On certain generalizations of the Hardy inequality

By Young-Ho Kim
Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea

(Communicated by Heisuke Hironaka, m. J. a., June 11, 2002)

Abstract

In this paper, some new generalizations of Carleman's inequality and Hardy's inequalities on the constant e are considered.

Key words: Carleman's inequality; Hardy's inequality; monotonicity.

1. Introduction. It is well known that the constant e plays an important role in many areas of mathematics. It is involved in many inequalities, identities, series expansions, some special functions. The well known Hardy's inequality and Carleman's inequality are good examples of applications of approximation of e (see [2, 4, Theorem 334, 349]). Recently, there have been many results in strengthened the above mentioned two inequalities by using better approximations of e. In [7], Yang obtained the following result

$$
\begin{equation*}
\left(\frac{1+x}{x}\right)^{x}=e\left(1-\sum_{k=1}^{\infty} \frac{b_{k}}{(1+x)^{k}}\right) \tag{1.1}
\end{equation*}
$$

where $x>0, b_{k}>0, k=1,2, \ldots$, and $\left\{b_{k}\right\}_{k=1}^{n}$ satisfy the following recursion formula: $b_{1}=1 / 2$, $b_{n+1}=1 /(n+1)\left[1 /(n+2)-\sum_{j=1}^{n} b_{j} /(n+2-j)\right]$, $n=1,2, \ldots$.

As an application of (1.1), he proved the following strengthened Hardy inequality and Carleman inequality:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \tag{1.2}\\
& \quad<e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{m} \frac{b_{k}}{\left(1+\Lambda_{n} / \lambda_{n}\right)^{k}}\right) \lambda_{n} a_{n}
\end{align*}
$$

where $0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}, a_{n} \geq 0$, $(m, n \in N), b_{1}=1 / 2, b_{k}>0, k \geq 2$, and $0<$ $\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty$.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{m} \frac{b_{k}}{(1+n)^{k}}\right) a_{n} \tag{1.3}
\end{equation*}
$$

where $a_{n} \geq 0, b_{1}=1 / 2, b_{k}>0, k \geq 2$, and $0<$ $\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty(m, n \in N)$.

[^0]In this paper, we give a extension of the strengthened Hardy inequality (1.2) and Carleman inequality (1.3) by using the strict monotonicity of the power mean of n distinct positive numbers.
2. Main results. For any positive values $a_{1}, a_{2}, \ldots, a_{n}$ and positive weights $\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}$, $\sum_{i=1}^{n} \alpha_{i}=1$, and any real $p \neq 0$, we defined the power mean, or the mean of order p of the value a with weights α by

$$
\begin{aligned}
M_{p}(a ; \alpha) & =M_{p}\left(a_{1}, a_{2}, \ldots, a_{n} ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \\
& =\left(\sum_{i=1}^{n} \alpha_{i} a_{i}^{p}\right)^{1 / p} .
\end{aligned}
$$

An easy application of L'Hospital's rule shows that

$$
\lim _{p \rightarrow 0} M_{p}(a ; \alpha)=\prod_{i=1}^{n} a_{i}^{\alpha_{i}}
$$

the geometric mean. Accordingly, we define $M_{0}(a ; \alpha)=\prod_{i=1}^{n} a_{i}^{\alpha_{i}}$. It is well known that $M_{p}(a ; \alpha)$ is a nondecreasing function of p for $-\infty \leq p \leq \infty$, and is strictly increasing unless all the a_{i} are equal (cf. $[1,5]$). Before we state and prove the main theorem, we need the following Lemmas:

Lemma 2.1. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 1)$ be a set of n nonnegative quantities, $x>0$ and let $y \geq 0$, then

$$
\begin{align*}
\left(\prod_{i=1}^{n} a_{i}^{\alpha_{i}}\right)^{(x+y)} & \leq\left(\sum_{i=1}^{n} \alpha_{i} a_{i}^{x}\right)^{(x+y) / x} \tag{2.1}\\
& \leq \sum_{i=1}^{n} \alpha_{i} a_{i}^{(x+y)}
\end{align*}
$$

with equality holding if and only if all a_{i} are same.
Proof. Observe that $M_{p}\left(A_{1}, A_{2}, \ldots, A_{n}\right.$; $\left.\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}\right)$ is a continuous strictly increasing function of p; that is

$$
\prod_{i=1}^{n} A_{i}^{\alpha_{i}} \leq \sum_{i=1}^{n} \alpha_{i} A_{i} \leq\left(\sum_{i=1}^{n} \alpha_{i} A_{i}^{p}\right)^{1 / p}
$$

for $1 \leq p$ with equality holding if and only if all A_{i} are the same. This is equivalent to

$$
\begin{equation*}
\left(\prod_{i=1}^{n} A_{i}^{\alpha_{i}}\right)^{p} \leq\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right)^{p} \leq\left(\sum_{i=1}^{n} \alpha_{i} A_{i}^{p}\right) \tag{2.2}
\end{equation*}
$$

for $1 \leq p$ with equality holding if and only if all A_{i} are the same. Let $x>0, y \geq 0$. Then (2.2) can be restated as

$$
\begin{align*}
\left(\prod_{i=1}^{n} A_{i}^{\alpha_{i}}\right)^{(x+y) / x} & \leq\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right)^{(x+y) / x} \tag{2.3}\\
& \leq \sum_{i=1}^{n} \alpha_{i} A_{i}^{(x+y) / x}
\end{align*}
$$

for $1 \leq(x+y) / x$ with all equalities holding if and only if all A_{i} are same. Let $a_{1}, a_{2}, \ldots, a_{n} \geq 0, x>$ 0 , then $a_{i}^{x} \geq 0$. In (2.3), substituting $A_{i}=a_{i}^{x}$, we obtain the inequalities (2.1) for $x>0$ and $y \geq 0$.

Lemma 2.2. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 1)$ be a set of n nonnegative quantities, $0<x$ and let $y \leq$ $-2 x$, then

$$
\left(\prod_{i=1}^{n} a_{i}^{\alpha_{i}}\right)^{(x+y)} \leq\left(\sum_{i=1}^{n} \alpha_{i} a_{i}^{-x}\right)^{-(x+y) / x} \leq \sum_{i=1}^{n} a_{i}^{(x+y)}
$$

with all equalities holding if and only if all a_{i} are same.

Proof. Observe that $M_{p}(A ; \alpha)$ is a continuous strictly increasing function of p, we get

$$
\left(\prod_{i=1}^{n} A_{i}^{\alpha_{i}}\right)^{p} \leq\left(\sum_{i=1}^{n} \alpha_{i} A_{i}^{-1}\right)^{-p} \leq \sum_{i=1}^{n} \alpha_{i} A_{i}^{p}
$$

for $p \leq-1$ with equality holding if and only if all a_{i} are the same. The rest of the proof can be completed by following the same steps as in the proof of Lemma 2.1 with suitable changes and hence we omit the details.

Our main results are given in the following theorems.

Theorem 2.3. If $0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=$ $\sum_{m=1}^{n} \lambda_{m}\left(\Lambda_{n} \geq 1\right), a_{n} \geq 0, c_{n}>0(n \in N), x>0$, $y \geq 0$, and $0<\sum_{n=1}^{\infty} \lambda_{n}\left(a_{n}\right)^{x}<\infty$, then

$$
\begin{align*}
& \text { 4) } \quad \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{(x+y) / \Lambda_{n}} \tag{2.4}\\
& <\frac{x+y}{x} \sum_{n=1}^{\infty}\left[e\left(1-\sum_{k=1}^{s} \frac{b_{k}}{\left(1+\Lambda_{n} / \lambda_{n}\right)^{k}}\right)\right]^{x /(x+y)}
\end{align*}
$$

$$
\times \lambda_{n} a_{n}^{x} \Lambda_{n}^{-y /(x+y)}\left(\sum_{t=1}^{n} \lambda_{t}\left(c_{t} a_{t}\right)^{x}\right)^{y / x}
$$

where $b_{k}>0, k=1,2, \ldots, s(s \in N)$ and $\left\{b_{k}\right\}_{k=1}^{s}$ satisfy the following recursion formula: $b_{1}=1 / 2$, $b_{n+1}=1 /(n+1)\left[1 /(n+2)-\sum_{j=1}^{n} b_{j} /(n+2-j)\right]$, $n=1,2, \ldots$.

Proof. From the hypotheses, using Lemma 2.1, we have

$$
\left(q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{n}^{\alpha_{n}}\right)^{x+y} \leq\left(\sum_{m=1}^{n} \alpha_{m} q_{m}^{x}\right)^{(x+y) / x}
$$

where $q_{m} \geq 0, \alpha_{m}>0, \quad(m=1,2, \ldots, n)$, $\sum_{m=1}^{n} \alpha_{m}=1$. Setting $c_{m}>0, q_{m}=c_{m} a_{m}$, and $\alpha_{m}=\lambda_{m} / \Lambda_{n}$, we obtain

$$
\begin{gathered}
\left(\left(c_{1} a_{1}\right)^{\lambda_{1} / \Lambda_{n}}\left(c_{2} a_{2}\right)^{\lambda_{2} / \Lambda_{n}} \cdots\left(c_{n} a_{n}\right)^{\lambda_{n} / \Lambda_{n}}\right)^{x+y} \\
\leq\left(\frac{1}{\Lambda_{n}} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{x}\right)^{(x+y) / x}
\end{gathered}
$$

Using the above inequality, (for $\Lambda_{n} \geq 1$) we find that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{(x+y) / \Lambda_{n}} \tag{2.5}\\
& =\sum_{n=1}^{\infty} \lambda_{n+1} \\
& \times\left(\frac{\left(c_{1} a_{1}\right)^{\lambda_{1} / \Lambda_{n}}\left(c_{2} a_{2}\right)^{\lambda_{2} / \Lambda_{n}} \cdots\left(c_{n} a_{n}\right)^{\lambda_{n} / \Lambda_{n}}}{\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}}\right)^{(x+y)} \\
& \begin{array}{r}
\leq \sum_{n=1}^{\infty}\left[\frac{\lambda_{n+1}}{\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{(x+y) / \Lambda_{n}}}\right] \\
\quad \times\left(\frac{1}{\Lambda_{n}} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{x}\right)^{(x+y) / x} \\
\leq \sum_{n=1}^{\infty}\left[\frac{\lambda_{n+1}}{\left.\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{(x+y) / \Lambda_{n}}\right] \frac{1}{\Lambda_{n}}}\right. \\
\quad \times\left(\sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{x}\right)^{(x+y) / x}
\end{array}
\end{align*}
$$

By using the following inequality (see $[3,6]$),

$$
\left(\sum_{m=1}^{n} z_{m}\right)^{t} \leq t \sum_{m=1}^{n} z_{m}\left(\sum_{k=1}^{m} z_{k}\right)^{t-1}
$$

where $t \geq 1$ is a constant and $z_{m} \geq 0,(m=1,2, \ldots)$, it is easy to observe that

$$
\begin{align*}
& \left(\sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{x}\right)^{(x+y) / x} \tag{2.6}\\
\leq & \frac{x+y}{x} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{x}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{x}\right)^{y / x} .
\end{align*}
$$

Choosing $c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}=\left(\Lambda_{n+1}\right)^{\Lambda_{n} /(x+y)}(n \in N)$, and setting $\Lambda_{0}=0$, because $\lambda_{n+1} \leq \lambda_{n}$, we have

$$
\begin{align*}
c_{n} & =\left(1+\frac{\lambda_{n+1}}{\Lambda_{n}}\right)^{\Lambda_{n} / \lambda_{n}(x+y)} \cdot \Lambda_{n}^{1 /(x+y)} \tag{2.7}\\
& \leq\left(1+\frac{1}{\Lambda_{n} / \lambda_{n}}\right)^{\Lambda_{n} / \lambda_{n}(x+y)} \cdot \Lambda_{n}^{1 /(x+y)} .
\end{align*}
$$

Then by (2.5), (2.6) and (2.7), we obtain that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{(x+y) / \Lambda_{n}} \tag{2.8}\\
\leq & \sum_{n=1}^{\infty} \frac{\lambda_{n+1}}{\Lambda_{n+1}} \frac{1}{\Lambda_{n}} \cdot \frac{x+y}{x} \\
& \times \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{x}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{x}\right)^{y / x} \\
= & \frac{x+y}{x} \sum_{m=1}^{\infty} \lambda_{m}\left(c_{m} a_{m}\right)^{x} \sum_{n=m}^{\infty} \frac{\lambda_{n+1}}{\Lambda_{n} \Lambda_{n+1}} \\
& \times\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{x}\right)^{y / x} \\
= & \frac{x+y}{x} \sum_{m=1}^{\infty} \lambda_{m}\left(c_{m} a_{m}\right)^{x} \sum_{n=m}^{\infty}\left(\frac{1}{\Lambda_{n}}-\frac{1}{\Lambda_{n+1}}\right) \\
= & \left.\frac{x+y}{x} \sum_{m=1}^{\infty} \lambda_{m}\left(c_{k} a_{k}\right)^{x}\right)^{y / x} \\
= & \left.\left(c_{m} a_{m}\right)^{x} \frac{1}{\Lambda_{m}} \lambda_{k=1}^{m}\left(c_{k} a_{k}\right)^{x}\right)^{y / x} \\
\leq & \frac{x+y}{x} \sum_{m=1}^{\infty}\left[\left(1+\frac{1}{\Lambda_{m} / \lambda_{m}}\right)^{\Lambda_{m} / \lambda_{m}}\right]^{x /(x+y)} \\
& \times \lambda_{m} a_{m}^{x} \Lambda^{-y /(x+y)}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{x}\right)^{y / x} .
\end{align*}
$$

From the equality (1.1), we observe that

$$
\begin{equation*}
\left(1+\frac{1}{\Lambda_{m} / \lambda_{m}}\right)^{\Lambda_{m} / \lambda_{m}}<e\left(1-\sum_{k=1}^{s} \frac{b_{k}}{\left(1+\Lambda_{m} / \lambda_{m}\right)^{k}}\right) \tag{2.9}
\end{equation*}
$$

where $b_{k}>0, k=1,2, \ldots, s(s \in N)$ and $\left\{b_{k}\right\}_{k=1}^{s}$ satisfy the following recursion formula: $b_{1}=1 / 2$ and

$$
b_{n+1}=\frac{1}{n+1}\left(\frac{1}{n+2}-\sum_{j=1}^{n} \frac{b_{j}}{n+2-j}\right)
$$

for $n=1,2, \ldots$. Using (2.9) in (2.8), we get the required inequality (2.4).

In Theorem 2.3, setting $y=0$, we have the strengthened Hardy's inequality (1.2) with a extension of the inequality (1.3). At the same time, we leads to the following some new inequality similar to the inequality given in Theorem 2.3 by using fairly elementary analysis.

Theorem 2.4. If $0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=$ $\sum_{m=1}^{n} \lambda_{m}\left(\Lambda_{n} \geq 1\right), a_{n} \geq 0, c_{n}>0(n \in N), x>0$, $y \leq-2 x$, and $0<\sum_{n=1}^{\infty} \lambda_{n}\left(a_{n}\right)^{x}<\infty$, then
$\sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{(x+y) / \Lambda_{n}}$
$<\frac{x+y}{x} \sum_{n=1}^{\infty}\left[e\left(1-\sum_{k=1}^{s} \frac{b_{k}}{\left(1+\Lambda_{n} / \lambda_{n}\right)^{k}}\right)\right]^{-x /(x+y)}$
$\times \lambda_{n} a_{n}^{-x} \Lambda^{-(2 x+y) /(x+y)}\left(\sum_{t=1}^{n} \lambda_{t}\left(c_{t} a_{t}\right)^{-x}\right)^{-(2 x+y) / x}$,
where $b_{k}>0, k=1,2, \ldots, s(s \in N)$ and $\left\{b_{k}\right\}_{k=1}^{s}$ satisfy the following recursion formula: $b_{1}=1 / 2$, $b_{n+1}=1 /(n+1)\left[1 /(n+2)-\sum_{j=1}^{n} b_{j} /(n+2-j)\right]$, $n=1,2, \ldots$.

Proof. The details of the proof of Theorem 2.4 follows by an argument similar to that in the proof of Theorem 2.3 with suitable changes and hence we omit the details.

References

[1] Beckenbach, E. F., and Bellman, R.: Inequalities. Springer-Verlag, Berlin-New York (1961).
[2] Yang, B., and Debnath, L.: Some inequalities involving the constant e, and an application to Carleman's inequality. J. Math. Anal. Appl., 223, 347-353 (1998).
[3] Davis, G. S., and Peterson, G. M.: On an inequality of Hardy's (II). Quart. J. Math. (Oxford), 15, 35-40 (1964).
[4] Hardy, G. H., Littlewood, J. E., and Polya, G.: Inequalities. Cambridge Univ. Press, London (1952).
[5] Kim, Y.-H.: Refinements and extensions of an inequality. J. Math. Anal. Appl., 245, 628-632 (2000).
[6] Németh, J.: Generalizations of the HardyLittlewood inequality. Acta Sci. Math. (Szeged), 32, 295-299 (1971).
[7] Yang, X.: Approximations for constant e and their applications. J. Math. Anal. Appl., 252, 994-998 (2000).

[^0]: 2000 Mathematics Subject Classification. 26D15, 26E60.

