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Abstract: In this paper, some new generalizations of Carleman’s inequality and Hardy’s
inequalities on the constant e are considered.
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1. Introduction. It is well known that the
constant e plays an important role in many areas
of mathematics. It is involved in many inequalities,
identities, series expansions, some special functions.
The well known Hardy’s inequality and Carleman’s
inequality are good examples of applications of ap-
proximation of e (see [2, 4, Theorem 334, 349]). Re-
cently, there have been many results in strengthened
the above mentioned two inequalities by using bet-
ter approximations of e. In [7], Yang obtained the
following result

(1.1)
(

1 + x

x

)x
= e

(
1−

∞∑
k=1
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,

where x > 0, bk > 0, k = 1, 2, . . . , and {bk}nk=1

satisfy the following recursion formula: b1 = 1/2,
bn+1 = 1/(n + 1)[1/(n + 2) −∑n

j=1 bj/(n + 2 − j)],
n = 1, 2, . . . .

As an application of (1.1), he proved the fol-
lowing strengthened Hardy inequality and Carleman
inequality:
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∞∑
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)
λnan,

where 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm, an ≥ 0,
(m, n ∈ N), b1 = 1/2, bk > 0, k ≥ 2, and 0 <∑∞

n=1 λnan <∞.

(1.3)
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(a1a2 · · ·an)1/n < e
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where an ≥ 0, b1 = 1/2, bk > 0, k ≥ 2, and 0 <∑∞
n=1 λnan <∞ (m, n ∈ N).
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In this paper, we give a extension of the
strengthened Hardy inequality (1.2) and Carleman
inequality (1.3) by using the strict monotonicity of
the power mean of n distinct positive numbers.

2. Main results. For any positive values
a1, a2, . . . , an and positive weights α1, α2 . . . , αn,∑n

i=1 αi = 1, and any real p �= 0, we defined the
power mean, or the mean of order p of the value a
with weights α by

Mp(a;α) = Mp(a1, a2, . . . , an;α1, α2, . . . , αn)

=
( n∑
i=1

αia
p
i

)1/p

.

An easy application of L’Hospital’s rule shows that

lim
p→0

Mp(a;α) =
n∏
i=1

aαi

i ,

the geometric mean. Accordingly, we define
M0(a;α) =

∏n
i=1 a

αi

i . It is well known that Mp(a;α)
is a nondecreasing function of p for −∞ ≤ p ≤ ∞,
and is strictly increasing unless all the ai are equal
(cf. [1, 5]). Before we state and prove the main the-
orem, we need the following Lemmas:

Lemma 2.1. Let a1, a2, . . . , an (n ≥ 1) be a
set of n nonnegative quantities, x > 0 and let y ≥ 0,
then ( n∏

i=1

aαi

i

)(x+y)

≤
( n∑
i=1

αia
x
i

)(x+y)/x

(2.1)

≤
n∑
i=1

αia
(x+y)
i

with equality holding if and only if all ai are same.
Proof. Observe that Mp(A1, A2, . . . , An;

α1, α2 . . . , αn) is a continuous strictly increasing
function of p; that is
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n∏
i=1

Aαi

i ≤
n∑
i=1

αiAi ≤
( n∑
i=1

αiA
p
i

)1/p

for 1 ≤ p with equality holding if and only if all Ai
are the same. This is equivalent to

(2.2)
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i

)p
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)p
≤
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p
i

)
for 1 ≤ p with equality holding if and only if all Ai
are the same. Let x > 0, y ≥ 0. Then (2.2) can be
restated as( n∏

i=1

Aαi

i

)(x+y)/x

≤
( n∑
i=1

αiAi

)(x+y)/x

(2.3)

≤
n∑
i=1

αiA
(x+y)/x
i

for 1 ≤ (x + y)/x with all equalities holding if and
only if all Ai are same. Let a1, a2, . . . , an ≥ 0, x >

0, then axi ≥ 0. In (2.3), substituting Ai = axi , we
obtain the inequalities (2.1) for x > 0 and y ≥ 0.

Lemma 2.2. Let a1, a2, . . . , an (n ≥ 1) be a
set of n nonnegative quantities, 0 < x and let y ≤
−2x, then( n∏
i=1

aαi

i

)(x+y)

≤
( n∑
i=1

αia
−x
i

)−(x+y)/x

≤
n∑
i=1

a
(x+y)
i

with all equalities holding if and only if all ai are
same.

Proof. Observe that Mp(A;α) is a continuous
strictly increasing function of p, we get( n∏

i=1

Aαi

i

)p
≤

( n∑
i=1

αiA
−1
i

)−p
≤

n∑
i=1

αiA
p
i

for p ≤ −1 with equality holding if and only if all
ai are the same. The rest of the proof can be com-
pleted by following the same steps as in the proof of
Lemma 2.1 with suitable changes and hence we omit
the details.

Our main results are given in the following the-
orems.

Theorem 2.3. If 0 < λn+1 ≤ λn, Λn =∑n
m=1 λm (Λn ≥ 1), an ≥ 0, cn > 0 (n ∈ N), x > 0,

y ≥ 0, and 0 <
∑∞

n=1 λn(an)x <∞, then
∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · ·aλn
n )(x+y)/Λn(2.4)

<
x+ y

x

∞∑
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[
e

(
1−

s∑
k=1
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(1 + Λn/λn)k

)]x/(x+y)

× λna
x
nΛ−y/(x+y)

n

( n∑
t=1

λt(ctat)x
)y/x

,

where bk > 0, k = 1, 2, . . . , s (s ∈ N) and {bk}sk=1

satisfy the following recursion formula: b1 = 1/2,
bn+1 = 1/(n + 1)[1/(n + 2) −∑n

j=1 bj/(n + 2 − j)],
n = 1, 2, . . . .

Proof. From the hypotheses, using Lemma 2.1,
we have

(qα1
1 qα2

2 · · ·qαn
n )x+y ≤

( n∑
m=1

αmq
x
m

)(x+y)/x

,

where qm ≥ 0, αm > 0, (m = 1, 2, . . . , n),∑n
m=1 αm = 1. Setting cm > 0, qm = cmam, and

αm = λm/Λn, we obtain(
(c1a1)λ1/Λn(c2a2)λ2/Λn · · · (cnan)λn/Λn

)x+y
≤

(
1

Λn

n∑
m=1

λm(cmam)x
)(x+y)/x

.

Using the above inequality, (for Λn ≥ 1) we find that
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[
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]
1
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λm(cmam)x
)(x+y)/x

.

By using the following inequality (see [3, 6]),( n∑
m=1

zm

)t
≤ t

n∑
m=1

zm

( m∑
k=1

zk

)t−1

,

where t ≥ 1 is a constant and zm ≥ 0, (m = 1, 2, . . .),
it is easy to observe that
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( n∑
m=1

λm(cmam)x
)(x+y)/x

(2.6)

≤ x+ y

x

n∑
m=1

λm(cmam)x
( m∑
k=1

λk(ckak)x
)y/x

.

Choosing cλ1
1 cλ2

2 · · · cλn
n = (Λn+1)Λn/(x+y) (n ∈ N),

and setting Λ0 = 0, because λn+1 ≤ λn, we have

cn =
(

1 +
λn+1

Λn

)Λn/λn(x+y)

·Λ1/(x+y)
n(2.7)

≤
(

1 +
1
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· Λ1/(x+y)
n .

Then by (2.5), (2.6) and (2.7), we obtain that
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×
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1
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×
( m∑
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≤ x+ y

x
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1
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)Λm/λm
]x/(x+y)
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x
mΛ−y/(x+y)

( m∑
k=1

λk(ckak)x
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.

From the equality (1.1), we observe that

(2.9)(
1 +

1
Λm/λm

)Λm/λm

< e

(
1−

s∑
k=1

bk
(1 + Λm/λm)k

)
,

where bk > 0, k = 1, 2, . . . , s(s ∈ N) and {bk}sk=1

satisfy the following recursion formula: b1 = 1/2 and

bn+1 =
1

n+ 1

(
1

n+ 2
−

n∑
j=1

bj
n+ 2− j

)
for n = 1, 2, . . . . Using (2.9) in (2.8), we get the
required inequality (2.4).

In Theorem 2.3, setting y = 0, we have the
strengthened Hardy’s inequality (1.2) with a exten-
sion of the inequality (1.3). At the same time, we
leads to the following some new inequality similar to
the inequality given in Theorem 2.3 by using fairly
elementary analysis.

Theorem 2.4. If 0 < λn+1 ≤ λn, Λn =∑n
m=1 λm (Λn ≥ 1), an ≥ 0, cn > 0 (n ∈ N), x > 0,

y ≤ −2x, and 0 <
∑∞

n=1 λn(an)x <∞, then
∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · ·aλn
n )(x+y)/Λn

<
x+ y

x

∞∑
n=1

[
e

(
1−

s∑
k=1

bk
(1 + Λn/λn)k

)]−x/(x+y)

× λna
−x
n Λ−(2x+y)/(x+y)

( n∑
t=1

λt(ctat)−x
)−(2x+y)/x

,

where bk > 0, k = 1, 2, . . . , s (s ∈ N) and {bk}sk=1

satisfy the following recursion formula: b1 = 1/2,
bn+1 = 1/(n + 1)[1/(n + 2) −∑n

j=1 bj/(n + 2 − j)],
n = 1, 2, . . . .

Proof. The details of the proof of Theorem 2.4
follows by an argument similar to that in the proof
of Theorem 2.3 with suitable changes and hence we
omit the details.
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