connect this moment with the space L2(Γ\G)
without appealing to the spectral theory of Kloost-
erman sums that is used in [6]. Since all the spectral
data of irreducible subspaces of L2(Γ\G) are present
in the spectral decomposition of (1), while no trace
of the use of Kloosterman sums is remaining there,
it is reasonable to envisage the existence of such a
way. An aim of the present article is to indicate an
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approach to this problem; as remarked above, ac-
tual discussions are, however, to be developed in our
later works. It will amount to a realization of the
programme introduced in Section 4.2 of [6].

The programme is, in hindsight, equivalent to
finding as directly as possible the projection, to each
irreducible subspace of L2(Γ\G), of a Poincaré series
of the following type:

Pf (g) =
∑

γ∈Γ∞\Γ

f(γg),

where Γ∞ = {n[x] : x ∈ Z}, and the smooth f de-
fined over G is to satisfy f(n[x]g) = e(mx)f(g), with
m ∈ Z, e(x) = exp(2πix), and

n[x] =
[

1 x

1

]
.

Note that the convergence issue is ignored in this
section. Let V be a cuspidal irreducible subspace of
L2(Γ\G), and $V (f) be the projection of Pf to V .
We try to see $V (f) via its Fourier expansion:

$V (f)(g) =
∑
n∈Z

Wn(g;$V (f)),

where

Wn(g;ϕ) =
∫ 1

0

e(−nx)ϕ(n[x]g)dx.

To compute Wn(g;$V (f)) we proceed weakly, fol-
lowing Chapter 5 of [2], with our own subsequent
twists. Thus, we pick up an arbitrary smooth vector
ϕ of V and consider∫

R×
wn(u;$V (f))wn(u;ϕ)d×u,(2)

where

wn(u;ϕ) = Wn sgn(u)(a[|u|];ϕ), R× = R\{0},

d×u =
du

|u|
; a[y] =

[√
y

1/
√

y

]
.

This is to use the Kirillov model realizing V in
the space L2(R×, d×) via the map wn(u;ϕ) 7→
wn(u;ϕ(∗ · g)), if we adopt the terminology in [2].
A feature of this model, particularly important for
our purpose, is in the unitaricity relation stated in
Theorem 1 below. We shall prove the assertion by
reducing it to a simple orthogonality relation among
Whittaker functions, which in effect lets us dispense
with the notion of the Kirillov model. At any event,
the unitaricity relation transforms (2) into

cV (n)
∫

N\G
f(g)Wm(g;ϕ)dg,

where cV (n) is a constant, and N = {n[x] : x ∈ R}.
This shows that our problem has been reduced to
finding a kernel function jm,n

V (u; g) such that for any
smooth vector ϕ in V

Wm(g;ϕ) =
∫
R×

jm,n
V (u; g)wn(u;ϕ)d×u.(3)

Such a kernel has been known as the Bessel function
of the representation V , and belongs to the family of
reproducing kernels. Arguing formally, we obtain

wn(u;$V (f)) = cV (n)
∫

N\G
f(g)jm,n

V (u; g) dg,

which should settle our current issue on Pf .
However, the equation (3) cannot hold in gen-

eral with an ordinary function jm,n
V . If g is in the

small Bruhat cell, then jm,n
V is to be understood in

terms of the Dirac delta, as is to be explained later.
On the other hand, if g is in the big cell, then (3)
can readily be reduced to the case m = n = 1 and
g = w the Weyl element, again to be made precise
later. Remarkably, the kernel j1,1

V (u; w) has been
given, in the form of an ordinary function, already in
the formula (17) on p. 454 of [9] (see also the end of
Chapter VII of [8] as well as Theorem 4.1 and Chap-
ter 6 of [2]). It coincides exactly with that in the
famed Kloosterman–Spectra sum formula due to N.
V. Kuznetsov, a fact which illuminates the structure
supporting his Bessel transform.

Although their claims on j1,1
V (u; w) are correct,

the relevant discussions in [2, 8, 9] are by no means
rigorous. Therefore, we shall develop, in Section 4,
an independent argument to fix the kernel j1,1

V (u; w).
For this sake, we shall appeal to a principle, which
deals with self-reciprocal kernels. Thus, we shall ap-
ply the Mellin transform to translate (3) into a func-
tional equation. There arises a necessity to invoke
the local functional equation attached to the repre-
sentation V , in the sense of [4]. We shall prove the
latter in an elementary manner, for the sake of com-
pleteness, and finish the discussion with an appeal
to the Mellin–Parseval formula.

Hence our purpose is not to claim any new re-
sults but to set forth a rigorous argument to support
important claims made previously by others and ac-
quire a new viewpoint for our own result on (1).

3. Basic concepts. We shall collect notions
which are needed in the next section. Thus, let G =
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NAK be the Iwasawa decomposition, where N is as
above, and A = {a[y] : y > 0}, K = {k[θ] : θ ∈
R/(πZ)}, with

k[θ] =
[

cos θ sin θ

− sin θ cos θ

]
.

The Haar measure we use is dg = dndadk/y with
g = nak, dn = dx, da = dy/y, dk = dθ/π. On this
coordinate system the Casimir operator over G takes
the form Ω = −y2((∂/∂x)2+(∂/∂y)2)+iy∂2/(∂x∂θ).

Elements of G act on the functions in L2(Γ\G)
from the right, and we have the orthogonal decom-
position to invariant subspaces: L2(Γ\G) = C · 1 ⊕
0L2(Γ\G) ⊕ eL2(Γ\G). The eL2 is spanned by in-
tegrals of Eisenstein series. The 0L2 is the cuspidal
subspace which is spanned by square-integrable left
Γ -automorphic functions whose Fourier expansions
in x have constant terms vanishing. It decomposes
into right-irreducible subspaces: 0L2(Γ\G) =

⊕
V .

The Casimir operator becomes a constant multipli-
cation in each V , so that Ω|V = (1/4 + κ2) · 1. With
Γ = PSL2(Z), there are two possibilities: either κ >

0 or iκ is equal to half an odd integer. According
to the action of K, the space V is decomposed into
K-irreducible subspaces: V =

⊕
p∈Z Vp, dim Vp ≤ 1.

If it is not trivial, Vp is spanned by a Γ -automorphic
function on which the right translation by k[θ] be-
comes the multiplication by the factor e2ipθ. It is
called a weight vector.

Hereafter, we shall assume that V is in the uni-
tary principal series, i.e., κ > 0. Then dim Vp = 1
for all p ∈ Z. Let ϕ0 be a generator of V0 that is of
length one, i.e., a Maass wave. It is readily seen that
Vp is generated by ϕp = Epϕ0/‖Epϕ0‖, where E =
e2iθ(2iy∂x + 2y∂y − i∂θ), and Ep = (E)|p| for p < 0.
The family {ϕp : p ∈ Z} is a complete orthonormal
system in V . By definition we have the expansion

ϕp(g) =
∑

Z3n 6=0

Wn(g;ϕp).(4)

The differential equation Ωϕp = (1/4 + κ2)ϕp, to-
gether with the side condition that Wn(n[x]gk[θ];ϕp)
= e2piθe(nx)Wn(g;ϕp), and ϕp is cuspidal, implies
that Wn(a[y];ϕp) is a constant multiple of the Whit-
taker function Wλ,µ, with λ = p, µ = iκ, which
satisfies[(

d

dy

)2

− 1
4

+
λ

y
+

1/4− µ2

y2

]
Wλ,µ(y) = 0.(5)

Thus we may put

Wn(g;ϕp) =
1
2
(−1)p|n|−1/2%p(n)(6)

·e2ipθe(nx)Γ
(

1
2

+ iκ

)
Wp sgn(n),iκ(4π|n|y)

Γ(p sgn(n) + 1/2 + iκ)

with a constant %p(n). Expressing the right side as
a Jacquet transform, one may conclude that for all
p ∈ Z

%p(n) = %0(n) = %V (n),(7)

say.
4. Fundamental assertions. We are now

ready to give a brief yet rigorous proof of the uni-
taricity assertion that is mentioned above in relation
with the Kirillov model.

Theorem 1. For any integer n 6= 0 and any
smooth vector ϕ ∈ V , we have∫

R×
|wn(u;ϕ)|2d×u =

π

4
|%V (n)|2

|n| coshπκ
‖ϕ‖2Γ\G.

Proof. Write

ϕ(g) =
∑
Z3p

αpϕp(g),(8)

with ϕp as above. Taking Fourier coefficients in θ

on both sides, we see, via (4), that the assertion is
equivalent to the orthogonality∫

R×
wn(u, ϕp)wn(u, ϕq)d×u = δp,q

π

4
|%V (n)|2

|n| coshπκ
,

with δ the Kronecker delta. In view of (6) and the
fact that Wp,iκ(y) is real, this is an elementary con-
sequence of the following identity (see the formula
7.611(3) of [3]): For any α, β and for any |Re µ| <
1/2,∫ ∞

0

Wα,µ(y)Wβ,µ(y)
dy

y
=

π

(α− β) sin(2πµ)

·
[

1
Γ(1/2− α + µ)Γ(1/2− β − µ)

− 1
Γ(1/2− α− µ)Γ(1/2− β + µ)

]
.

To prove this, we shall use the differential equation
(5): We have

− α

∫ ∞

0

Wα,µ(y)Wβ,µ(y)
dy

y
(9)

= lim
ε→0+

∫ ∞

ε

[(
d

dy

)2

− 1
4

+
1/4− µ2

y2

]

·Wα,µ(y)Wβ,µ(y)
dy

y
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= lim
ε→0+

[
−W ′

α,µ(ε)Wβ,µ(ε) + Wα,µ(ε)W ′
β,µ(ε)

]
−β

∫ ∞

0

Wα,µ(y)Wβ,µ(y)
dy

y
.

Computing the last limit with the Taylor expansion
for Whittaker functions, we end the proof of the the-
orem.

Next, we shall fix the kernel in (3), again with
a brief yet rigorous argument. To this end, we shall
first make some reductions: As is remarked below,
it is enough to treat the case ϕ = ϕp with an arbi-
trary p. One may assume that ϕ0 is a simultaneous
eigenvector of all Hecke operators, and in particular
%V (1) 6= 0. Then we have that

%V (1)Wm(g;ϕp)

= %V (m)e(mx)e2ipθW1(a[|m|y];ϕp sgn(m)),

and %V (1)wn(u;ϕp) = %V (n)w1(nu;ϕp). Thus, in
place of (3) with ϕ = ϕp, we may write

%V (n)Wm(g;ϕp) = %V (m)e(mx)e2ipθ

·
∫
R×

j1,1
V (sgn(m)nu; a[|m|y])wn(u;ϕp)d×u.

Hence, it is enough to consider the situation m =
n = 1 only. Let G = B t NwB, B = NA, be the
Bruhat decomposition. If g = n[x]a[y] ∈ B, then one
may put j1,1

V (u; g) = e(x)δ(u − y)u with the Dirac
delta. If g = n[x1]wn[x2]a[y] ∈ NwB, then one may
put j1,1

V (u; g) = e(x1 + ux2)jV (u/y), with jV given
below. In this way we find that (3) is solved with the
assertion:

Theorem 2. Let w be the Weyl element.
Then we have, for any smooth vector ϕ in V and
y > 0,

w1(y;ϕ(∗ · w)) =
∫
R×

jV (yu)w1(u;ϕ)d×u,

where jV (u) is defined to be

π

√
|u|

sinπiκ

{
J

sgn(u)
−2iκ (4π

√
|u|)− J

sgn(u)
2iκ (4π

√
|u|)

}
,

with J+
ν = Jν and J−ν = Iν in the usual notation for

Bessel functions.
Proof. With (8) and elementary uniform

bounds for the Bessel and Whittaker functions, one
may conclude that it suffices to treat the case of
weight vectors ϕ = ϕp. We then consider the Mellin
transform:

Γp(s) =
∫ ∞

0

W1(a[y];ϕp)ys−3/2dy,

which is regular for Re s > 0. It is known that Γp

continues meromorphically to C, and satisfies

(−1)pΓp(s) = 21−2sπ−2sΓ(s + iκ)Γ(s− iκ)(10)

· (cos πsΓp(1− s) + cos πiκ Γ−p(1− s)) .

This is the local functional equation given in Theo-
rem 5.15 of [4]; for the sake of completeness, we shall
prove it directly later. Observe the L2-Mellin pairs:
For 0 < Re s < 1/4

21−2sπ−2s cos πsΓ(s + iκ)Γ(s− iκ)(11)

←→ − π

sinπiκ
(J2iκ(4π

√
y)− J−2iκ(4π

√
y)) ;

for 0 < Re s

21−2sπ−2s cos πiκ Γ(s + iκ)Γ(s− iκ)(12)

←→ − π

sinπiκ
(I2iκ(4π

√
y)− I−2iκ(4π

√
y)) ;

and Γp(s) ↔ y−1/2W1(a[y];ϕp) for 0 < Re s. We
combine these three pairs with (10), and appeal to
the Parseval formula for Mellin transforms. We are
immediately led to the assertion of the theorem.

We need yet to prove (10): By (6) and a well-
known integral representation of the Whittaker func-
tion via a Jacquet transform, we have

Γp(s) =
1
2
π−1/2−iκ%V (1)Γ

(
1
2

+ iκ

)

·
∫ ∞

0

ys−iκ−1

∫
L

e(yξ)
(ξ2 + 1)1/2+iκ

(
ξ + i

ξ − i

)p

dξdy.

Here Im ξ = 1/2 for ξ ∈ L. Assume temporarily that
0 < Re iκ < 1/4 < Re s < 1/2. Exchange the order
of integration, compute the resulting inner integral,
and apply analytic continuation. We find that for
κ ∈ R, 0 < Re s < 1

Γp(s) = 2−s−1+iκπ−1/2−s%V (1)Γ
(

1
2

+ iκ

)

· Γ(s− iκ)
[
exp

(
−1

2
πi(s− iκ)

)
Lp(s)

+ exp
(

1
2
πi(s− iκ)

)
L−p(s)

]
,

with

Lp(s) =
∫ ∞

0

ξ−s+iκ

(ξ2 + 1)1/2+iκ

(
ξ + i

ξ − i

)p

dξ.

Observe that the change of variable ξ → ξ−1 gives
Lp(s) = (−1)pL−p(1 − s), which yields (10) under
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the present supposition on κ and s. Having this,
replace the contour by the one, on which ξ starts
at +∞, goes down close to 0 along the positive real
axis, encircles the origin once counterclockwise, and
returns to +∞, while arg ξ varies from 0 to 2π. We
see that Lp(s) and hence Γp(s) are meromorphic over
C. This ends the proof of Theorem 2.

So far we have been working with V in the uni-
tary principal series. In the case Γ = PSL2(Z), there
are no complementary series. We can, however, in-
clude such irreducible representations into our dis-
cussion, with a minor modification of the above ar-
gument. The same can be said about the discrete
series representations. Further, the Eisenstein part
is much analogous to the unitary principal series.

Here are some specific points to be commented
in addition: As an application of Theorem 4.1 of
[2], which corresponds to our Theorem 2 but lacks
a rigorous proof, the authors show, in Chapter 8,
that the Mellin transform of the Bessel kernel is the
Gamma function of the relevant irreducible represen-
tation. In our proof of Theorem 2, the argument is
reversed: it is obtained as a consequence of the lo-
cal functional equation that we prove quickly from
scratch. An advantage of our argument over [2], and
over that on p. 454 of [9], too, is in that the pertinent
convergence issues are easy to overcome, because the
L2-theory of Mellin transforms is available. At any
events, the fundamental Theorem 2 is equivalent to
Theorem 5.15 of Jacquet and Langlands [4], a fact
which reveals the origin of the Bessel transform of
Kuznetsov that once looked mysterious.

In an analogous way, the corresponding Bessel
transform for the complex case that is given in The-
orem 2 of [1] can be related with Theorem 6.4 of [4],
as is to be shown in the next note of this series.

Concluding remark. In the light of what
has been developed above, we shall give a tentative
description of the nature of the spectral decompo-
sition for the moment (1). This seems to suggest
the existence of a unified theory of mean values of
automorphic L-functions: Thus, let V be a cuspidal
irreducible subspace of L2(Γ\G). We may assume
that all V are Hecke invariant. Let jE stand for the
limit as κ → 0 in the definition of jV . Note that jE

corresponds to ζ2(s) the Hecke series arising from
the central value of the modified Eisenstein series for
PSL2(Z), or more precisely (ζ(s)/ζ(1 − s))2 is the
Mellin transform of jE(u)/(π

√
|u|) over R×. With

this, put

ΞV (r) =
1
2

∫
R×

jV

(u

r

)
jE(−u)

d×u√
|u|

.(13)

Then, the cuspidal part of the spectral decomposi-
tion for (1) has the form

∑
V

|%V (1)|2

coshπκ
HV

(
1
2

)3

ΘV (g).(14)

Here HV is the Hecke L-function attached to V , and

ΘV (g) =
∫ ∞

0

(r(r + 1))−1/2(15)

·gc

(
log

(
1 +

1
r

))
ΞV (r)dr,

with the cosine transform gc, provided the weight
g is real on R. This follows from a combination
of (11), (12) above and (4.4.16), (4.4.17), (4.7.4) of
[6]. Our attention is at the construction of ΘV (g).
Since E stands here for the Eisenstein series and cor-
responds to ζ2(s), one may wonder what the ana-
logue of ΘV (g) will be, if we consider, instead, the
mean square of the Hecke series attached to a given
cuspidal irreducible representation A. With A in
the discrete series, the spectral decomposition of the
mean square is obtained in [5], which can be read-
ily transformed into an expression similar to (13)–
(15). The resulting analogue of ΞV (r) has an ex-
pression much alike as (13), which involves the factor
jA(−u) in place of jE(−u) besides a minor complica-
tion. In particular, we may translate a phenomenon,
observed in [5], into a structural statement. That is,
the fact that there is no contribution by any V from
the discrete series is equivalent to the trivial relation
jV (u/r)jA(−u) = 0. On the other hand, if A is in
the unitary principal series, it appears highly proba-
ble that the analogue of ΘV (g) will again involve the
function jV (u/r)jA(−u). If this is indeed the case,
it should lead us to a unified theory of mean values
of automorphic L-functions.
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