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Abstract:

The present note reports an optimal bound for a version of the spectral fourth

power moment of Hecke L-functions associated with Maass forms over the full modular group, in
which the spectral parameter runs over short intervals. Consequentially, a new hybrid subconvexity
bound is attained for individual values of those L-functions on the critical line.
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1. Imntroduction. Let I' = PSLy(Z), and H
the hyperbolic upper half plane. The cuspidal sub-
space of L?(I"'\H) has a maximal orthonormal sys-

tem composed of Maass forms ¢;, j = 1,2,..., such
that ¢, corresponds to the eigenvalue 1/4+ Iﬁ:? of the
hyperbolic Laplacian, with 0 < k1 < kg < ---. We

may assume that 1); are simultaneous eigenfunctions
of all Hecke operators with corresponding eigenval-
ues tj(n), Z > n > 0, and that ¢¥;(—2) = €;¢;(2)
with €; = £1. Then, the Hecke L-function attached
to 1; is defined by

o0

H;(s) = th(n)n_s, Res > 1.

n=1

This continues to an entire function, and satisfies the
functional equation

(1.1) Hj(s) = x;(s)H;(1 = s),
with
xi(8) = 227 102G U1 — s ik )T(1 — s — irj)

-{e;coshmk; — cosms}.
J j

For details of the above, we refer to [Mo2].
Comparing (1.1) with the functional equation

for the square of the Riemann zeta-function, one may

conjecture the hybrid subconvexity bound

1
(1.2) H; (2 +it> < (t+ k)Y t>0.
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Here and in what follows, € is an arbitrary small
positive constant, and all implied constants may de-
pend on it. For a fixed x; and growing ¢, a result
due to T. Meurman [Me] implies (1.2). On the other
hand, for a fixed t and growing «;, the estimate (1.2)
was proved conditionally by H. Iwaniec [Iw]; and he
pointed out later to the first named author that his
argument gives, still for ¢ fixed, the bound <« n?/ 12+e
unconditionally. Further, as a remarkable break-
through, A. Ivié [Iv] succeeded in proving (1.2) for
t = 0 by a method quite different from those previ-
ously applied (see [Mo3] for the announcement). His
starting point was an arithmetical expression [Mo2,
Lemma 3.8], due to the second named author, for
the weighted spectral mean square of H;(1/2). Ivi¢’s
bound for H;(1/2) follows as a corollary of his result

Al
St (y) <xt K21

and the well-known inequalities H;(1/2) > 0, a;; >
;. Here a; = l0j|?/ coshmr; with o; the first
Maass—Fourier coefficient of ;. Motivated by this
advance with the cubic moment, the first named au-
thor [Ju2] turned to the fourth moment, establishing

the mean value estimate

1
4 4/3+
(1.3) > o Hj (2) < K43+,

|k —K|<K1/3

The identity [Mo2, Lemma 3.8] played again a crucial
role in his proof. Also, as a new basic tool, a use was
made of an explicit formula, due to the second named
author [Mol], for the binary additive divisor sum

(14) D(fW) =3 d(n)d(n + W (jﬁ) ,

n=1
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where d is the divisor function, f > 1, and W an
arbitrary smooth function with a compact support
on the positive real axis. It should be observed that
(1.3) reproves Ivié’s bound for H;(1/2) without the
non-negativity of those central values.

Now, as a deeper evidence supporting our con-
jecture (1.2), we report
Theorem. Assume that K is large, and

0<t< K'Y

1
(1.5) 3 < 0 < 1.

1
H; (2 -H't)

The implicit constant depends only on € and 6.

Hence, (1.2) is valid in the range 0 < ¢t < n?/?’_a,
uniformly in H;. The proof that we shall sketch be-
low is, in principle, an elaboration of [Ju2]. Thus,
the explicit formula for D(f; W) is utilized in much
the same context as in [Ju2]. However, there is a
significant change of argument as well: the Voronol
formula is used instead of [Mo2, Lemma 3.8]. A de-
tailed proof is available in [JM], which is intended
for publication. Meurman’s argument actually gives
(1.2) for t > k%, and thus it remains to consider the
range /-15/ 3
elsewhere.

2. Reduction. We shall

points of our proof of (1.6). In this section, a re-

Then it holds that

16 > o

lre; —K|<K1/3

4
< K4/3+E.

~° <t <&} To this issue, we shall return
indicate salient

duction to a binary additive divisor sum will be per-
formed.

Lemma 1. Let K be a sufficiently large pa-
rameter, and assume that K¢ < G < K17¢, 0 <
t<(1/2)K, N = (K? —t?)/(4%%). Further, let \(x)
be any smooth function supported compactly on the
positive real axis, satisfying

A@) = A (i) , /OOO /\(5)% _1
Put

21) I = i a;(n)n~ V2t (%) ,
n=1

where aj(n) =3, d(n/1*)t;(n/1?) and

I RNC'3
Az) = / GRS

With this, we define E; by

x> 0.

[Vol. 78(A),
of 1 . of 1, N+
Hj §+Zt :Ij+Xj §+’Lt I]+EJ7

where x; is as in (1.1). Then we have

22) Y

|k; —K|<G

o Ej* < (G* + K?3 4 t)K*.

The implicit constant depends only on € and \.
Proof. Ramachandra’s basic argument and
Iwaniec’s spectral large sieve (see Lemma 3.9 and
Theorem 3.3 of [Mo2], respectively) suffice to prove
this. Details are given in [JM]. For the proof of our
theorem, this version of the approximate functional
equation for Hecke series is, actually, somewhat re-
dundant. However, the assertion (2.2) appears to
have an independent interest. L]
Let I; be as above, and put

1 - K\’
h(r)=K™2 (r2+ 4) exp (— (T G ) )
( (r + K >2>
+exp | — a
where G = K? with 6 as in (1.5). By virtue of (2.2),
it is enough to show that

)

o0

(2.3) S =Y ajlI;’h(k;) < GK'<.

j=1
To achieve this, we shall modify S in several steps.
The most significant contributions will be denoted by
81, Sa, ...; accordingly the proof of (2.3) is reduced
to the same for the S,. To this end, we shall apply
approximation arguments such as the saddle-point
method. For a typical expression Z to be dealt with
in this context, we shall employ the notation Z ~ Z
to indicate the following procedure: we shall have an
approximation Z = Zy+ Z; + O(X), where Zj is the
leading term, and the lesser term Z; oscillates in the
same mode as Zp, while X contributes negligibly to
the relevant S,,. Then, the replacement of Z by Z,
should cause no differences in bounding S, .

By the definition (2.1), the estimation of S is
reduced to that of

Si= 3 3 vlmplmdmyd(mmn) /2 (1)

: Z ajh(k;)tj(m)t;(n),

with ¢ being a smooth weight function supported
in an interval [M,2M], M < K2. We apply the
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Bruggeman—Kuznetsov sum formula [Mo2, Theorem
2.2] to the last sum over j with the present choice of
the weight h. The contribution to S of the continu-
ous spectrum can be ignored, since it is non-positive;
and the delta-term contributes by O(GK (log K)*).
Thus we need to consider closely the Kloosterman
part only. It is equal to

1 4m/m
Zf m,n;)h ( T >
—t
where S(m,n;{) is a Kloosterman sum mod ¢, and

i) = 2 [~ M),

cosh(mr)
The sum can be truncated to 1 < £ < K4 for some
constant A, which is a result of the shift of the con-
tour in (2.4) to Imr = —1. In the rest of the sum, the
relevant values of x = 4m/mn/{ are actually large,
namely z > GK (log K)~!. To see this, insert into
(2.4) the expression

Joir(x) = 2 /000 cos(2ru)

(2.4)

(2.5)

s

- sin(x cosh u — irm)du

(the formula (12) on p. 180 of [Wal), and apply in-
tegration by parts repeatedly.
In other words, we may impose the condition

(2.6) 1<t<ly=MGK)  log K.

On this, we shall further consider (2.4). Transform
the integral to the one over the positive real axis;
and restrict the integration to |r — K| < Glog K.
Then, observe that the saddle point method applied
o (2.5) gives

1 1
2.7) Joir ~ — ) S + — =7,
(2.7) Jor(x) G exp (zw(r x) + mr 4772)

where w(r,x) = x(1 — 2(r/z)?), and the condition
6 > 1/3 is essential. This reduces the estimation of
&1 to that of

s,y W) ¥ 5 (%)

m=1 1<b<ly

Z n3/4+n (?) exp (d1iw(r, z)),

where e(z) = exp(2wiz), 61 = :I:l x = dmny/mn/l,
\r—K|<GogK a mod ¢ with (a, 1, and aa =
1 mod ¢.
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Next, the last sum over n is transformed with
the Voronoi formula (see, e.g., [Jul]). In the resulting
expression, the leading term and the part of the new
infinite sum that involves the K-Bessel function are
readily seen to be negligible, because of (2.6). Hence
we are left with

_2% gd(n)e (—%) /OOO Yo (47r\€/@> g(y)dy,

where g(y) = P(y)y>/+ exp(Briw(r, dm/G/0)),
and Y is a Bessel function in the notation of [Wal.
Note that Yy(z) ~ (2/(wz))"/?sin(z — (1/4)7) (see
the formula (4) on p. 199 of [Wa]). Thus, in place of
S, we shall treat the sum

1

GKZ m3/4 zt 1<§<;€ N
d(n)
Z 7

n= 1

(nf )I(€7m7n;51;52)7

where ¢, is the Ramanujan sum mod ¢, and

I(¢,m,n;01,02) = ;/}1(311
4 47doi
o (51%«) ( 7r\/7> 7T 22\/@) dy

A multiple application of integration by parts
shows that I is negligibly small, provided either §; =
6 or n—m > (t{+ (K0)?/M) K¢. Thus, in view
of (1.5) and (2.6), we may restrict ourselves to the
situation where §; = —d, and |m —n| < G2MK°.
With this, if m = n, then §; = 1 can be assumed,
since otherwise integration by parts shows that I is
negligibly small. On the other hand, if m = n and
81 = 1, then I ~ 2e~(1/D7i (7 /1)1/2y _Zt¢(yo), where
Yo is the saddle point; and the harmless assumption
t > K°¢ has been introduced. That is, the estimation
of the diagonal part of S3 is reduced to that of

GK P(m)d?(m) < ri¢?
f Z Z €1+21t (1671’ th)

where ¢ is the Euler function, and the condition ¢ <
lo has been eliminated after a simple observation on
the size of yj.

The inner sum can be expressed as
an integral using the Riemann zeta-function and the
Mellin transform of . Then, invoking the upper
bound for the zeta-function on the imaginary axis
together with its lower bound on the line with the
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real part equal to 1, we find that the last expression
is < GK (log K)S.

Hence, anticipating that the case n — m < 0 is
analogous to the case n —m > 0, the estimation of
83 is reduced to that of

GKZZ

1< f< fo 1<4<KLo
I(g?m7m+f;6la_51)
with fo = GT2MK?®. The change of variable v =

40~/ Fy(u+1/2)~/2 in the integral I transforms
this into

d(m+ f)
Z m3/4 zt m+f)1/4

m=1

1
2(16m) ZtGK Z f1-2it Z Clz-&(-fi)t
1<f< fo 1<l
: Z d(m)d(m + f)U (T;) :
m=1
where
= Y(fu)u 3/4(U+1) 1/4
1y ) T(f,0,0)
with

T bu) = (16 (

)
-exp< wutl/2 117‘2> dv
Y e B ey )

The condition (1.5) and f < fo imply that U(u) ~
u=l(fu)J(f, £, u), and that the last exponentiated
factor is ~ exp(—(1/2)d1iv — 261ir?/(uv)). Here the
condition 6 > 1/3 is essential, as in (2.7). We are
thus left with

(28) S84 =GK Z fl r1-2it Z

€1+22t
1<f<fo 1<e<lo
> m
Y d(m)d(m + f)V () ,
m=1 f
where
(2.9) )=u" / E(f, 4, u,v)
- exp (—51211 — 2(512> v_l_zitdv,
uv
with

(r20)*(u + =

16727

€71, 72y, 0) = Y(ryu)ed (

[Vol. 78(A),

We note that the case n — m < 0 mentioned
above corresponds to the situation where the sign of
—(1/2)61iv in (2.9) is altered, and the factor ¢ (mu)
in the last expression replaced by ¥ (7 (u + 1)).

3. Spectral argument. To the inner-most
sum of (2.8) we shall apply the explicit spectral de-
composition of D(f; W) defined by (1.4):

Lemma 2. Put

Yi(u) =

"

(logu)log(u+1) + 4%(f)

+ {al —log f + 2‘:(f)} log(u(u + 1))

0_/

+ (a1 —log f)* + az +4;(f)(a1 —log f),

where o) (f) = >4y A(logd)”, and a, are absolute
constants. Then we have
[ it

(3.1) D(f;W)
+ fl/2zajtj(f)Hj2 (;) @(KJ;W)

+ DO(f; W)+ DM (f;W).

Here D and D™ stand for the contributions of
the continuous spectrum and the holomorphic cusp
forms, respectively; and

o) =3 [ re{ (14 i)

1 1 1
- 1/2—in g (2 iR, 5 ik 14 2i; —u)} W (u)du,

with the hypergeometric function F.

Proof. 'This is a minor modification of [Mo2,
Theorem 3]. There it is implicitly assumed that the
weight function W is real-valued. In the above, W
can take complex values as well. The constructions
of D© and D™ are analogous to the contribution
of the discrete spectrum. ]

Of the terms on the right side of (3.1), the con-
tribution of the second term is the most significant,
and will be treated below. The term D(®) is anal-
ogous but only easier, and D is negligibly small,
as usual with the contribution of holomorphic cusp
forms. Dealing with the leading term, we perform
the change of variable u +— w/v in the relevant dou-
ble integral (cf. (3.4) below), and we come to a situa-
tion similar to that of the diagonal part of Sz, though
more complicated.

Now, the function O(k;V) is approximated by
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using the fact that the hypergeometric function there

s ~ 21F2%(1 4 \ /1 4+ 1/u)~1=2% which follows via
a quadratic transformation. Hence the estimation of
Sy is reduced to that of

GK Y

1<f<fo

> , 1 i
Dy 22 (AHZ (=) (14 63—
S (3) (e

T2(1/2 + dgik;)
F(l + 2531'11]‘)

325 = > o

f1/2 2t
1<l

E(f, €7 'k‘./ja 617 63)7

where d5 = +1, and Z(7q, 72, K, d1,03) is

0o OO 1 ) _T2
(3.3)A/0 §(Tl,TQ,u,v)eXp<—261w—2512w>

'(\/ﬂ+\/m)717263inv72itdll‘dvv
uv

with £ as above.

We are going to estimate Z in (3.2). Let us
consider first the case §; = —d3. Integrating repeat-
edly by parts with respect to w in (3.3), we see that
we may truncate (3.2) so that ¢, x; < K. Then, in
(3.3) we use the fact (vu++vu + 1) ~ (24/u)™* an
the change of variable u — w/v so that we con51der,
instead,

[ w 1. r?
(34) /0 /0 E (T17 7-27 ;7 U) eXp <_2617/U - 261210)

U_1/2_51lK_Qltw_3/2+6llewa.

We may obviously assume further that f > K¢; and
the presence of the factor £ allows us to introduce
the truncation v > 1. Then the saddle point method
yields that the v-integral is bounded uniformly, and
(3.4) is O(K*®/v/M). Invoking the uniform bound
t;(f) <« f1/4+2 we see that if 65 = —d;, then S5 <
G~1/2[3/2+¢= with a certain ¢ > 0. This is negligi-
ble.

Hence, let us assume that §; = d3.
point ug of the u-integral in (3.3) satisfies xk2v
4r*(up + 1). This is relevant only if x < K2(/M <
G~ 'Klog K because of the factor ¢ and (2.6). In
particular, we may truncate the inner-most sum in
(3.2) so that k; < Qo = G'K'. Thus the esti-
mation of S5 is reduced to that of the expression

1
—1/2 g2 (L
GKlogK %;?E)(JQ E ajH; ( >

The saddle
2,3 _
Ug =
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> f1/2 2zt b g1+21tE il k5,01,01))

1<K fo 1<t ity

We are going to apply the spectral large sieve and
the spectral fourth moment of H;(1/2) (Theorems
3.3 and 3.4 of [Mo2], respectively). To this end, we
separate the parameters f, ¢ trapped in =, using the
Mellin transform Z*(s1,s2,k) of E(7, 72, k,01,01)
with respect to 7 and 7. Our task is then to es-
timate =*. Since Z is smooth in 71 and 7o, that is
essentially the same as to estimate = itself. To do
the latter, we note that the condition x < @y im-
plies that (vu + vu+ 1) ~ (24/u)*. Hence, the

u-integral is, via the saddle-point method,
r? .
~ C(T’ H)f (Tla T2, 27a U) 01/2—"_61“671_17
KU

where |c(r, k)| = (7/2)'/2, and we have imposed the
harmless assumption K¢ < k. We use this approxi-
mation and integrate further with respect to v. We
then find that = < K. In other words, we have
(0/011)%(0/012)*E < (1172) 2K 1 as well. Hence,
we get, for Re sy, Resy = (log K)™1,

E* (51, 82, k) < |s182] 2K " (log K)?,

which leads us again to the negligible bound S5 <
G71/2K3/2+s.

Finally, observing that the change in (2.9) men-
tioned at the end of the previous section does not
require any alternations in the above argument, we
end the proof of our theorem.
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