116 Proc. Japan Acad., 78, Ser. A (2002)

[Vol. 78(A),

The primitive derivation and freeness of multi-Coxeter arrangements

By Masahiko YOSHINAGA

Research Institute for Mathematical Sciences, Kyoto University
Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502
(Communicated by Shigefumi MORI, M. J. A., Sept. 12, 2002)

Abstract:

We will prove the freeness of multi-Coxeter arrangements by constructing a

basis of the module of vector fields which contact to each reflecting hyperplanes with some multi-

plicities using K. Saito’s theory of primitive derivation.
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1. Introduction. Let V be a Euclidean
space over R with finite dimension ¢ and inner prod-
uct I. Let W C O(V, I) be a finite irreducible reflec-
tion group and A the corresponding Coxeter arrange-
ment i.e. the collection of all reflecting hyperplanes
of W. For each H € A, we fix a defining equation
ag € V* of H.

In [5], H. Terao constructed a free basis of R[V]-
module

(1) D™(A) :={6 € Dery | day € (af}), VH € A},

(m € Z>(). The purpose of this paper is to construct
a basis by a simpler way using Saito’s result and give
a generalization.

For given multiplicity m : A — Zxo, we say
that the multi-Coxeter arrangement A(™ is free if
the module

(2) D(A™)
.= {6 € Dery | bay € (a]'™)), VH € A}

is a free R[V]-module [8]. Then our main result is

Theorem 1. Let m be a multiplicity satis-
fying m(H) € {0,1} for all H € A. Suppose
the multi-Coxeter arrangement A'™ s free, then
AH2R) (] € Zis) is also free, where the new mul-
tiplicity m + 2k take value m(H) + 2k at H € A.

We construct a basis in Theorem 7.

We note that A is not necesarily free for m :
A — {0,1}. If we apply Theorem 1 for m(H) = 0
or m(H) = 1, we obtain the freeness of D?*(A) or
DZ+1(A). Terao’s basis is expected to coincide with
that of ours.

2000 Mathematics Subject Classification. Primary 32522;
Secondary 05E15.

Hodge filtration; finite reflection group; Coxeter arrangement; adjoint quo-

The original motivation to study the module
D(A™)) came from the study of structures of the rel-
ative de Rham cohomology H* (Q; / ) of the adjoint
quotient map x : g — S := g//ad(G) of a simple
Lie algebra g. In the case of ADFE type Lie algebras,
an isomorphism as C[S](= Clg]“ = C[h]")-modules
(where b is a Cartan subalgebra)

H?(Qg/5) = D*(A)Y

is obtained [7].
But for BC FG type Lie algebras, because the W
action on A is not transitive, H2 (Q; / ) is expected

to be isomorphic to the module D(A™)W with a
suitable multiplicity m : A — Z>¢ which is not con-
stant.

2. K. Saito’s results on primitive deriva-
tion. In this section, we fix notations and recall
some results.

Let z1,...,2zy € V* be a basis of V* and
Py, Py,---, P, € R[V]" be the homogeneous gen-
erators of W-invariant polynomials on V' such that
R[V]W = R[Pl, P, - ,Pg] with

deg P < deg Po <---<deg Py =:h.

Then it is classically known [1] that

ht
3) A==
and
(4) deg Pp—1 < h.

It follows from (4) that the rational vector field (with
pole along | Jyc 4 H) D := (0/0F;) on V is uniquely
determined up to non-zero constant factor indepen-

dently on the generators Pi,..., P,. We call D the
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primitive vector field. If we fix generators Py, ..., Py,
then (98/0P1),...,(0/0P;—1) are able to be consid-
ered as rational vector fields on V. Since the Jaco-

bian is
.0(P,..., P
Q = H aH:H,
HeA T1y...,T¢
D is symbolically expressed as
oP 9P 9
1 8301 8301 8301
o 0P 0
axg axg axg

Next we define an affine connection V
Dery x Dery — Dery.
Definition 2.

8o = 31y fi(8/0),

For given 41,62 € Dery with

L

0
Vs, 0g 1= 01 fi)—.
5102 Z( g
i=1
The connection V can be also characterized by
the formula:

(5)  (Vs,02)a = §1(d2a0), V linear function o € V™.

This formula plays an important role in our compu-
tations.

The derivation V p by the primitive vector field
is particularly important. Define R[V]"'" := {f €
R[VIW | Df =0} = R[P1,...,Pi—1]. Then Vp is
an R[V]"-"-homomorphism. The following decom-
position of Der}y = D!(A)" has been obtained in
2, 3].

Theorem 3. Let n > 1, define

L
0
n W,r
(Vp)"é € ;;R[V] apz}’

then for every m > 0, Vp induces an R[V]W'"-
isomorphism G, +1—G, and

D' (AW =P Gn.

n>1

Gp = {5 € Derl/

If we define H* := @,~ 1, Gn, then it becomes a rank
¢ free R[V]W -submodule of Der\ , which is called the
Hodge filtration.

In particular, Vp : H2>H! = DYA)W is an
R[V]W'"-isomorphism. All we need in the sequel is
the existence of an injection V5! : Derly — Der}? .
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3. Construction of a basis. We construct
a basis of D(A®Z*¥+™). The following is a key lemma
which connects two filtrations, the Hodge filtration
and the contact-order filtration.

Lemma 4. Let §’',6 € Dery be vector fields on
V and assume Vpd' = 5. Then for any H € A, day
is divisible by o'} if and only if & ay is divisible by
a2,

H
Proof. Suppose &'a = o™ f (where a = ap).

Then from (5),

(6) (Vpd)a= D)

oP, P, 0 .
N e T
= Sdet | : :
@ oP, P, 0,
s o, 8—3@(@ f)

Thus da is divisible by o™ =2 Further, assume fis
not divisible by «, let us show that da is not divisible
by a™ =1, Take a coordinate system x1,...,%s—1, Ty
such that z, = «, then it suffices to show that

oP, 0P,
5—301 0x1
det : : is not divisible by a.
oP, 0P,
O0xp_q Oxg_y

After taking ®C and restricting to Hc := H®C, de-
terminant above can be interpreted as the Jacobian
of the composed mapping

o Hc —  SpecC[V]W'™
(xl, ey Tp—1, 0) — (Pl, .. .,Pg_l).

On the other hand, since the set
{reV®C|P(zx)="--=Pr_1(x) =0}

is a union of some eigenspaces of Coxeter transforma-
tions in W, which are regular, that is, they intersect
with Hg only at 0 € Hg [2, 3]. Hence ¢—1(0) =
{0} C Hc, and the Jacobian of ¢ cannot be identi-
cally zero. 1

Remark 5. The precise expression of the Ja-
cobian of ¢ is obtained in [4]. It is equal to the re-
duced defining equation of the union of hyperplanes
UH,eA\{H}(HﬂH'), on H.

Because of Theorem 3 the operator VBI is well
defined on Der}y = D'(A)", we have

Lemma 6. Let § € Der‘(,v be a W -invariant
vector field on V. Then for any H € A, day is
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divisible by o} if and only if (VBI(S)oq{ is divisible
by a2,
By induction with H! = D!(A)", Lemma 6 in-

dicates
(7) Hk _ ka-‘rlDl(A)W I D2k+1(.A)W.

The converse is also true, which will be proved in §4.

We denote by E := Zle x;(0/0x;) the Euler
vector field. Note that E is contained in D'(A)W,
VsE = § and Vgd = (degd)d for any homogeneous
vector field § € Dery. By Theorem 3, we have a
“universal” vector field VB’“ E.

As in §1, let m : A — {0,1} be a multiplicity
and assume that &;,08s,...,0, € D(A™) be a free
basis of the multiarrangement A™)

Theorem 7. Under the above hypothesis,
V(slVBkE, .. .,V(s[VBkE form a free basis of
D( A(m+2k))'

Proof. Let § € D(A"™), we first prove
VsVPE € D(A™20)). From (7), VFE €
DZ+1(A), we may assume

(8) (Vp'E)a = a1y

for « = apy, (H € A). Applying § to the both sides
of (8), we have

(9) (VsV5 E)a = o®((2K +1)(5a) f + a(5f)).

Since 0« is divisible by a with multiplicity m(H) <
1, hence (VsV"E)a is divisible by o™(H)+2k ]

Here we recall G. Ziegler’s criterion on freeness
of multiarrangements.

Theorem 8 [8]. Let m : A — Zxo be a mul-
tiplicity and 61,...,6, € D(A™) be homogeneous
and linearly independent over C[V]. Then AU™) is
free with basis 01, . ..,0¢ if and only if

We compute the degrees of V(slVBkE e,
V(SZVBkE,
¢ ¢
> deg(Vs, V5 E) =) (kh+ deg ;)
(10) i=1 i=1 ;

khe + Z deg d;,

i=1

<.

where h = deg Py is the Coxeter number. On the
other hand, the sum of multiplicities is

[Vol. 78(A),

(1) > (m(H) +2k) = 2k Al + > m(H).

HeA HeA

The assumption implies ), , m(H) = Zle deg 6;
and because of (3), we conclude that (10) coincides
with (11).

4. Some conclusions.

Lemma 9. V(a/ap%)DQk—H(.A)WC DQk_l(.A)W
(k> 0).

Proof. We only prove for i = ¢, remaining cases
can be proved similarly. It is sufficient to show that
(Vpd)am, has no poles for any § € D#*+1(A)W and
Hy € A. By (6), @D, can be divided by a,, so
all we have to show is that QDday, is divisible by
B := ap for all H € A\{Hy}. We denote by sg €
W the reflection with respect to the hyperplane H' C
V, then sg(«) is expressed in the form sg(o) = a +
2¢f3 for some ¢ € R. Apply sg to the function QDda,
since D and ¢ are W-invariant, and s3(Q) = —@Q,

sg(QDdéa) = —QDda — 2cQDIS.
By using the equation sg(QDJdG) = QDJS3, we have
sg(QDdéa + cQD6B) = —(QDba + cQDI).

So QDda + cQDJg is divisible by G, but from the
first half of this proof, cQDJg3 is divisible by 3, and
the other term @D« is also divisible by . Ol

As a consequence of induction, we have

Corollary 10 [6]. H* =D*+1(A)W.

Finally, we apply Theorem 1 to m = 0 or m =
1, since both D°(A) = Dery and D!(A) are free, we
obtain

Corollary 11 [5]. D™(A) is free for all m >
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