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A note on the mean value of the zeta and L-functions. XI

By Matti Ilmari Jutila∗) and Yoichi Motohashi∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., Jan. 15, 2002)

Abstract: The present note reports an optimal bound for a version of the spectral fourth
power moment of Hecke L-functions associated with Maass forms over the full modular group, in
which the spectral parameter runs over short intervals. Consequentially, a new hybrid subconvexity
bound is attained for individual values of those L-functions on the critical line.

Key words: Hybrid subconvexity bound; Hecke L-function; Maass form; Bruggeman–
Kuznetsov sum formula; binary additive divisor sum.

1. Introduction. Let Γ = PSL2(Z), and H
the hyperbolic upper half plane. The cuspidal sub-
space of L2(Γ\H) has a maximal orthonormal sys-
tem composed of Maass forms ψj , j = 1, 2, . . ., such
that ψj corresponds to the eigenvalue 1/4+κ2

j of the
hyperbolic Laplacian, with 0 < κ1 ≤ κ2 ≤ · · · . We
may assume that ψj are simultaneous eigenfunctions
of all Hecke operators with corresponding eigenval-
ues tj(n), Z 3 n > 0, and that ψj(−z) = εjψj(z)
with εj = ±1. Then, the Hecke L-function attached
to ψj is defined by

Hj(s) =
∞∑

n=1

tj(n)n−s, Re s > 1.

This continues to an entire function, and satisfies the
functional equation

Hj(s) = χj(s)Hj(1− s),(1.1)

with

χj(s) = 22s−1π2(s−1)Γ(1− s+ iκj)Γ(1− s− iκj)

· {εj coshπκj − cosπs}.

For details of the above, we refer to [Mo2].
Comparing (1.1) with the functional equation

for the square of the Riemann zeta-function, one may
conjecture the hybrid subconvexity bound

Hj

(
1
2

+ it

)
� (t+ κj)1/3+ε, t ≥ 0.(1.2)
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Here and in what follows, ε is an arbitrary small
positive constant, and all implied constants may de-
pend on it. For a fixed κj and growing t, a result
due to T. Meurman [Me] implies (1.2). On the other
hand, for a fixed t and growing κj , the estimate (1.2)
was proved conditionally by H. Iwaniec [Iw]; and he
pointed out later to the first named author that his
argument gives, still for t fixed, the bound� κ

5/12+ε
j

unconditionally. Further, as a remarkable break-
through, A. Ivić [Iv] succeeded in proving (1.2) for
t = 0 by a method quite different from those previ-
ously applied (see [Mo3] for the announcement). His
starting point was an arithmetical expression [Mo2,
Lemma 3.8], due to the second named author, for
the weighted spectral mean square of Hj(1/2). Ivić’s
bound for Hj(1/2) follows as a corollary of his result∑

|κj−K|≤1

αjH
3
j

(
1
2

)
� K1+ε, K ≥ 1,

and the well-known inequalities Hj(1/2) ≥ 0, αj �
κ−ε

j . Here αj = |%j |2/ coshπκj with %j the first
Maass–Fourier coefficient of ψj . Motivated by this
advance with the cubic moment, the first named au-
thor [Ju2] turned to the fourth moment, establishing
the mean value estimate∑

|κj−K|≤K1/3

αjH
4
j

(
1
2

)
� K4/3+ε.(1.3)

The identity [Mo2, Lemma 3.8] played again a crucial
rôle in his proof. Also, as a new basic tool, a use was
made of an explicit formula, due to the second named
author [Mo1], for the binary additive divisor sum

D(f ;W ) =
∞∑

n=1

d(n)d(n+ f)W
(
n

f

)
,(1.4)
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where d is the divisor function, f ≥ 1, and W an
arbitrary smooth function with a compact support
on the positive real axis. It should be observed that
(1.3) reproves Ivić’s bound for Hj(1/2) without the
non-negativity of those central values.

Now, as a deeper evidence supporting our con-
jecture (1.2), we report

Theorem. Assume that K is large, and

0 ≤ t ≤ K1−θ,
1
3
< θ < 1.(1.5)

Then it holds that∑
|κj−K|≤K1/3

αj

∣∣∣∣Hj

(
1
2

+ it

)∣∣∣∣4 � K4/3+ε.(1.6)

The implicit constant depends only on ε and θ.
Hence, (1.2) is valid in the range 0 ≤ t ≤ κ

2/3−ε
j ,

uniformly in Hj . The proof that we shall sketch be-
low is, in principle, an elaboration of [Ju2]. Thus,
the explicit formula for D(f ;W ) is utilized in much
the same context as in [Ju2]. However, there is a
significant change of argument as well: the Voronöı
formula is used instead of [Mo2, Lemma 3.8]. A de-
tailed proof is available in [JM], which is intended
for publication. Meurman’s argument actually gives
(1.2) for t ≥ κ3

j , and thus it remains to consider the

range κ2/3−ε
j ≤ t ≤ κ3

j . To this issue, we shall return
elsewhere.

2. Reduction. We shall indicate salient
points of our proof of (1.6). In this section, a re-
duction to a binary additive divisor sum will be per-
formed.

Lemma 1. Let K be a sufficiently large pa-
rameter, and assume that Kε ≤ G ≤ K1−ε, 0 ≤
t ≤ (1/2)K, N = (K2 − t2)/(4π2). Further, let λ(x)
be any smooth function supported compactly on the
positive real axis, satisfying

λ(x) = λ

(
1
x

)
,

∫ ∞

0

λ(ξ)
dξ

ξ
= 1.

Put

Ij =
∞∑

n=1

aj(n)n−1/2−itΛ
( n
N

)
,(2.1)

where aj(n) =
∑

l2|n d(n/l
2)tj(n/l2) and

Λ(x) =
∫ ∞

x

λ(ξ)
dξ

ξ
, x > 0.

With this, we define Ej by

H2
j

(
1
2

+ it

)
= Ij + χ2

j

(
1
2

+ it

)
Ij + Ej ,

where χj is as in (1.1). Then we have∑
|κj−K|≤G

αj |Ej |2 � (G2 +K2/3 + t)Kε.(2.2)

The implicit constant depends only on ε and λ.
Proof. Ramachandra’s basic argument and

Iwaniec’s spectral large sieve (see Lemma 3.9 and
Theorem 3.3 of [Mo2], respectively) suffice to prove
this. Details are given in [JM]. For the proof of our
theorem, this version of the approximate functional
equation for Hecke series is, actually, somewhat re-
dundant. However, the assertion (2.2) appears to
have an independent interest.

Let Ij be as above, and put

h(r) = K−2

(
r2 +

1
4

)[
exp

(
−
(
r −K

G

)2
)

+exp

(
−
(
r +K

G

)2
)]

,

where G = Kθ with θ as in (1.5). By virtue of (2.2),
it is enough to show that

S =
∞∑

j=1

αj |Ij |2h(κj) � GK1+ε.(2.3)

To achieve this, we shall modify S in several steps.
The most significant contributions will be denoted by
S1, S2, . . .; accordingly the proof of (2.3) is reduced
to the same for the Sν . To this end, we shall apply
approximation arguments such as the saddle-point
method. For a typical expression Z to be dealt with
in this context, we shall employ the notation Z ∼ Z0

to indicate the following procedure: we shall have an
approximation Z = Z0 +Z1 +O(X), where Z0 is the
leading term, and the lesser term Z1 oscillates in the
same mode as Z0, while X contributes negligibly to
the relevant Sν . Then, the replacement of Z by Z0

should cause no differences in bounding Sν .
By the definition (2.1), the estimation of S is

reduced to that of

S1 =
∞∑

m=1

∞∑
n=1

ψ(m)ψ(n)d(m)d(n)(mn)−1/2
(m
n

)it

·
∞∑

j=1

αjh(κj)tj(m)tj(n),

with ψ being a smooth weight function supported
in an interval [M, 2M ], M � K2. We apply the
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Bruggeman–Kuznetsov sum formula [Mo2, Theorem
2.2] to the last sum over j with the present choice of
the weight h. The contribution to S1 of the continu-
ous spectrum can be ignored, since it is non-positive;
and the delta-term contributes by O(GK(logK)4).
Thus we need to consider closely the Kloosterman
part only. It is equal to

∞∑
`=1

1
`
S(m,n; `)h̃

(
4π
√
mn

`

)
,

where S(m,n; `) is a Kloosterman sum mod `, and

h̃(x) =
2i
π

∫ ∞

−∞

rh(r)J2ir(x)
cosh(πr)

dr.(2.4)

The sum can be truncated to 1 ≤ ` ≤ KA for some
constant A, which is a result of the shift of the con-
tour in (2.4) to Im r = −1. In the rest of the sum, the
relevant values of x = 4π

√
mn/` are actually large,

namely x ≥ GK(logK)−1. To see this, insert into
(2.4) the expression

J2ir(x) =
2
π

∫ ∞

0

cos(2ru)(2.5)

· sin(x coshu− irπ)du

(the formula (12) on p. 180 of [Wa]), and apply in-
tegration by parts repeatedly.

In other words, we may impose the condition

1 ≤ `� `0 = M(GK)−1 logK.(2.6)

On this, we shall further consider (2.4). Transform
the integral to the one over the positive real axis;
and restrict the integration to |r − K| ≤ G logK.
Then, observe that the saddle point method applied
to (2.5) gives

J2ir(x) ∼
1

π
√

2x
exp

(
iω(r, x) + πr − 1

4
πi

)
,(2.7)

where ω(r, x) = x(1 − 2(r/x)2), and the condition
θ > 1/3 is essential. This reduces the estimation of
S1 to that of

S2 = GK
∞∑

m=1

ψ(m)d(m)
m3/4−it

∑
1≤`�`0

1√
`

∑
a

e
(am
`

)
·
∞∑

n=1

ψ(n)d(n)
n3/4+it

e

(
ãn

`

)
exp (δ1iω(r, x)) ,

where e(x) = exp(2πix), δ1 = ±1, x = 4π
√
mn/`,

|r−K| ≤ G logK, a mod ` with (a, `) = 1, and aã ≡
1 mod `.

Next, the last sum over n is transformed with
the Voronöı formula (see, e.g., [Ju1]). In the resulting
expression, the leading term and the part of the new
infinite sum that involves the K-Bessel function are
readily seen to be negligible, because of (2.6). Hence
we are left with

−2π
`

∞∑
n=1

d(n)e
(
−na
`

)∫ ∞

0

Y0

(
4π
√
ny

`

)
g(y)dy,

where g(y) = ψ(y)y−3/4−it exp(δ1iω(r, 4π
√
my/`)),

and Y0 is a Bessel function in the notation of [Wa].
Note that Y0(x) ∼ (2/(πx))1/2 sin(x − (1/4)π) (see
the formula (4) on p. 199 of [Wa]). Thus, in place of
S2, we shall treat the sum

S3 = GK
∞∑

m=1

ψ(m)d(m)
m3/4−it

∑
1≤`�`0

1
`

·
∞∑

n=1

d(n)
n1/4

c`(n−m)I(`,m, n; δ1, δ2),

where c` is the Ramanujan sum mod `, and

I(`,m, n; δ1, δ2) =
∫ ∞

0

ψ(y)
y1+it

· exp
(
δ1iω

(
r,

4π
√
my

`

)
+

4πδ2i
√
ny

`

)
dy

with δ2 = ±1.
A multiple application of integration by parts

shows that I is negligibly small, provided either δ1 =
δ2 or n − m �

(
t`+ (K`)2/M

)
Kε. Thus, in view

of (1.5) and (2.6), we may restrict ourselves to the
situation where δ1 = −δ2 and |m − n| ≤ G−2MKε.
With this, if m = n, then δ1 = 1 can be assumed,
since otherwise integration by parts shows that I is
negligibly small. On the other hand, if m = n and
δ1 = 1, then I ∼ 2e−(1/4)πi(π/t)1/2y−it

0 ψ(y0), where
y0 is the saddle point; and the harmless assumption
t ≥ Kε has been introduced. That is, the estimation
of the diagonal part of S3 is reduced to that of

GK√
t

∞∑
m=1

ψ(m)d2(m)
m

∞∑
`=1

ϕ(`)
`1+2it

ψ

(
r4`2

16π2mt2

)
,

where ϕ is the Euler function, and the condition `�
`0 has been eliminated after a simple observation on
the size of y0. The inner sum can be expressed as
an integral using the Riemann zeta-function and the
Mellin transform of ψ. Then, invoking the upper
bound for the zeta-function on the imaginary axis
together with its lower bound on the line with the
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real part equal to 1, we find that the last expression
is � GK(logK)6.

Hence, anticipating that the case n −m < 0 is
analogous to the case n −m > 0, the estimation of
S3 is reduced to that of

GK
∑

1≤f�f0

∑
1≤`�`0

c`(f)
`

∞∑
m=1

ψ(m)d(m)d(m+ f)
m3/4−it(m+ f)1/4

· I(`,m,m+ f ; δ1,−δ1)

with f0 = G−2MKε. The change of variable v =
4π`−1

√
fy(u+ 1/2)−1/2 in the integral I transforms

this into

2(16π)itGK
∑

1≤f�f0

1
f1−2it

∑
1≤`�`0

c`(f)
`1+2it

·
∞∑

m=1

d(m)d(m+ f)U
(
m

f

)
,

where

U(u) = ψ(fu)u−3/4(u+ 1)−1/4

·
(

1 +
1
2u

)−it

J(f, `, u)

with

J(f, `, u) =
∫ ∞

0

ψ

(
(`v)2

16π2f

(
u+

1
2

))
v−1−2it

· exp

(
−δ1i

v
√
u+ 1/2

√
u+

√
u+ 1

− 2δ1i
r2

v
√
u(u+ 1/2)

)
dv.

The condition (1.5) and f � f0 imply that U(u) ∼
u−1ψ(fu)J(f, `, u), and that the last exponentiated
factor is ∼ exp(−(1/2)δ1iv − 2δ1ir2/(uv)). Here the
condition θ > 1/3 is essential, as in (2.7). We are
thus left with

S4 = GK
∑

1≤f�f0

1
f1−2it

∑
1≤`�`0

c`(f)
`1+2it

(2.8)

·
∞∑

m=1

d(m)d(m+ f)V
(
m

f

)
,

where

V (u) = u−1

∫ ∞

0

ξ(f, `, u, v)(2.9)

· exp
(
−1

2
δ1iv − 2δ1i

r2

uv

)
v−1−2itdv,

with

ξ(τ1, τ2, u, v) = ψ(τ1u)ψ
(

(τ2v)2(u+ 1/2)
16π2τ1

)
.

We note that the case n − m < 0 mentioned
above corresponds to the situation where the sign of
−(1/2)δ1iv in (2.9) is altered, and the factor ψ(τ1u)
in the last expression replaced by ψ(τ1(u+ 1)).

3. Spectral argument. To the inner-most
sum of (2.8) we shall apply the explicit spectral de-
composition of D(f ;W ) defined by (1.4):

Lemma 2. Put

Yf (u) = (log u) log(u+ 1) + 4
σ′′

σ
(f)

+
{
a1 − log f + 2

σ′

σ
(f)
}

log(u(u+ 1))

+ (a1 − log f)2 + a2 + 4
σ′

σ
(f)(a1 − log f),

where σ(ν)(f) =
∑

d|f d(log d)ν , and aν are absolute
constants. Then we have

D(f ;W ) =
6
π2
σ(f)

∫ ∞

0

Yf (u)W (u)du(3.1)

+ f1/2
∞∑

j=1

αjtj(f)H2
j

(
1
2

)
Θ(κj ;W )

+ D(c)(f ;W ) +D(h)(f ;W ).

Here D(c) and D(h) stand for the contributions of
the continuous spectrum and the holomorphic cusp
forms, respectively ; and

Θ(κ;W ) =
1
2

∫ ∞

0

Re
{(

1 +
i

sinhπκ

)
Γ2(1/2 + iκ)
Γ(1 + 2iκ)

·u−1/2−iκF

(
1
2

+ iκ,
1
2

+ iκ; 1 + 2iκ;− 1
u

)}
W (u)du,

with the hypergeometric function F .
Proof. This is a minor modification of [Mo2,

Theorem 3]. There it is implicitly assumed that the
weight function W is real-valued. In the above, W
can take complex values as well. The constructions
of D(c) and D(h) are analogous to the contribution
of the discrete spectrum.

Of the terms on the right side of (3.1), the con-
tribution of the second term is the most significant,
and will be treated below. The term D(c) is anal-
ogous but only easier, and D(h) is negligibly small,
as usual with the contribution of holomorphic cusp
forms. Dealing with the leading term, we perform
the change of variable u 7→ w/v in the relevant dou-
ble integral (cf. (3.4) below), and we come to a situa-
tion similar to that of the diagonal part of S3, though
more complicated.

Now, the function Θ(κ;V ) is approximated by
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using the fact that the hypergeometric function there
is ∼ 21+2iκ(1 +

√
1 + 1/u)−1−2iκ, which follows via

a quadratic transformation. Hence the estimation of
S4 is reduced to that of

S5 = GK
∑

1≤f�f0

1
f1/2−2it

∑
1≤`�`0

c`(f)
`1+2it

(3.2)

·
∞∑

j=1

22δ3iκjαjtj(f)H2
j

(
1
2

)(
1 + δ3

i

sinhπκj

)

·Γ
2(1/2 + δ3iκj)
Γ(1 + 2δ3iκj)

Ξ(f, `, κj , δ1, δ3),

where δ3 = ±1, and Ξ(τ1, τ2, κ, δ1, δ3) is∫ ∞

0

∫ ∞

0

ξ(τ1, τ2, u, v) exp
(
−1

2
δ1iv − 2δ1i

r2

uv

)
(3.3)

· (
√
u+

√
u+ 1)−1−2δ3iκv−2it dudv

uv
,

with ξ as above.
We are going to estimate Ξ in (3.2). Let us

consider first the case δ1 = −δ3. Integrating repeat-
edly by parts with respect to u in (3.3), we see that
we may truncate (3.2) so that `, κj ≤ Kε. Then, in
(3.3) we use the fact (

√
u+

√
u+ 1)iκ ∼ (2

√
u)iκ and

the change of variable u 7→ w/v so that we consider,
instead,∫ ∞

0

∫ ∞

0

ξ
(
τ1, τ2,

w

v
, v
)

exp
(
−1

2
δ1iv− 2δ1i

r2

w

)
(3.4)

· v−1/2−δ1iκ−2itw−3/2+δ1iκdvdw.

We may obviously assume further that f ≥ Kε; and
the presence of the factor ξ allows us to introduce
the truncation v ≥ 1. Then the saddle point method
yields that the v-integral is bounded uniformly, and
(3.4) is O(Kε/

√
M). Invoking the uniform bound

tj(f) � f1/4+ε, we see that if δ3 = −δ1, then S5 �
G−1/2K3/2+cε with a certain c > 0. This is negligi-
ble.

Hence, let us assume that δ1 = δ3. The saddle
point u0 of the u-integral in (3.3) satisfies κ2v2u3

0 =
4r4(u0 + 1). This is relevant only if κ � K2`/M �
G−1K logK because of the factor ξ and (2.6). In
particular, we may truncate the inner-most sum in
(3.2) so that κj ≤ Q0 = G−1K1+ε. Thus the esti-
mation of S5 is reduced to that of the expression

GK logK max
1≤Q≤Q0

Q−1/2
∑

Q≤κj≤2Q

αjH
2
j

(
1
2

)

·

∣∣∣∣∣∣
∑

1≤f�f0

tj(f)
f1/2−2it

∑
1≤`�`0

c`(f)
`1+2it

Ξ(f, `, κj , δ1, δ1)

∣∣∣∣∣∣ .
We are going to apply the spectral large sieve and
the spectral fourth moment of Hj(1/2) (Theorems
3.3 and 3.4 of [Mo2], respectively). To this end, we
separate the parameters f , ` trapped in Ξ, using the
Mellin transform Ξ∗(s1, s2, κ) of Ξ(τ1, τ2, κ, δ1, δ1)
with respect to τ1 and τ2. Our task is then to es-
timate Ξ∗. Since Ξ is smooth in τ1 and τ2, that is
essentially the same as to estimate Ξ itself. To do
the latter, we note that the condition κ � Q0 im-
plies that (

√
u +

√
u+ 1)iκ ∼ (2

√
u)iκ. Hence, the

u-integral is, via the saddle-point method,

∼ c(r, κ)ξ
(
τ1, τ2, 2

r2

κv
, v

)
v1/2+δ1iκr−1,

where |c(r, κ)| = (π/2)1/2, and we have imposed the
harmless assumption Kε ≤ κ. We use this approxi-
mation and integrate further with respect to v. We
then find that Ξ � K−1. In other words, we have
(∂/∂τ1)2(∂/∂τ2)2Ξ � (τ1τ2)−2K−1 as well. Hence,
we get, for Re s1, Re s2 = (logK)−1,

Ξ∗(s1, s2, κ) � |s1s2|−2K−1(logK)2,

which leads us again to the negligible bound S5 �
G−1/2K3/2+ε.

Finally, observing that the change in (2.9) men-
tioned at the end of the previous section does not
require any alternations in the above argument, we
end the proof of our theorem.
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