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Zeta extensions

By Nobushige Kurokawa
∗) and Masato Wakayama

∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Sept. 12, 2002)

Abstract: In the papers [KW2, KW3] we introduced and studied a new type of the Selberg
zeta function called by a higher Selberg zeta function. We have established the analytic properties,
especially the functional equation of the higher Selberg zeta functions in [KW3]. Motivated by this
study of higher Selberg zeta functions we formulate the problem for general zeta functions which
have the Euler products and discuss their general features.
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1. Zeta extensions. Let

ϕ(s) =
∏
p∈P

Hp(N(p)−s)−1

be a meromorphic zeta function having an Euler
product, where Hp(u) is a power series in u. Typ-
ical examples are given by the Riemann zeta func-
tion ζ(s) and the Selberg zeta function ZΓ(s). Actu-
ally the Riemann zeta function is obtained by setting
N(p) = p, that is,

(1.1) ζ(s) =
∏

p:primes

(1 − p−s)−1, Re(s) > 1.

and meromorphic in the whole C.
We next define the Selberg zeta function ZΓ(s)

as follows: Let Γ be a discrete, torsion-free subgroup
of SL2(R) with a co-finite volume. Then Γ acts dis-
continuously on the upper half planeH . Let Prim(Γ)
be the set of hyperbolic primitive conjugacy classes
of Γ, where a hyperbolic element P (and hence also
its conjugacy class) is said to be primitive when P

is a generator of an infinite cyclic group ZΓ(P ), the
centralizer of P in Γ. Then we define ZΓ(s) by

(1.2)

ZΓ(s) =
∞∏

n=0

∏
P∈Prim(Γ)

(1 −N(P )−s−n), Re(s) > 1.

Here the norm N(P ) (> 1) of P ∈ Prim(Γ) is defined
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by

N(P ) = max{|αP |2, |βP |2},

where αP and βP are the eigenvalues of a represen-
tative matrix of P .

We call, in general, an infinite product over the
shifted values of a zeta function a higher zeta func-
tion. The following two higher zeta functions have
been appeared in [KW2]:

(1.3) ζHE(s) =
∞∏

n=0

ζ(s+ 2n),

(we have denoted ζHE by ζ∞ in [KW2]) and

(1.4) zΓ(s) =
∞∏

m=1

ZΓ(s+m)−1.

It is clear that the relation ZΓ(s) = zΓ(s)/zΓ(s −
1) holds. In view of the Euler product expression
(1.2) of the original Selberg zeta function one easily
observes that

(1.5) zΓ(s) =
∞∏

m=1

∏
P∈Prim(Γ)

(1 −N(P )−s−m)−m.

Beside these examples, our target to concern is the
following various types of higher zeta functions

ζH(s) =
∞∏

n=0

ζ(s+ n)(1.6)

=
∞∏

n=0

∏
p:primes

(1 − p−s−n)−1,

ζAH(s) =
∞∏

n=1

ζ(s+ n)(−1)n

(1.7)
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=
∞∏

n=0

∏
p:primes

(1 − p−s−n)(−1)n

,

and for each d ∈ Z>0,
∏∞

n=0 ζ(s+dn+r),
∏∞

n=0 ζ(s+
dn+r)(−1)n

, (0 ≤ r < d) etc, and further, their ana-
logues for the Dirichlet L-functions. A higher zeta
function is sometimes regarded as a generating func-
tion. For instance, it is well-known that the higher
Riemann zeta function ζH(s) can be considered as
a generating function of the order of finite abelian
groups (see e.g. [Z]). In fact, let Pabel(n) denotes the
number of finite abelian groups of order n, that is,
Pabel(n) = #{G : a finite abelian group; #G = n}.
Then we have

ζH(s) :=
∞∏

n=0

ζ(s + n) =
∞∏

n=0

∏
p:primes

(1 − p−s−n)−1

=
∞∑

n=1

Pabel(n)
ns

.

Motivated by the study of these higher zeta
functions we introduce the set

Ext(ϕ) = {Φ : meromorphic on

C, Φ(s+ 1)/Φ(s) = ϕ(s)}

for a zeta function ϕ(s). We call an element of
Ext(ϕ) a zeta extension of ϕ. The aim of the paper
is to study the following problems and give related
questions.
(1) How big is Ext(ϕ)?
(2) Does Φ ∈ Ext(ϕ) have a functional equation

when ϕ has?
We have an answer to the first problem as follows:

Theorem 1. Let ϕ be a meromorphic zeta
function having an Euler product. Then
(1) Ext(ϕ) �= ∅.
(2) If Φ1,Φ2 ∈ Ext(ϕ), then the function (Φ1(s)/

Φ2(s)) is periodic, that is, invariant under the
translation s→ s+ 1.
A key point of the proof of (1) is as follows: Put

(1.8)

ϕ̃(s) =
∏
p∈P

∞∏
n=0

Hp(N(p)−s−n) =
∞∏

n=0

ϕ(s+ n)−1.

Then it is clear that

(1.9) ϕ̃(s+ 1) = ϕ̃(s)ϕ(s).

This shows that ϕ̃(s) is meromorphic and hence ϕ̃ ∈
Ext(ϕ). The second assertion follows immediately

from (1.9). We shall give a detailed proof of this
statement when ϕ(s) = ζ(s) in Theorem 2 in §2.

Example 1. ζH(s) ∈ Ext(ζ(s)−1).
Example 2. zΓ(s) ∈ Ext(ZΓ(s + 1)). It is

known that zΓ(s) has the functional equation when
Γ\H is compact as follows: Put

ẑΓ(s) = zΓ(s)I(s)−(g−1) det coshπ
(√

∆Γ − 1
4
− is

)
.

Here ∆Γ and g denote respectively the Laplacian and
the genus of the Riemann surface Γ\H , and I(s) is a
certain function expressed by the multiple sine func-
tions. Here we note that though the square I(s)2 is
meromorphic I(s) itself is not. The functional equa-
tion of zΓ(s) is expressed as

ẑΓ(s)ẑΓ(−s) = CΓ

with some constant CΓ. See [KW3] for details.
Remark 1. Apart from the usual zeta func-

tions one may ask similar questions for the sine func-
tion. Actually, let ϕ(s) be the inverse of the sine
function of order 1 (resp. r). If we regard ϕ(s) as a
zeta function then the double (resp. order r+1) sine
function is a zeta extension of ϕ (see [KKo]). Simi-
lar to the problems above one may ask in general the
following:

(3) Does Φ ∈ Ext(ϕ) have an addition formula
when ϕ has?
If this (3) has an affirmative answer for the multiple
sine functions then it solves the algebraicity problem
of the division values of such functions, so we have
definitive results for zeta values such as the value of
the Riemann zeta function at 3, 5, 7, . . . . See [KW1,
KOW, KKo].

2. Meromorphic continuations. We give
a detailed proof of a meromorphy for various higher
Riemann zeta functions. As it will be easily seen,
a description of this way of the meromorphic con-
tinuation may also provide the exact knowledge of
the location of their zeroes and/or poles etc, once
we know the explicit information of the one for the
original zeta function. We first prove the following
theorem.

Theorem 2. Let ζ(s) be the Riemann zeta
function. For a > 0, define

ζH(s, a) =
∞∏

n=1

ζ(s+ an),

ζAH(s, a) =
∞∏

n=1

ζ(s+ an)(−1)n

.
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Then ζH(s, a) and ζAH(s, a) are meromorophic func-
tions on C.

Proof. By definition we have

ζH(s, a) =
∏

p:primes

∞∏
n=1

(1 − p−s−an)−1,

ζAH(s, a) =
∏

p:primes

∞∏
n=1

(1 − p−s−an)(−1)n−1
.

These Euler products converges absolutely in
Re(s) > 1 since∑

p

∑
n

p−σ−an =
∑

p

p−σ

pa − 1
< +∞

if σ > 1. Hence we see that ζH(s, a) and ζAH(s, a)
are holomorphic in Re(s) > 1. Now we have the
relations

ζH(s+ a, a) =
∞∏

n=1

ζ(s+ a(n+ 1))

= ζH(s, a) · ζ(s+ a)−1,

ζAH(s+ a, a) =
∞∏

n=1

ζ(s+ a(n+ 1))(−1)n

= ζAH(s, a)−1 · ζ(s+ a)−1.

Thus we have

ζH(s, a) = ζH(s+ a, a)ζ(s+ a),(2.1)

ζAH(s, a) = ζAH(s+ a, a)−1ζ(s+ a)−1.(2.2)

From the fact that ζH(s, a) and ζAH(s, a) are holo-
morphic in Re(s) > 1 and the relations (2.1), (2.2),
we see that ζH(s, a) and ζAH(s, a) are meromorphi-
cally continued to the region Re(s) > 1−a. Hence by
successive use of the relations (2.1), (2.2), one knows
that these are meromorphic in Re(s) > 1 − am for
all m > 1. This proves ζH(s, a) and ζAH(s, a) are
meromorphic on C.

Remark 2. The proof above shows that it is
easy to replace ζ by suitable zeta functions, for in-
stance, the Selberg zeta and L-functions, the Hecke
L-functions of algebraic number fields.

Remark 3. The proof above also shows that
the higher Euler product in Theorem 2 are indeed
converges absolutely for Re(s) > 1 − a.

It seems, in general, hard to obtain explicitly
a desirable functional equation and a gamma factor
for higher zeta functions. But, beside this problem,
there is a notable example. Actually, it is a result in

[CL]. For simplicity, we recall only the case of the
Riemann zeta function.

Set

W∞(s) = 2(s−1)(s−2)/4πs2/4(2.3)

×
(

Γ
(s

2

)−1

Γ2(s)
)− 1

2

ζH(s+ 1),

and

(2.4) Λ∞(s) = W∞(s)W∞(−s)sin2 πs

π2C2
∞
,

where C∞ denotes a constant defined by

C∞ =
∏
j≥2

ζ(j).

Then Λ∞(s) has the following properties:
(1) Λ∞(s) is an entire function of order 2.
(2) Λ∞(s+ 1) = Λ∞(s).
(3) Λ∞(−s) = Λ∞(s).

The periodicity (2) can be deduced from the follow-
ing functional equation:

(2.5) ζ̂(1 − s) = ζ̂(s),

where we put ζ̂(s) = π−(s/2)Γ(s/2)ζ(s).
Theorem 3. Let Z(s) be an Euler product

which is absolutely convergent in Re(s) > 1. As-
sume that Z(s) has a meromorphic continuation to
C with the functional equation

Z(1 − s) = Z(s)γ(s)

for a suitable factor γ(s). Define

Φ(s) =
∞∏

n=0

Z(s+ n)

and put

Ψ(s) = Φ(s)Φ(2 − s).

Then
(1) Φ(s) is meromorphic on C,
(2) Ψ(s+ 1) = Ψ(s)γ(s),
(3) Ψ(−s+ 1) = Ψ(s+ 1).

Proof. The proof of (1) is quite similar to the
one developed in Theorem 2 using the relation Φ(s+
1) = Φ(s)Z(s)−1 . As to the assertion (2), we observe

Ψ(s+ 1) = Φ(s+ 1)Φ(1 − s)

= (Φ(s)Z(s)−1) · (Φ(2 − s)Z(1 − s))

= Φ(s)Φ(2 − s) · Z(s)−1Z(1 − s)

= Φ(s)γ(s).
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The last assertion (3) is clear from the very defini-
tion. This completes the proof of the theorem.

If Z(s) has a complete form ζ̂(s) like ζ(s) has
(2.5) above, that is ζ̂(1 − s) = ζ̂(s), then Ψ(s) does
have it as exactly the same form.

Corollary 4. Retain the notation in Theo-
rem 3. Suppose further that the function γ(s) is of
the form γ(s) = ΓZ(s)/ΓZ(1 − s) for some function
ΓZ(s). Put Ψ̂(s) = Ψ(s)ΓZ (s). Then Ψ̂(s) satisfies
Ψ̂(1 − s) = Ψ̂(s).

Proof. Note first that Ψ(2 − s) = Φ(2 −
s)Φ(s) = Ψ(s), whence Ψ(1 − s) = Ψ(1 + s). Since
by (2), (3) of Theorem 2, we see that

Ψ(1 − s) = Ψ(s + 1) = Ψ(s)
ΓZ(s)

ΓZ (1 − s)
.

Hence the assertion follows immediately.
Remark 4. The functional equation for Φ(s)

would be of the form

Φ(s)Φ(2 − s) = “γ-factors”.

As to the case Z(s) = ZΓ(s), the Selberg zeta func-
tion for a compact Riemann surface, this indeed
holds for the higher Selberg zeta function zΓ(s). In
fact, the γ-factor consists of a certain determinant of
the Laplacian on the Riemann surface and the mul-
tiple sine functions. See [KW3] for details.

Remark 5. It would be also interesting to
study the n-times iteration Extn(ϕ) = Ext ◦Ext ◦ ·
s ◦ Ext(ϕ) and the limit set limn→∞ Extn(ϕ). In
particular, does the zeta extension of an element in
Extn(ϕ) have a non-trivial functional equation when
the element of Extn(ϕ) has? To be explicit, let us
explain the situation by using the Selberg zeta func-
tion. Recall the Ruell type (Selberg’s) zeta function:

ζΓ(s) =
∏

P∈Prim(Γ)

(1 −N(P )−s)−1.

The functional equation of ζΓ(s) is known to be given
by ζΓ(s)ζΓ(−s) = (2 sinπs)2(2g−2). In our picture, it
is clear that

ζΓ(s) −→ ZΓ(s) ∈ Ext(ζΓ(s)) −→
zΓ(s− 1) ∈ Ext(ZΓ(s)) = Ext2(ζΓ(s)) −→ · · · ,

and correspondingly the figure of each functional
equation varies as

ζΓ(s)ζΓ(−s) = f0(s) −→ ZΓ(1 − s) = ZΓ(s)f1(s)

−→ zΓ(s)zΓ(−s) = f2(s) −→ · · · ,

where fi(s) is an appropriate product of γ-factor. We
call these functional equations “non-trivial” which
are different from what we established in Theorem 3.
What is a next functional equation if any? Moreover,
what is the number N(ϕ) defined by

N(ϕ) = sup
n
{∃f ∈ Extk(ϕ); f has a non-trivial

functional equation for ∀k ≤ n} ?

The above shows N(ζΓ) ≥ 2.

Remark 6. It is known that the function
Λ∞(s) above has the following Weierstrass product
representation.

Λ∞(s) =
∏

Im ρ>0

(
1 − sin2 πs

sin2 πρ

)
.

Here the product is over the non-trivial zeroes of
ζ(s) with positive imaginary part. In particular,
Λ∞(n) = 1 for n ∈ Z. If there is a non-trivial
functional equation of ζH(s) it should be of the form
W∞(s − 1)W∞(−s + 1) = fH(s) for some fH(s).
Hence one sees that Λ∞(s) = fH(s) sin2 πs/π2C2

∞
by (2.4). In particular, fH(s) must be periodic. It
would be interesting if one compares the coefficients
of the both sides of this quation relative to the ex-
pansion for sin2 πs. We will deal with this problem
in the future.
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