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An inequality between class numbers and Ono’s numbers associated

to imaginary quadratic fields
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Abstract: Ono’s number pD and the class number hD, associated to an imaginary
quadratic field with discriminant −D, are closely connected. For example, Frobenius-Rabinowitsch
Theorem asserts that pD = 1 if and only if hD = 1. In 1986, T. Ono raised a problem whether
the inequality hD ≤ 2pD holds. However, in our previous paper [8], we saw that there are in-
finitely many D such that the inequality does not hold. In this paper we give a modification to
the inequality hD ≤ 2pD . We also discuss lower and upper bounds for Ono’s number pD.
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1. Introduction. Let kD be an imaginary
quadratic field with discriminant −D. We denote by
hD the class number of kD. We put ωD :=

√
−D/4

or ωD := (1+
√
−D)/2 according as D ≡ 0 mod 4 or

D ≡ 3 mod 4. We put fD(x) := N(x+ωD), where N
is the norm mapping. We define the natural number
pD by

pD := max{ν(fD(x)) | x ∈ Z ∩ [0, D/4− 1]}

if D �= 3, 4, and pD = 1 if D = 3, 4, where ν(n) is the
number of (not necessarily distinct) prime factors of
n (cf. [3, 6]). We call the number pD Ono’s number.

Ono’s number pD is connected with the class
number hD . For example, the Frobenius-Rabino-
witsch Theorem [2, 7] asserts that

pD = 1 if and only if hD = 1.

The theorems of R. Sasaki [9] assert that

pD = 2 if and only if hD = 2,

pD ≤ hD for all D.(1.1)

H. Möller [3] also obtains (1.1) essentially.
T. Ono [6] had a conjectural inequality

(1.2) hD ≤ 2pD for all D.

H. Wada verified the inequality (1.2) for D whose
square-free part is less than or equal to 8173, by us-
ing computer (cf. [6]; p. 57). However, in our previ-
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ous paper [8], we showed that there exist infinitely
manyD such that the inequality (1.2) does not hold.
Thus we want to modify the inequality (1.2). In fact,
in our previous paper, we showed that for a given
positive real number c the inequality hD > cpD holds
for infinitely many D. Thus the problem is to find
a suitable non-constant function on D instead of the
constant c.

In this paper, we give a modification of (1.2) as
follows. We denote by qD the smallest prime number
which splits completely in kD.

Theorem 2.2. The inequality hD < qpD

D holds
for all D.

Specially in the case of D ≡ 7 mod 8, that is,
qD = 2, we have the following corollary.

Corollary 2.3. The inequality hD < 2pD

holds if D ≡ 7 mod 8.
We also have the following theorem.
Theorem 2.4. For a given positive real num-

ber ε the inequality hD < q
(0.5+ε)pD

D holds for suffi-
ciently large D.

In this paper we also discuss estimates for pD.
Theorem 3.3. The inequality

pD ≥ log log 163
log 163

logD
log logD

holds for all D under the Extended Riemann Hypoth-
esis (E.R.H.).

Theorem 3.4. The inequality pD < (2/log 2)
logD holds.

H. Möller [3] showed that there exists a positive
constant c1 such that c1 logD/ log logD < pD for
sufficiently large D under (E.R.H.). He also showed
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that there exists a positive constant c2 such that
the inequality pD < c2 logD/ log logD holds for in-
finitely many D, which means that the order of his
lower bound can not be improved. We determine a
constant c1 effectively by showing Theorem 3.3.

In Section 2, we discuss estimates for
pD log qD/ loghD, and show Theorems 2.2 and 2.4.
In Section 3, we discuss lower and upper bounds for
pD, and show Theorems 3.3 and 3.4.

2. An inequality between pD and hD.
In this section, we give a modification of Ono’s con-
jectural inequality (1.2). We showed that for a given
positive real number c the inequality hD > cpD holds
for infinitely many D (cf. [8]; Theorem 1). Hence we
want to find a non-constant function f(D) instead of
the constant c and obtain an inequality of the form:
hD ≤ f(D)pD for all D.

In the following, we show that we can take
qD as f(D) in Theorem 2.2. At first we estimate
pD log qD/ loghD.

Theorem 2.1 (cf. [3]; p. 111). The inequality
pD > logqD

(D/4 − 1) holds for D > 4.

Proof. We denote by n the greatest integer not
greater than logqD

(D/4 − 1). If n = 0, our assertion
is trivial. We consider the case of n ≥ 1. Since qD

splits completely in kD and qn
D ≤ D/4 − 1, we can

take an integer x0 such that qn
D divides fD(x0) and

0 ≤ x0 ≤ D/4 − 1. Since there does not exist any
principal primitive ideal with norm less than D/4 in
kD, fD(x0) = N(x0 + wD) �= qn

D. Thus we have

pD ≥ ν(fD(x0)) = n+ 1 > logqD
(D/4 − 1).

From Hilfssatz 4 of Siegel [10] (cf. also [5];
p. 254), we have

(2.1) hD < (3/π)
√
D logD

for D > 4. Thus it follows from Theorem 2.1 and
(2.1) that

pD log qD

loghD
>

log(D/4 − 1)
log((3/π)

√
D logD)

(2.2)

=
log(D/4 − 1)/ logD

log(3/π)/ logD + (1/2) + log logD/ logD
(2.3)

for D > 4.
By using the inequality (2.2), we have the fol-

lowing theorem.
Theorem 2.2. The inequality hD < qpD

D holds
for all D.

Proof. We first show that the right hand side
of (2.2), that is, (2.3) is a monotone increasing func-
tion for D > ee. Since log logD/ logD is monotone
decreasing for D > ee, the denominator of (2.3) is
monotone decreasing and positive for D > ee. Since
the numerator of (2.3) is monotone increasing and
positive for D > 8, (2.3) is a monotone increasing
function for D > ee.

The smallest value of D for which the right hand
side of (2.2) is greater than one is D = 611. When
D = 611, we have

log(D/4 − 1)
log((3/π)

√
D logD)

= 1.00042 · · · .

Thus it follows from (2.2) that pD log qD/ loghD >

1.00042 · · · > 1 holds for D ≥ 611. Namely the in-
equality hD < qpD

D holds forD ≥ 611. The inequality
hD < qpD

D can be directly verified for D < 611.
This completes the proof.
Specially in the case of D ≡ 7 mod 8, that is,

qD = 2, we have the following corollary. Hence the
inequality hD < qpD

D is a modification of (1.2).
Corollary 2.3. The inequality hD < 2pD

holds if D ≡ 7 mod 8.
Since (2.3) has the limit 2 as D tends to infinity,

we have the inequality

(2.4) lim inf
D→+∞

pD log qD

log hD
≥ 2

holds. The inequality (2.4) immediately implies the
following theorem.

Theorem 2.4. For a given positive real num-
ber ε the inequality hD < q

(0.5+ε)pD

D holds for suffi-
ciently large D.

3. Lower and upper bounds for pD.
H. Möller showed the following theorem.

Theorem 3.1 ([3]; Satz 5). There exists a
positive constant c1 such that

(3.1) c1
logD

log logD
< pD

for sufficiently large D under the Extended Riemann
Hypothesis (E.R.H.).

It follows from Theorem 3.1 that Ono’s number
pD diverges as D tends to infinity under (E.R.H.).
He also showed the following theorem.

Theorem 3.2 ([3]; Satz 6). There exists a
positive constant c2 such that the inequality

pD < c2
logD

log logD
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holds for infinitely many D.
Theorem 3.2 means the order of the lower bound

(3.1) can not be improved.
In this section, we determine a constant c1 ef-

fectively. Next we discuss an upper bound for pD.
The Extended Riemann Hypothesis asserts that

all Hecke L-functions are zero-free in the half-plane
Re(s)> 1/2. Under (E.R.H.), E. Bach [1] showed
that the inequality

(3.2) qD < 6 log2D

for all D. It follows from Theorem 2.1 and (3.2) that

pD ≥ log(D/4 − 1)
log qD

>
log(D/4 − 1)
log(6 log2D)

for D > 4. Thus we have

(3.3)

pD log logD
logD

>
log(D/4 − 1)

logD
log logD

log 6 + 2 log logD

for D > 4. The functions log(D/4 − 1)/ logD and
log logD/(log 6 + 2 log logD) are monotone increas-
ing for D > 4, and they are positive for D > 8. Thus
the right hand side of (3.3) is monotone increasing
for D > 8.

By estimating the right hand side of (3.3), we
have the following theorem.

Theorem 3.3. The inequality

(3.4) pD ≥ log log 163
log 163

logD
log logD

holds for all D under (E.R.H.).
Proof. The right hand side of (3.3) is mono-

tone increasing for D > 8 and it is greater than
log log 163/ log163 for D ≥ 73279. Thus we have the
inequality (3.4) for D ≥ 73279. It can be directly
verified for D < 73279.

Next we discuss an upper bound for pD.
Theorem 3.4. The inequality

(3.5) pD <
2

log 2
logD

holds for all D.
Proof. When D = 3, 4, the inequality (3.5) di-

rectly follows. We assume D �= 3, 4. By the defini-
tion of pD, there exists an integer x0 such that 0 ≤
x0 ≤ D/4 − 1 and pD = ν(fD(x0)). Since we have
2pD ≤ fD(x0) < D2, the inequality (3.5) holds.

When qD = 2, that is, D ≡ 7 mod 8, it follows
from Theorem 2.1 that

(3.6)
pD

logD
≥ 1

log 2
log(D/4 − 1)

logD
.

The right hand side of (3.6) has the limit 1/ log 2 as
D tends to infinity. By virtue of Dirichlet’s theorem
on primes in arithmetic progressions, there exist in-
finitely many primes D such that qD = 2. Thus we
also have the inequality

lim sup
D→+∞

pD

logD
≥ 1

log 2
.

Namely, for a given positive real number ε the in-
equality

pD > (1/ log 2 − ε) logD

holds for infinitely many D. This means that the
order of our upper bound (3.5) can not be improved.

By using Theorem 3.4 and the theorem of Siegel
[10], that is,

lim
D→+∞

log hD

log
√
D

= 1,

we see that

(3.7) sup
pD

log hD
< +∞.

The inequality (3.7) implies the inequality (1.1) for
sufficiently large D, and it also implies the following
theorem.

Theorem 3.5. The equality pD = hD in (1.1)
holds only for finitely many D.
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