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Examples of globally hypoelliptic operator on special dimensional

spheres without infinitesimal transitivity
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Abstract: This paper gives examples of globally hypoelliptic operator on S3, or on S7, or
on S15 which is sum of squares of real vector fields. These operators fail to satisfy the infinitesimal
transitivity condition (the Hörmander bracket condition) at every point and therefore they are not
hypoelliptic in any subdomain.
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1. Introduction. Let M be a closed
(compact connected without boundary) C∞ man-
ifold. For an open subset Ω of M , we denote by
C∞(Ω) the space of smooth functions in Ω. A differ-
ential operator L is said to be hypoelliptic inM if and
only if, for any open subset Ω of M , Lu ∈ C∞(Ω)
for a distribution u on M implies u ∈ C∞(Ω). On
the other hand, L is said to be globally hypoelliptic
on M if and only if Lu ∈ C∞(M) for a distribution
u implies u ∈ C∞(M). By definition, hypoelliptic
operators are globally hypoelliptic.

Let Z1, Z2, . . . , Zm be smooth real tangent vec-
tor fields on M (m is an arbitrary positive integer).
The differential operator L which we shall treat is of
the form:

(1.1) L =
m∑

j=1

Zj
∗ Zj,

where Zj
∗ is the formal adjoint operator of Zj with

respect to a fixed smooth Riemannian metric on M .
In this paper, we study a sufficient condition on
Z1, Z2, . . . , Zm under which L is globally hypoelliptic
on M .

Let V [Z1, . . . , Zm] be the linear space defined to
be

V [Z1, . . . , Zm] =
{ m∑

j=1

fjZj ; fj ∈ C∞(M)
}
.

For every Y ∈ V [Z1, . . . , Zm], we denote by exp tY
the one parameter diffeomorphism group generated
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through integral curves by Y , and let H[Z1, . . . , Zm]
be the closed subgroup generated by {expY ; Y ∈
V } in the group of C∞ diffeomorphism of M onto
itself.

Definition 1.1. We say that H[Z1, . . . , Zm] is
transitive on M if there exists, for any x, y ∈ M , a
g ∈ H[Z1, . . . , Zm] such that x = gy.

Next, let L[Z1, . . . , Zm] be the Lie algebra gen-
erated by V [Z1, . . . , Zm].

Definition 1.2. We say that H[Z1, . . . , Zm]
is infinitesimally transitive at p ∈ M if
L[Z1, . . . , Zm]|p = TpM .

It is not difficult to see that H[Z1, . . . , Zm] is
transitive on M if H[Z1, . . . , Zm] is infinitesimally
transitive at every p ∈ M . These geometric no-
tions of transitivity and infinitesimal transitivity are
closely related to global hypoellipticity and hypoel-
lipticity. We mention a well-known result due to
Hörmander and the conjecture given by Omori and
Kobayashi.

Theorem (Hörmander [1]). If H[Z1, . . . , Zm]
is infinitesimally transitive at every p ∈ M , then L

defined by (1.1) is hypoelliptic in M .
Conjecture (Omori and Kobayashi [2]). If

H[Z1, . . . , Zm] is transitive on M , then L defined by
(1.1) is globally hypoelliptic on M .

Omori and Kobayashi proved this conjecture un-
der an additional condition (the condition (D) be-
low).

Now we present an interesting question concern-
ing the above conjecture: “Is it possible to construct
a globally hypoelliptic operator L of the form (1.1)
with transitive but nowhere infinitesimally transitive
system of vector fields {Z1, . . . , Zm}?” As was stud-
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ied in [2], the answer is affirmative in the case where
M = T 3 = [0, 2π]×[0, 2π]×[0, 2π]. This construction
suggests that there will probably exist such a system
if M is decomposable to a direct product of three or
more closed manifolds. So we are interested in the
case where M is not decomposable. In this paper, we
demonstrate the existence of such systems on special
dimensional spheres S3, S7 and S15, where Sm is the
m-dimensional standard unit sphere.

Theorem 1.1. For n ∈ {2, 4, 8}, there exist a
positive integer m = m(n) and a system of vector
fields {Z1, . . . , Zm} on S2n−1 such that the following
three conditions hold :
(A) H[Z1, . . . , Zm] is transitive on S2n−1.
(B) There is no point in S2n−1 at which

H[Z1, . . . , Zm] is infinitesimally transitive.
(C) The differential operator L defined by (1.1) is

globally hypoelliptic on S2n−1.
We prove this theorem by constructing

{Z1, . . . , Zm} explicitly. The idea based on [2] is the
following. The transitivity of H[Z1, . . . , Zm] implies
the a priori estimate

‖u‖0 ≤ C ‖Lu‖0 +DN ‖u‖−N

for all u ∈ C∞(M),

where ‖ · ‖s stands for the norm of the Sobolev space
of order s (see Theorem 2.1 and Corollary 2.4 of [2]).
It is not difficult to see that L is globally hypoellip-
tic on M if we can find a regulator Λ, that is, an
elliptic pseudodifferential operator of order 1, which
commutes with Z1, . . . , Zm. This fact is generalized
by replacing the commutativity condition by the fol-
lowing weaker one introduced in Proposition 3.2 of
[2]:

(D) There exists a regulator Λ such that, for every
δ > 0 and for all u ∈ C∞(M), the following two
estimates hold:

‖[Λ, L]u‖−1 ≤ δ ‖Lu‖0 +CN,δ ‖u‖−N ,

‖[Λ, [Λ, L]]u‖−2 ≤ δ ‖Lu‖0 +CN,δ ‖u‖−N .

This condition is trivial if Λ commutes with
Z1, . . . , Zm. The point is that on S2n−1 (n = 2, 4, 8),
we have a globally defined basis {W (n)

jk } (see §2)
which commutes with the Laplacian ∆ on S2n−1 with
respect to the induced metric from R2n. For the
construction of a system satisfying the conditions in
Theorem 1.1, we cut off the support of W (n)

jk to re-
duce the dimension of L[Z1, . . . , Zm], while preserv-
ing the transitivity of H[Z1, . . . , Zm] and the condi-

tion (D) with the regulator (1 − ∆)1/2.
Remark. Let d(n) be the maximal dimension

of L[Z1, . . . , Zm] over S2n−1. Then for the systems
which we construct, the pair of integers (m(n), d(n))
is the following:

(m(n), d(n)) =


(3, 2) (n = 2),
(6, 6) (n = 4),

(10, 12) (n = 8).

Notice that d(n) < 2n− 1. This means (B).
In §2, we construct a global basis of non-

vanishing smooth vector fields on S2n−1. We will
take the basis suitably for the study of the transi-
tivity condition (A) by using the Hopf mapping. In
§3, we present explicit forms of the systems by us-
ing these bases. The global hypoellipticity condition
(C) follows in the same way as [2] by checking the
condition (D).

2. The basis of non-vanishing smooth
vector fields. Let n be 2 or 4 or 8. Then there
exists a global basis of non-vanishing vector fields
on S2n−1. We denote by z = t(ξ, η) a point of R2n,
where ξ, η ∈ Rn. Here z, ξ and η are column vectors.
We construct this basis as restriction of vector fields
on R2n

z of the form tz tV∇z with an antisymmetric
orthogonal matrix V .

We introduce the so-called Hopf mapping from
R2n to Rn+1, which turns out to be also from S2n−1

to Sn . This enables us to reduce the study of the
transitivity on S2n−1 to that on Sn and, if we choose
the basis of vector fields as follows, to transform
the one parameter diffeomorphism groups on S2n−1

to rotations on Sn (see (2.7) and (2.8)). We iden-
tify Rn with the complex number field C (n = 2),
the quaternion field H (n = 4) or Cayley’s algebra
Ca[H] (n = 8). The Hopf mapping π(n) is defined
by

R2n � z = t(ξ, η) 
−→ π(n)(z)

=
(
|ξ|2 − |η|2, 2ξη

)
∈ Rn+1,

where |ξ| stands for the Euclidian norm of ξ and
ξη the product of ξ and η in the sense of C

or H or Ca[H]. We denote the elements by
π(n)(z) = (π(n)

0 (z), π(n)
1 (z), . . . , π(n)

n (z)). π(n) can be
regarded as the mapping from S2n−1 to Sn, because
|π(n)(z)| = |z|2.

Each element π(n)
j (z) of the Hopf mapping is

represented by a real symmetric 2n×2n matrixH(n)
j

as the quadratic form tzH
(n)
j z because it is a homo-
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geneous polynomial of degree 2 with respect to z.
These matrices are orthogonal and satisfy the fol-
lowing:

H
(n)
j H

(n)
k = −H(n)

k H
(n)
j

(j, k = 0, . . . , n ; j �= k).
(2.1)

We define new matrices V (n)
jk to be

V
(n)

jk = H
(n)
j H

(n)
k (j, k = 0, . . . , n ; j �= k).

Then by means of (2.1), we have the following prop-
erties of {V (n)

jk }:

V
(n)
jk = −V (n)

kj if j �= k.(2.2)

V
(n)
jk V

(n)
kp = V

(n)
jp(2.3)

if j, k and p are mutually distinct.

V
(n)
jk V (n)

pq = V (n)
pq V

(n)
jk(2.4)

if j, k, p and q are mutually distinct.

The basis W (n)
jk on S2n−1 is defined as the re-

striction of the vector fields W (n)
jk = tz tV

(n)
jk ∇ on

R2n, where ∇ = t(∂z1 , . . . , ∂z2n). These vector fields
are well-defined on S2n−1 thanks to the antisym-
metricity (2.2).

By (2.3) and (2.4), we see that W (n)
jk have the

following relations which we need to observe the di-
mension of L[Z1, . . . , Zm]:

[W (n)
jk , W

(n)
kp ] = −2Wjp(2.5)

if j, k and p are mutually distinct.

[W (n)
jk , W (n)

pq ] = 0(2.6)

if j, k, p and q are mutually distinct.

On the other hand, the one parameter diffeo-
morphism group generated by W

(n)
jk on S2n−1 is

transformed by π(n) to a rotation on Sn :

π
(n)
k (exp(tW (n)

jk )z)(2.7)

= (cos 2t)π(n)
k (z) − (sin 2t)π(n)

j (z)

if j �= k.

π(n)
p (exp(tW (n)

jk )z) = π(n)
p (z)(2.8)

if j, k and p are mutually distinct.

3. Transitive systems without infinitesi-
mal transitivity. We represent here explicit forms
of vector fields satisfying the conditions in Theo-
rem 1.1. We prepare some cut-off functions on

S2n−1. Let ϕ1(t), ϕ2(t) and ψ(t) be functions on R

such that
ϕ1, ϕ2, ψ ∈ C∞(R), 0 ≤ ϕ1, ϕ2, ψ ≤ 1,

ϕ1 = 1 on {t ≥ 3/4}, suppϕ1 ⊂ {t ≥ 1/2},
ϕ2 = 1 on {t ≤ 0}, suppϕ2 ⊂ {t ≤ 1/4},
ψ = 1 on {t ≥ 5/6}, suppψ ⊂ {t > 2/3},

let Φ(n)
1 , Φ(n)

2 (n = 2, 4, 8) and Ψ
(n)
1 , Ψ (n)

2 (n = 4, 8)
cut-off functions on S2n−1 defined as follows:

Φ
(n)
1 (z) = ϕ1

(
π

(n)
0 (z)

)
,

Φ
(n)
2 (z) = ϕ2

(
π

(n)
0 (z)

)
(n = 2, 4, 8),

Ψ
(4)
1 (z) = ψ

(
1∑

j=0

(π(4)
j (z))2

)
,

Ψ
(4)
2 (z) = ψ

(
4∑

j=2

(π(4)
j (z))2

)
,

Ψ
(8)
1 (z) = ψ

(
3∑

j=0

(π(8)
j (z))2

)
,

Ψ
(8)
2 (z) = ψ

(
8∑

j=4

(π(8)
j (z))2

)
.

Φ
(n)
1 and Φ

(n)
2 have their supports near the north

pole and on the southern hemisphere respectively.
Φ

(n)
2 Ψ

(n)
1 and Φ

(n)
2 Ψ

(n)
2 have their supports on the

disjoint domains in the southern hemisphere.
We begin with the case n = 4, 8.
Proposition 3.1. Let n be 4. The following

system of six vector fields on S7 satisfies the condi-
tions (A), (B) and (C) in Theorem 1.1 :{

W
(4)
04 , W

(4)
12 , Φ

(4)
1 W

(4)
13 , Φ

(4)
1 W

(4)
23 ,

Φ
(4)
2 Ψ

(4)
1 W

(4)
01 , Φ

(4)
2 Ψ

(4)
2 W

(4)
34

}
.

Proposition 3.2. Let n be 8. The following
system of ten vector fields on S15 satisfies the condi-
tions (A), (B) and (C) in Theorem 1.1 :{

W
(8)
08 , W

(8)
14 , W

(8)
25 , Φ

(8)
1 W

(8)
23 , Φ

(8)
1 W

(8)
34 ,

Φ
(8)
2 W

(8)
37 , Φ

(8)
2 Ψ

(8)
1 W

(8)
01 , Φ

(8)
2 Ψ

(8)
1 W

(8)
23 ,

Φ
(8)
2 Ψ

(8)
2 W

(8)
67 , Φ

(8)
2 Ψ

(8)
2 W

(8)
78

}
.

In case n = 2, we need another vector field W (2)

on R4 which can be regarded as a smooth vector field
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on S3 :

W (2) = tz

(
O2 −I2
I2 O2

)
∇,

where I2 and O2 are the 2 × 2 identity matrix and
the 2 × 2 zero matrix respectively.

Proposition 3.3. Let n be 2. The following
system of three vector fields on S3 satisfies the con-
ditions (A), (B) and (C) in Theorem 1.1 :

{
W (2), Φ

(2)
1 W

(2)
12 , Φ

(2)
2 W

(2)
01

}
.
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