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Explicit representation of structurally finite entire functions
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Abstract: We say that an entire function is structurally finite if it is constructed from
a finite number of quadratic polynomials and exponential functions by Maskit surgeries. In this
note, we show that every structurally finite entire function has an explicit representation.
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1. Introduction and the main result.
The concept of finite constructability for an entire
function, called structural finiteness, was introduced
in [8], where we stated that structurally finite entire
functions have many nice properties, and in parti-
cular, permit explicit representation. In this note we
give a proof of this representation theorem.

First, we give the definition of structurally finite
entire functions.

Definition. We say that an entire function is
structurally finite if it can be constructed from a fi-
nite number of building blocks by Maskit surgeries.

Here a building block is either a quadratic block :

az2 + bz + c : C→ C (a 6= 0)

or an exponential block :

a exp(bz) + c : C→ C (ab 6= 0).

We say that a structurally finite entire function is of
type (p, q) if it is constructed from p quadratic blocks
and q exp-blocks.

Next, we say that a point α in C is a singular
value of an entire function f if, for every neighbor-
hood U of α, there exists a component V of f−1(U)
such that f : V → U is not biholomorphic. Then a
Maskit surgery (by connecting functions) is defined
as follows.

Definition. Let fj : C → C (j = 1, 2) be en-
tire functions, and Aj be the set of all singular values
of fj . Assume that there is a cross cut L in C, i.e.
the image L of a proper continuous injection of the
real line into C, such that
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1. L ∩ A1 is coincident with L ∩ A2, and is either
empty or consists of a single point z0, which is
an isolated point of each Aj ,

2. C−L consists of two connected components D1

and D2, where Dj contains Aj − {z0} for each
j, and

3. if L ∩ A1 = L ∩ A2 = {z0}, then z0 is a critical
value of each fj : for a small disk U with center
z0 such that U ∩Aj = {z0}, f−1

j (U) has a rela-
tively compact component Wj which contains a
critical point of fj for each j.
Under the above assumptions, suppose that an

entire function f : C → C satisfies the following
condition; there exist

1. components D̃1 and D̃2 of f−1
1 (D2) of f−1

2 (D1),
respectively, such that fj : D̃j → D3−j is bi-
holomorphic and D̃j ∩ Wj 6= ∅ if L ∩ Aj are
non-empty,

2. a cross cut L̃ in C such that f gives a homeo-
morphism of L̃ onto L, and

3. a conformal map φj of C − D̃j onto Uj such
that fj = f ◦ φj on C − D̃j , where U1 and U2

are components of C− L̃.
Then we say that f is constructed from f1 and

f2 by a Maskit surgery with respect to L, and also
to {Wj} when L ∩Aj are non-empty.

Compare with the Maskit combination for
Kleinian groups (cf. [4]). Now we give a proof of
the following

Theorem 1 (Representation Theorem).
Every structurally finite entire function has the form∫ z

P (t)eQ(t)dt



No. 4] Explicit representation 69

with suitable polynomials P and Q.
More precisely, the set of all structurally finite

entire functions of type (p, q) is

SFp,q =
{∫ z

0

(cptp + · · ·+ c0)eaqt
q+···+a1tdt+ b

}
,

where cpaq 6= 0 if q > 0, and we regard that SFp,0 =
Polyp+1; the set of all polynomials of degree exactly
p+ 1.

Remark. Such primitive functions have al-
ready appeared as typical examples in various con-
texts. See for instance, [1], [2], [3], [5], and [6]. Also
recall that Baker [1] first showed that no structurally
finite entire functions have wandering domains.

2. Proof of Representaiton Theorem.
We say that a structurally finite entire function of
type (p, q) is simple if it has (p+ q) distinct singular
values. First we show that simple functions indeed
exist in SFp,q.

Example 1.

F (z) =
∫ z

0

P (t)et
q

dt

with

P (t) = (1− εn1t) · · ·+ (1− εnpt)

has p critical points

ε−n1 , · · · , ε−np ,

and q asymptotic values{∫ ∞

0

P (e(2`+1)πi/qt)e−t
q

e(2`+1)πi/qdt

}q−1

`=0

.

Here, if a positive constant ε is sufficiently small,
then these asymptotic values are mutually distinct.
And if {nj} increase rapidly enough, then the critical
values, which are real, are also mutually distinct.

Thus such an F ∈ SF p,q is simple.
Next we show that the family SF p,q is topolog-

ically strongly complete.
Definition. We say that a family F of entire

functions is topologically strongly complete if every
entire function topologically equivalent to an element
of F is actually an element.

Here we say that an entire function g is topolo-
gically equivalent to another f if there are homeo-
morphisms ϕ, ψ of C onto itself such that ϕ ◦ f =
g ◦ ψ.

Then we can show that

Proposition 2. The family SF p,q of type
(p, q) is topologically strongly complete.

Proof. Suppose that g is topologically equiva-
lent to

f(z) =
∫ z

P (t)eQ(t)dt ∈ SF p,q.

Then g is quasiconformally equivalent to f .
Indeed, let ϕ,ψ be homeomorphisms of C onto

itself such that ϕ◦f = g ◦ψ. Since the set sing(f−1)
of all singular values of f is a finite set, there is an
isotopy Φ relative to sing(f−1) which connects ϕ to
a quasiconformal map ψ2. Then, we can lift Φ to an
isotopy Φ̃ such that g◦Φ̃ = Φ◦f and that Φ̃ connects
ψ to a quasiconformal map ψ1 with ψ2 ◦ f = g ◦ ψ1.
Here we may further assume that ψj are normalized,
i.e. fix 0 and 1, for every entire function conformally
equivalent to f belongs to SFp,q.

Now, since f ′ and g′ have the same number of ze-
ros, counted with their multiplicities, we find a poly-
nomial R(z) of degree p such that g′(z)/R(z) has no
zeros. Hence we can write g′(z) as R(z) exph(z) with
an entire function h(z).

Since quasiconformal maps are Hölder contin-
uous, there are some positive numbers K > 1 and
A > 1 such that

A−1|z|1/K ≤ |ψj(z)| ≤ A|z|K

for each j. Hence on {|z| = r}, we have

|g(z)| = |ψ2 ◦ f ◦ ψ−1
1 (z)| ≤ A|M(f,AKrK)|K ,

where M(f, r) = max|z|=r |f(z)|. Since f ∈ SF p,q,
and since g and g′ have the same order, the function
log |M(g′, r)| has a polynomial growth with respect
to r. Hence there are some C and N such that

|Reh(z)| ≤ CrN

for every z with sufficiently large r = |z|, which im-
plies that h(z) is a polynomial.

Finally, let q′ be the degree of h(z). Then g(z)
has exactly q′ finite non-equivalent asymptotic val-
ues. Thus we have q′ = q.

Now, we will introduce a natural topology on
the family of structurally finite entire functions.

Definition. Let f be a non-linear entire func-
tion. Then the full deformation set FD(f) of f is
the set of all entire functions g such that there is a
quasiconformal self-map φ of C satisfiying the qc-L∞

condition:

‖f − g ◦ φ‖∞ = sup
C
|f − g ◦ φ| <∞.
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Here we may assume that such a φ as above is always
normalized.

Definition. For every pair of functions f1 and
f2 in FD(f), we set

d(f1, f2)

= inf
(
logK(φ1 ◦ φ−1

2 ) + ‖f1 ◦ φ1 − f2 ◦ φ2‖∞
)
,

where the infimum is taken over all normalized quasi-
conformal automorphisms φ1, φ2 of C satisfying the
qc-L∞ conditions between f and f1, f2, respectively.

Proposition 3. The pseudo-distance d is a
distance, and FD(f) with this distance is a complete
metric space.

Definition. We call this distance d on FD(f)
the synthetic Teichmüller distance on FD(f), and
the induced topology the synthetic Teichmüller
topology.

We can easily see that every element in SFp,q
is a structurally finite entire function of type (p, q).
And for structurally finite entire functions, we have
shown in [9] the following

Theorem 4 (Inclusion Theorem). For a
struc-
turally finite entire function f of type (p, q),
the full deformation set FD(f) contains all the
structurally finite entire functions of the same type.

In particular,

SFp,q ⊂ FD(f).

Thus the synthetic Teichmüller distance gives a
topology on SFp,q. Also in the proof of Inclusion
Theorem, we have shown the following

Lemma 5. Two simple structurally finite en-
tire functions of the same type are always mutually
topologically equivalent.

Thus, if the given f is simple, then f is topologi-
cally equivalent to F in Example 1. Hence f ∈ SFp,q
by the topological strong completeness of the family
SF p,q.

Finally, for a general f , we can approximate f
by simple functions fn with respect to the synthetic
Teichmüller topology (cf. [9]), by relaxing the rela-
tions of singular values.

Lemma 6. Such a sequence {fn} in SF p,q as
above converges to some F∞ in SF p,q with respect to
the synthetic Teichmüller topology. This F∞ equals
f , and hence f ∈ SFp,q.

Proof. Since d(fn, f) tend to 0, we may assume
that there are normalized quasiconformal maps φn :
C→ C converging to the identity such that

‖fn ◦ φn − f‖∞

tend to 0. Then fn are locally uniformly bounded.
Hence we may assume that the coefficient vectors
of fn converge, which implies that fn converge to a
function F∞ in SF p′,q′ with p′ ≤ p, q′ ≤ q locally
uniformly.

Then for every z ∈ C, fn(φn(z)) converge to
F∞(z). Thus F∞(z) = f(z). In particular, F∞
has q non-equivalent asymptotic values and p crit-
ical points counted with their multiplicities. Hence
we have that p′ = p, q′ = q, which shows the asser-
tion.

References

[ 1 ] Baker, I. N.: Wandering domains in the iteration
of entire functions. Proc. London Math. Soc., 49,
563–576 (1984).

[ 2 ] Bergweiler, W.: Newton’s method and a class of
meromorphic functions without wandering do-
mains. Ergod. Th. & Dynam. Sys., 13, 231–247
(1993).

[ 3 ] Devaney, R. L., and Keen, L.: Dynamics of
meromorphic maps with polynomial Schwarzian
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