By Akito FUTAKI

Department of Mathematics, Tokyo Institute of Technology, 2-12-1, Oh-okayama, Meguro-ku, Tokyo 152-8551 (Communicated by Heisuke HIRONAKA, M. J. A., March 12, 2002)

Abstract: Invariant and equivariant cohomology classes on the space of Kähler forms are defined. Relations to the obstructions to the existence of Kähler-Einstein metrics and Kähler metrics of harmonic Chern forms are discussed.

Key words: Kähler forms; invariant cohomology; equivariant cohomology; Hermitian multiplier structure; Kähler-Einstein metric.

1. Multiplier Hermitian structure case. In this paper we consider the action on subspaces of the space of all Kähler forms by subgroups of the automorphism group $\operatorname{Aut}(M)$ of an *m*-dimensional compact Kähler manifold M, and study some invariant and equivariant de Rham cohomology classes and also Alexander-Spanier cohomology classes of the space of Kähler forms. Here we mean by invariant cohomology groups those of the subcomplexes of invariant cochains.

If we fix a Kähler metric g_0 with Kähler form ω_0 on M, the space Ω of all Kähler forms in the cohomology class $[\omega_0]$ is described as

$$\Omega = \{ \omega = \omega_0 + i\partial \partial \varphi > 0 \mid \varphi \in C^{\infty}(M) \},\$$

where $C^{\infty}(M)$ denotes the set of all real valued smooth functions on M.

First of all we assume $\Omega = c_1(M) > 0$, and consider the multiplier Hermitian structure introduced by Mabuchi [13]. Put

$$\Omega_Y = \{ \omega \in \Omega \mid L_{Y_{\mathbf{B}}} \omega = 0 \},\$$

where $Y_{\mathbf{R}} = Y + \overline{Y}$ is the real part of a holomorphic vector field Y on M. Note that $\Omega_Y = \Omega$ in the case where Y = 0. We assume that $\Omega_Y \neq \emptyset$ and that Y is a Hamiltonian, i.e. for all

$$\omega = i \sum_{\alpha,\beta=1}^{m} g_{\alpha\overline{\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta} \in \Omega_{Y}$$

there associates a function $u_{\omega} \in C^{\infty}(M)$ such that

$$Y = i \operatorname{grad}_{\omega} u := i \sum_{\alpha,\beta=1}^{m} g^{\alpha \overline{\beta}} \frac{\partial u_{\omega}}{\partial \overline{z}^{\beta}} \frac{\partial}{\partial z^{\alpha}},$$

where z^1, \ldots, z^m denote local holomorphic coordinates of M. Under the normalization $\int_M u_\omega \omega^m = 0$ the image $I_Y \subset \mathbf{R}$ of u_ω is independent of $\omega \in \Omega_Y$. Choose an arbitrary smooth function σ on I_Y and consider a smooth function $\psi_\omega = \sigma(u_\omega)$ on M. A multiplier Hermitian structure is by definition an assignment of the Hermitian structure $\widetilde{\omega} = e^{-\psi_\omega/m}\omega$. This structure was introduced to study those Kähler metrics, which we shall call σ -Kähler-Einstein metrics, satisfying the equation $\operatorname{Ric}(\widetilde{\omega}) = \omega$ where

$$\operatorname{Ric}(\widetilde{\omega}) = -i\partial\overline{\partial}\log\widetilde{\omega}^m = -i\partial\overline{\partial}\log\left(e^{-\psi_\omega}\det(g_{\alpha\overline{\beta}})\right).$$

The σ -Kähler-Einstein metrics include Kähler-Ricci solitons [14] and Kähler-Einstein metrics in Mabuchi's sense [12] as special cases. Define F_{ω} , $\widetilde{F}_{\omega} \in C^{\infty}(M)$, which are defined up to a constant, by

$$\operatorname{Ric}(\omega) - \omega = i\partial\overline{\partial}F_{\omega}, \quad \widetilde{F}_{\omega} = F_{\omega} + \psi_{\omega}.$$

Then ω is a σ -Kähler-Einstein metric if and only if \widetilde{F}_{ω} is constant.

Let Z_Y be the subgroup of $\operatorname{Aut}(M)$ consisting of all elements g such that $\operatorname{Ad}(g)Y = Y$, and let \mathfrak{z}_Y denote the Lie algebra of Z_Y . Then Z_Y acts on Ω_Y . We define a linear functional $f_Y : \mathfrak{z}_Y \to \mathbf{C}$ by

$$f_Y(X) = \int_M X(\widetilde{F}_\omega)\widetilde{\omega}^m.$$

By a proof similar to [7] one can show that f_Y is independent of the choice of $\omega \in \Omega_Y$ and define a character of the Lie algebra \mathfrak{z}_Y .

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C55; Secondary 53C21, 55N91.

This work was done while the author was visiting Institut des Hautes Études Scientifiques.

We define a smooth 1-form α_Y on Ω_Y by

$$\alpha_Y = \widetilde{\Delta} \widetilde{F}_\omega \widetilde{\omega}^m,$$

where $\widetilde{\Delta} = e^{\psi_{\omega}} \overline{\partial}^* (e^{-\psi_{\omega}} \overline{\partial}).$

Theorem 1.1. (1) The 1-form α_Y defines a 1-dimensional Z_Y -invariant cohomology class of Ω_Y . Moreover if the character f_Y is nontrivial then the invariant cohomology class $[\alpha_Y]$ is nontrivial.

(2) If the character f_Y is trivial then α_Y is a basic form in the Weil model of Z_Y -equivariant cohomology (cf. [4, 11]), but it defines a trivial equivariant de Rham class in the Weil model.

Consider a smooth path ω_t , $a \leq t \leq b$, in Ω_Y with

$$\omega_t = \omega_0 + i\partial\partial\phi_t, \quad \omega_0 \in \Omega_Y, \quad \phi_t \in C^\infty(M),$$

and put (cf. [13])

$$M^{\sigma}(\omega_a, \omega_b) = \int_a^b \int_M \dot{\phi}_t \widetilde{\Delta} \widetilde{F}_{\omega_t} \widetilde{\omega}_t^m.$$

 M^{σ} is independent of the choice of the path $\{\phi_t\}$, and is called the *K*-energy map. It is proved in [13] that if there exists a σ -Kähler-Einstein form ω_{KE} then the subspace of Ω_Y consisting of all σ -Kähler-Einstein forms is the orbit of ω_{KE} by the action of the identity component Z_Y^0 of Z_Y . This in particular implies that $Z_Y \cdot \omega_{KE} = Z_Y^0 \cdot \omega_{KE}$. Note that M^{σ} is Z_Y invariant, satisfies cocycle conditions and therefore determines an element of Z_Y -invariant Alexander-Spanier cohomology. See [15] for Alexander-Spanier cohomologies.

Theorem 1.2. If $f_Y = 0$ then M^{σ} defines a trivial 1-dimensional class in the Z_Y -invariant Alexander-Spanier cohomology of Ω_Y .

Proof of Theorem 1.1. (1) The first statement follows from direct computations (see Bourguignon [3] for the case Y = 0 and $\sigma = 0$). To prove the second statement suppose that $f_Y(X) \neq 0$ for $X \in \mathfrak{z}_Y$ and that $\alpha_Y = d\beta$ for some Z_Y -invariant function β . The Z_Y -invariance of β implies $X^{\sharp}\beta = 0$ where X^{\sharp} denotes the vector field on Ω_Y induced by $X \in \mathfrak{z}_Y$. Note that, when we regard the tangent space of Ω_Y as the space of $Y_{\mathbf{R}}$ -invariant functions modulo constants, X^{\sharp} is equal to the divergence of X. From this we have

$$X^{\sharp}\beta = i(X^{\sharp})d\beta = i(X^{\sharp})\alpha_Y = f_Y(X) \neq 0,$$

which is a contradiction.

(2) The two conditions for the definition of basic forms correspond to the Z_Y -invariance of α_Y and the assumption $f_Y(X) = 0$. Choose a fixed $\omega_0 \in \Omega_Y$ and put $\mu(\omega) = M^{\sigma}(\omega_0, \omega)$. We wish to see that μ is Z_Y -invariant. But this is equivalent to

$$M^{\sigma}(\omega, a^*\omega) = 0$$

for any $a \in Z_Y$ and $\omega \in \Omega_Y$. The assumption $f_Y(X) = 0$ tells us that μ is Z_Y^0 -invariant. But Z_Y has only finitely many components by Theorem 4.8 and Lemma 2.4 in [6], and thus for any $a \in Z_Y$ we have $a^n \in Z_Y^0$ for some n. It follows from this, the cocycle conditions and Z_Y -invariance of M^{σ} that

$$0 = M^{\sigma}(\omega, (a^{n})^{*}\omega)$$

= $M^{\sigma}(\omega, a^{*}\omega) + \dots + M^{\sigma}((a^{n-1})^{*}\omega, (a^{n})^{*}\omega)$
= $(n-1)M^{\sigma}(\omega, a^{*}\omega).$

Hence μ is Z_Y -invariant. Since $d\mu = \alpha_Y$ we are done.

Proof of Theorem 1.2. As the previous proof shows if $f_Y = 0$ then μ is Z_Y -invariant. Moreover from the cocycle conditions of M^{σ} one sees that M^{σ} is a coboundary of μ .

2. Higher Chern class case. Following Bando [1] (see also [2]) which extends earlier works by the author([7, 8]) and Calabi([5]), we define a closed 1-form α_k on Ω as follows: Let $c_k(\omega)$ denote the k-th Chern form with respect to ω and put

$$\lambda_k = \frac{\langle c_k(M) \cup [\omega]^{m-k}, [M] \rangle}{\langle [\omega]^m, [M] \rangle}$$

Define a 1-form α_k on Ω , the tangent space of which being identified with the space of smooth functions modulo constants, by

$$\alpha_k = c_k(\omega) \wedge \omega^{m-k} - \lambda_k \omega^m.$$

It is well-known that α_k is closed and invariant under the subgroup $\operatorname{Aut}_{\Omega}(M)$ of $\operatorname{Aut}(M)$ consisting of all automorphisms preserving Ω (cf. [9]).

Next we define a functional $f_k : \mathfrak{a} \to \mathbf{C}$ of the Lie algebra \mathfrak{a} of all holomorphic vector fields on M into \mathbf{C} by

$$f_k(X) = \int_M L_X F_k \wedge \omega^{m-k+1}.$$

Then f_k is independent of the choice of $\omega \in [\omega_0]$, and therefore Aut(M)-invariant. In particular f_k defines a Lie algebra character.

Theorem 2.1. (1) The 1-form α_k defines a 1-dimensional $\operatorname{Aut}_{\Omega}(M)$ -invariant cohomology class of Ω . Moreover if the character f_k is nontrivial then the invariant cohomology class $[\alpha_k]$ is nontrivial.

Space of Kähler forms

(2) If the character f_k is trivial then α_k is a basic form in the Weil model of $\operatorname{Aut}_{\Omega}(M)$ -equivariant cohomology of Ω , but it defines a trivial equivariant de Rham class in the Weil model.

Proof. The proof of Theorem 2.1 is quite analogous to that of Theorem 1.1 if we define the k-th K-energy N_k by

$$N_k(\omega_a, \omega_b) = \int_a^b \int_M \dot{\phi}_t(c_k(\omega) \wedge \omega^{m-k} - \lambda_k \omega^m).$$

Theorem 2.2. If $f_k = 0$ then N_k defines a trivial 1-dimensional class in the $\operatorname{Aut}_{\Omega}(M)$ -invariant Alexander-Spanier cohomology of Ω .

Proof. Quite analogous to the proof of Theorem 1.2. \Box

References

- Bando, S.: An obstruction for Chern class forms to be harmonic (1983). (Preprint).
- [2] Bando, S., and Mabuchi, T.: On some integral invariants on complex manifolds. I. Proc. Japan Acad., 62A, 197–200 (1986).
- [3] Bourguignon, J. P.: Invariants Intégraux Fonctionnels pour des Équations dérivées Partielles d'origine Géométrique. Lecture Notes in Math. no. 1209, Springer, Heidelberg-Tokyo (1986).
- [4] Bott, R., and Tu, L.: Equivariant characteristic classes in the Cartan model (math.DG/0102001).
- [5] Calabi, E.: Extremal Kähler metrics II. Differential Geometry and Complex Analysis (eds. Chavel, I., and Farkas, H. M.). Springer, Heidelberg-Tokyo, pp. 95–114 (1985).

- [6] Fujiki, A.: On automorphism groups of compact Kähler manifolds. Invent. Math., 44, 225–258 (1978).
- [7] Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 73, 437–443 (1983).
- [8] Futaki, A.: On compact Kähler manifolds of constant scalar curvature. Proc. Japan Acad., 59A, 401–402 (1983).
- [9] Futaki, A.: Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Math. no. 1314, Springer, Heidelberg-Tokyo (1988).
- [10] Futaki, A., and Nakagawa, Y.: Characters of automorphism groups associated with Kähler classes and functionals with cocycle conditions. Kodai Math. J., 24, 1–14 (2001).
- [11] Guillemin, V., and Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Springer, Heidelberg-Tokyo (1999).
- [12] Mabuchi, T.: Kähler-Einstein metrics for manifolds with nonvanishing Futaki character. Tohoku Math. J., 53, 171–182 (2001).
- [13] Mabuchi, T.: Multiplier Hermitian strucures on Kähler manifolds (preprint).
- [14] Tian, G., and Zhu, X. H.: Uniqueness of Kähler-Ricci solitons. Acta Math., 184, 271–305 (2000).
- [15] Warner, F. W.: Foundations of differentiable manifolds and Lie groups. Graduate Texts in Math. vol. 94, Springer, Heidelberg-Tokyo (1971).

No. 3]