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Abstract: Invariant and equivariant cohomology classes on the space of Kähler forms are
defined. Relations to the obstructions to the existence of Kähler-Einstein metrics and Kähler
metrics of harmonic Chern forms are discussed.
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1. Multiplier Hermitian structure case.
In this paper we consider the action on subspaces of
the space of all Kähler forms by subgroups of the
automorphism group Aut(M) of an m-dimensional
compact Kähler manifold M , and study some in-
variant and equivariant de Rham cohomology classes
and also Alexander-Spanier cohomology classes of
the space of Kähler forms. Here we mean by invari-
ant cohomology groups those of the subcomplexes of
invariant cochains.

If we fix a Kähler metric g0 with Kähler form
ω0 on M , the space Ω of all Kähler forms in the
cohomology class [ω0] is described as

Ω = {ω = ω0 + i∂∂ϕ > 0 | ϕ ∈ C∞(M)},

where C∞(M) denotes the set of all real valued
smooth functions on M .

First of all we assume Ω = c1(M) > 0, and con-
sider the multiplier Hermitian structure introduced
by Mabuchi [13]. Put

ΩY = {ω ∈ Ω | LYR
ω = 0},

where YR = Y + Y is the real part of a holomorphic
vector field Y on M . Note that ΩY = Ω in the case
where Y = 0. We assume that ΩY 6= ∅ and that Y
is a Hamiltonian, i.e. for all

ω = i
m∑

α,β=1

gαβdz
α ∧ dzβ ∈ ΩY

there associates a function uω ∈ C∞(M) such that
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Y = i gradω u := i
m∑

α,β=1

gαβ
∂uω

∂zβ
∂

∂zα
,

where z1, . . . , zm denote local holomorphic coordi-
nates of M . Under the normalization

∫
M
uωω

m = 0
the image IY ⊂ R of uω is independent of ω ∈ ΩY .
Choose an arbitrary smooth function σ on IY and
consider a smooth function ψω = σ(uω) on M . A
multiplier Hermitian structure is by definition an as-
signment of the Hermitian structure ω̃ = e−ψω/mω.
This structure was introduced to study those Kähler
metrics, which we shall call σ-Kähler-Einstein met-
rics, satisfying the equation Ric(ω̃) = ω where

Ric(ω̃) = −i∂∂ log ω̃m = −i∂∂ log
(
e−ψω det(gαβ)

)
.

The σ-Kähler-Einstein metrics include Kähler-
Ricci solitons [14] and Kähler-Einstein metrics in
Mabuchi’s sense [12] as special cases. Define Fω,
F̃ω ∈ C∞(M), which are defined up to a constant,
by

Ric(ω)− ω = i∂∂Fω, F̃ω = Fω + ψω.

Then ω is a σ-Kähler-Einstein metric if and only if
F̃ω is constant.

Let ZY be the subgroup of Aut(M) consisting
of all elements g such that Ad(g)Y = Y , and let zY
denote the Lie algebra of ZY . Then ZY acts on ΩY .
We define a linear functional fY : zY → C by

fY (X) =
∫
M

X(F̃ω)ω̃m.

By a proof similar to [7] one can show that fY is
independent of the choice of ω ∈ ΩY and define a
character of the Lie algebra zY .
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We define a smooth 1-form αY on ΩY by

αY = ∆̃F̃ωω̃m,

where ∆̃ = eψω∂
∗
(e−ψω∂).

Theorem 1.1. (1) The 1-form αY defines a
1-dimensional ZY -invariant cohomology class of ΩY .
Moreover if the character fY is nontrivial then the
invariant cohomology class [αY ] is nontrivial.

(2) If the character fY is trivial then αY is a
basic form in the Weil model of ZY -equivariant coho-
mology (cf. [4, 11]), but it defines a trivial equivariant
de Rham class in the Weil model.

Consider a smooth path ωt, a ≤ t ≤ b, in ΩY
with

ωt = ω0 + i∂∂φt, ω0 ∈ ΩY , φt ∈ C∞(M),

and put (cf. [13])

Mσ(ωa, ωb) =
∫ b

a

∫
M

φ̇t∆̃F̃ωt
ω̃mt .

Mσ is independent of the choice of the path {φt}, and
is called the K-energy map. It is proved in [13] that if
there exists a σ-Kähler-Einstein form ωKE then the
subspace of ΩY consisting of all σ-Kähler-Einstein
forms is the orbit of ωKE by the action of the iden-
tity component Z0

Y of ZY . This in particular implies
that ZY · ωKE = Z0

Y · ωKE . Note that Mσ is ZY -
invariant, satisfies cocycle conditions and therefore
determines an element of ZY -invariant Alexander-
Spanier cohomology. See [15] for Alexander-Spanier
cohomologies.

Theorem 1.2. If fY = 0 then Mσ defines
a trivial 1-dimensional class in the ZY -invariant
Alexander-Spanier cohomology of ΩY .

Proof of Theorem 1.1. (1) The first
statement follows from direct computations (see
Bourguignon [3] for the case Y = 0 and σ = 0). To
prove the second statement suppose that fY (X) 6= 0
for X ∈ zY and that αY = dβ for some ZY -invariant
function β. The ZY -invariance of β implies X]β = 0
where X] denotes the vector field on ΩY induced
by X ∈ zY . Note that, when we regard the tangent
space of ΩY as the space of YR-invariant functions
modulo constants, X] is equal to the divergence of
X. From this we have

X]β = i(X])dβ = i(X])αY = fY (X) 6= 0,

which is a contradiction.
(2) The two conditions for the definition of ba-

sic forms correspond to the ZY -invariance of αY and

the assumption fY (X) = 0. Choose a fixed ω0 ∈ ΩY
and put µ(ω) = Mσ(ω0, ω). We wish to see that µ is
ZY -invariant. But this is equivalent to

Mσ(ω, a∗ω) = 0

for any a ∈ ZY and ω ∈ ΩY . The assumption
fY (X) = 0 tells us that µ is Z0

Y -invariant. But ZY
has only finitely many components by Theorem 4.8
and Lemma 2.4 in [6], and thus for any a ∈ ZY we
have an ∈ Z0

Y for some n. It follows from this, the
cocycle conditions and ZY -invariance of Mσ that

0 = Mσ(ω, (an)∗ω)

= Mσ(ω, a∗ω) + · · ·+Mσ((an−1)∗ω, (an)∗ω)

= (n− 1)Mσ(ω, a∗ω).

Hence µ is ZY -invariant. Since dµ = αY we are done.

Proof of Theorem 1.2. As the previous
proof shows if fY = 0 then µ is ZY -invariant. More-
over from the cocycle conditions of Mσ one sees that
Mσ is a coboundary of µ.

2. Higher Chern class case. Following
Bando [1] (see also [2]) which extends earlier works
by the author([7, 8]) and Calabi([5]), we define a
closed 1-form αk on Ω as follows: Let ck(ω) denote
the k-th Chern form with respect to ω and put

λk =
〈ck(M) ∪ [ω]m−k, [M ]〉

〈[ω]m, [M ]〉
.

Define a 1-form αk on Ω, the tangent space of which
being identified with the space of smooth functions
modulo constants, by

αk = ck(ω) ∧ ωm−k − λkω
m.

It is well-known that αk is closed and invariant under
the subgroup AutΩ(M) of Aut(M) consisting of all
automorphisms preserving Ω (cf. [9]).

Next we define a functional fk : a → C of the
Lie algebra a of all holomorphic vector fields on M

into C by

fk(X) =
∫
M

LXFk ∧ ωm−k+1.

Then fk is independent of the choice of ω ∈ [ω0], and
therefore Aut(M)-invariant. In particular fk defines
a Lie algebra character.

Theorem 2.1. (1) The 1-form αk defines a
1-dimensional AutΩ(M)-invariant cohomology class
of Ω. Moreover if the character fk is nontrivial then
the invariant cohomology class [αk] is nontrivial.
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(2) If the character fk is trivial then αk is a ba-
sic form in the Weil model of AutΩ(M)-equivariant
cohomology of Ω, but it defines a trivial equivariant
de Rham class in the Weil model.

Proof. The proof of Theorem 2.1 is quite anal-
ogous to that of Theorem 1.1 if we define the k-th
K-energy Nk by

Nk(ωa, ωb) =
∫ b

a

∫
M

φ̇t(ck(ω) ∧ ωm−k − λkω
m).

Theorem 2.2. If fk = 0 then Nk defines a
trivial 1-dimensional class in the AutΩ(M)-invariant
Alexander-Spanier cohomology of Ω.

Proof. Quite analogous to the proof of Theo-
rem 1.2.
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