Explicit representation of structurally finite entire functions

By Masahiko TANIguchi
Department of Mathematics, Graduate School of Science, Kyoto University, Kita-Shirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502
(Communicated by Shigefumi Mori, M. J. A., April 12, 2001)

Abstract

We say that an entire function is structurally finite if it is constructed from a finite number of quadratic polynomials and exponential functions by Maskit surgeries. In this note, we show that every structurally finite entire function has an explicit representation.

Key words: Structually finite entire functions; Maskit surgery; synthetic deformation spaces.

1. Introduction and the main result.

The concept of finite constructability for an entire function, called structural finiteness, was introduced in [8], where we stated that structurally finite entire functions have many nice properties, and in particular, permit explicit representation. In this note we give a proof of this representation theorem.

First, we give the definition of structurally finite entire functions.

Definition. We say that an entire function is structurally finite if it can be constructed from a finite number of building blocks by Maskit surgeries.

Here a building block is either a quadratic block:

$$
a z^{2}+b z+c: \mathbf{C} \rightarrow \mathbf{C} \quad(a \neq 0)
$$

or an exponential block:

$$
a \exp (b z)+c: \mathbf{C} \rightarrow \mathbf{C} \quad(a b \neq 0) .
$$

We say that a structurally finite entire function is of type (p, q) if it is constructed from p quadratic blocks and q exp-blocks.

Next, we say that a point α in \mathbf{C} is a singular value of an entire function f if, for every neighborhood U of α, there exists a component V of $f^{-1}(U)$ such that $f: V \rightarrow U$ is not biholomorphic. Then a Maskit surgery (by connecting functions) is defined as follows.

Definition. Let $f_{j}: \mathbf{C} \rightarrow \mathbf{C}(j=1,2)$ be entire functions, and A_{j} be the set of all singular values of f_{j}. Assume that there is a cross cut L in \mathbf{C}, i.e. the image L of a proper continuous injection of the real line into \mathbf{C}, such that

[^0]1. $L \cap A_{1}$ is coincident with $L \cap A_{2}$, and is either empty or consists of a single point z_{0}, which is an isolated point of each A_{j},
2. $\mathbf{C}-L$ consists of two connected components D_{1} and D_{2}, where D_{j} contains $A_{j}-\left\{z_{0}\right\}$ for each j, and
3. if $L \cap A_{1}=L \cap A_{2}=\left\{z_{0}\right\}$, then z_{0} is a critical value of each f_{j} : for a small disk U with center z_{0} such that $U \cap A_{j}=\left\{z_{0}\right\}, f_{j}^{-1}(U)$ has a relatively compact component W_{j} which contains a critical point of f_{j} for each j.
Under the above assumptions, suppose that an entire function $f: \mathbf{C} \rightarrow \mathbf{C}$ satisfies the following condition; there exist
4. components \tilde{D}_{1} and \tilde{D}_{2} of $f_{1}^{-1}\left(D_{2}\right)$ of $f_{2}^{-1}\left(D_{1}\right)$, respectively, such that $f_{j}: \tilde{D}_{j} \rightarrow D_{3-j}$ is biholomorphic and $\tilde{D}_{j} \cap W_{j} \neq \emptyset$ if $L \cap A_{j}$ are non-empty,
5. a cross cut \tilde{L} in \mathbf{C} such that f gives a homeomorphism of \tilde{L} onto L, and
6. a conformal map ϕ_{j} of $\mathbf{C}-\tilde{D}_{j}$ onto U_{j} such that $f_{j}=f \circ \phi_{j}$ on $\mathbf{C}-\tilde{D}_{j}$, where U_{1} and U_{2} are components of $\mathbf{C}-\tilde{L}$.
Then we say that f is constructed from f_{1} and f_{2} by a Maskit surgery with respect to L, and also to $\left\{W_{j}\right\}$ when $L \cap A_{j}$ are non-empty.

Compare with the Maskit combination for Kleinian groups (cf. [4]). Now we give a proof of the following

Theorem 1 (Representation Theorem).
Every structurally finite entire function has the form

$$
\int^{z} P(t) e^{Q(t)} d t
$$

with suitable polynomials P and Q.
More precisely, the set of all structurally finite entire functions of type (p, q) is

$$
S F_{p, q}=\left\{\int_{0}^{z}\left(c_{p} t^{p}+\cdots+c_{0}\right) e^{a_{q} t^{q}+\cdots+a_{1} t} d t+b\right\}
$$

where $c_{p} a_{q} \neq 0$ if $q>0$, and we regard that $S F_{p, 0}=$ Poly $_{p+1}$; the set of all polynomials of degree exactly $p+1$.

Remark. Such primitive functions have already appeared as typical examples in various contexts. See for instance, [1], [2], [3], [5], and [6]. Also recall that Baker [1] first showed that no structurally finite entire functions have wandering domains.
2. Proof of Representaiton Theorem.

We say that a structurally finite entire function of type (p, q) is simple if it has $(p+q)$ distinct singular values. First we show that simple functions indeed exist in $S F_{p, q}$.

Example 1.

$$
F(z)=\int_{0}^{z} P(t) e^{t^{q}} d t
$$

with

$$
P(t)=\left(1-\epsilon^{n_{1}} t\right) \cdots+\left(1-\epsilon^{n_{p}} t\right)
$$

has p critical points

$$
\epsilon^{-n_{1}}, \cdots, \epsilon^{-n_{p}}
$$

and q asymptotic values

$$
\left\{\int_{0}^{\infty} P\left(e^{(2 \ell+1) \pi i / q} t\right) e^{-t^{q}} e^{(2 \ell+1) \pi i / q} d t\right\}_{\ell=0}^{q-1}
$$

Here, if a positive constant ϵ is sufficiently small, then these asymptotic values are mutually distinct. And if $\left\{n_{j}\right\}$ increase rapidly enough, then the critical values, which are real, are also mutually distinct.

Thus such an $F \in S F_{p, q}$ is simple.
Next we show that the family $S F_{p, q}$ is topologically strongly complete.

Definition. We say that a family \mathcal{F} of entire functions is topologically strongly complete if every entire function topologically equivalent to an element of \mathcal{F} is actually an element.

Here we say that an entire function g is topologically equivalent to another f if there are homeomorphisms φ, ψ of \mathbf{C} onto itself such that $\varphi \circ f=$ $g \circ \psi$.

Then we can show that

Proposition 2. The family $S F_{p, q}$ of type (p, q) is topologically strongly complete.

Proof. Suppose that g is topologically equivalent to

$$
f(z)=\int^{z} P(t) e^{Q(t)} d t \in S F_{p, q}
$$

Then g is quasiconformally equivalent to f.
Indeed, let φ, ψ be homeomorphisms of \mathbf{C} onto itself such that $\varphi \circ f=g \circ \psi$. Since the set $\operatorname{sing}\left(f^{-1}\right)$ of all singular values of f is a finite set, there is an isotopy Φ relative to $\operatorname{sing}\left(f^{-1}\right)$ which connects φ to a quasiconformal map ψ_{2}. Then, we can lift Φ to an isotopy $\tilde{\Phi}$ such that $g \circ \tilde{\Phi}=\Phi \circ f$ and that $\tilde{\Phi}$ connects ψ to a quasiconformal map ψ_{1} with $\psi_{2} \circ f=g \circ \psi_{1}$. Here we may further assume that ψ_{j} are normalized, i.e. fix 0 and 1 , for every entire function conformally equivalent to f belongs to $S F_{p, q}$.

Now, since f^{\prime} and g^{\prime} have the same number of zeros, counted with their multiplicities, we find a polynomial $R(z)$ of degree p such that $g^{\prime}(z) / R(z)$ has no zeros. Hence we can write $g^{\prime}(z)$ as $R(z) \exp h(z)$ with an entire function $h(z)$.

Since quasiconformal maps are Hölder continuous, there are some positive numbers $K>1$ and $A>1$ such that

$$
A^{-1}|z|^{1 / K} \leq\left|\psi_{j}(z)\right| \leq A|z|^{K}
$$

for each j. Hence on $\{|z|=r\}$, we have

$$
|g(z)|=\left|\psi_{2} \circ f \circ \psi_{1}^{-1}(z)\right| \leq A\left|M\left(f, A^{K} r^{K}\right)\right|^{K}
$$

where $M(f, r)=\max _{|z|=r}|f(z)|$. Since $f \in S F_{p, q}$, and since g and g^{\prime} have the same order, the function $\log \left|M\left(g^{\prime}, r\right)\right|$ has a polynomial growth with respect to r. Hence there are some C and N such that

$$
|\operatorname{Re} h(z)| \leq C r^{N}
$$

for every z with sufficiently large $r=|z|$, which implies that $h(z)$ is a polynomial.

Finally, let q^{\prime} be the degree of $h(z)$. Then $g(z)$ has exactly q^{\prime} finite non-equivalent asymptotic values. Thus we have $q^{\prime}=q$.

Now, we will introduce a natural topology on the family of structurally finite entire functions.

Definition. Let f be a non-linear entire function. Then the full deformation set $F D(f)$ of f is the set of all entire functions g such that there is a quasiconformal self-map ϕ of \mathbf{C} satisfiying the $q c-L^{\infty}$ condition:

$$
\|f-g \circ \phi\|_{\infty}=\sup _{\mathbf{C}}|f-g \circ \phi|<\infty .
$$

Here we may assume that such $a \phi$ as above is always normalized.

Definition. For every pair of functions f_{1} and f_{2} in $F D(f)$, we set

$$
\begin{aligned}
& d\left(f_{1}, f_{2}\right) \\
= & \inf \left(\log K\left(\phi_{1} \circ \phi_{2}^{-1}\right)+\left\|f_{1} \circ \phi_{1}-f_{2} \circ \phi_{2}\right\|_{\infty}\right),
\end{aligned}
$$

where the infimum is taken over all normalized quasiconformal automorphisms ϕ_{1}, ϕ_{2} of \mathbf{C} satisfying the qc- $-L^{\infty}$ conditions between f and f_{1}, f_{2}, respectively.

Proposition 3. The pseudo-distance d is a distance, and $F D(f)$ with this distance is a complete metric space.

Definition. We call this distance d on $F D(f)$ the synthetic Teichmüller distance on $F D(f)$, and the induced topology the synthetic Teichmüller topology.

We can easily see that every element in $S F_{p, q}$ is a structurally finite entire function of type (p, q). And for structurally finite entire functions, we have shown in [9] the following

Theorem 4 (Inclusion Theorem). For a struc-
turally finite entire function f of type (p, q), the full deformation set $F D(f)$ contains all the structurally finite entire functions of the same type.

In particular,

$$
S F_{p, q} \subset F D(f)
$$

Thus the synthetic Teichmüller distance gives a topology on $S F_{p, q}$. Also in the proof of Inclusion Theorem, we have shown the following

Lemma 5. Two simple structurally finite entire functions of the same type are always mutually topologically equivalent.

Thus, if the given f is simple, then f is topologically equivalent to F in Example 1. Hence $f \in S F_{p, q}$ by the topological strong completeness of the family $S F_{p, q}$.

Finally, for a general f, we can approximate f by simple functions f_{n} with respect to the synthetic Teichmüller topology (cf. [9]), by relaxing the relations of singular values.

Lemma 6. Such a sequence $\left\{f_{n}\right\}$ in $S F_{p, q}$ as above converges to some F_{∞} in $S F_{p, q}$ with respect to the synthetic Teichmüller topology. This F_{∞} equals f, and hence $f \in S F_{p, q}$.

Proof. Since $d\left(f_{n}, f\right)$ tend to 0 , we may assume that there are normalized quasiconformal maps ϕ_{n} : $\mathbf{C} \rightarrow \mathbf{C}$ converging to the identity such that

$$
\left\|f_{n} \circ \phi_{n}-f\right\|_{\infty}
$$

tend to 0 . Then f_{n} are locally uniformly bounded. Hence we may assume that the coefficient vectors of f_{n} converge, which implies that f_{n} converge to a function F_{∞} in $S F_{p^{\prime}, q^{\prime}}$ with $p^{\prime} \leq p, q^{\prime} \leq q$ locally uniformly.

Then for every $z \in \mathbf{C}, f_{n}\left(\phi_{n}(z)\right)$ converge to $F_{\infty}(z)$. Thus $F_{\infty}(z)=f(z)$. In particular, F_{∞} has q non-equivalent asymptotic values and p critical points counted with their multiplicities. Hence we have that $p^{\prime}=p, q^{\prime}=q$, which shows the assertion.

References

[1] Baker, I. N.: Wandering domains in the iteration of entire functions. Proc. London Math. Soc., 49, 563-576 (1984).
[2] Bergweiler, W.: Newton's method and a class of meromorphic functions without wandering domains. Ergod. Th. \& Dynam. Sys., 13, 231-247 (1993).
[3] Devaney, R. L., and Keen, L.: Dynamics of meromorphic maps with polynomial Schwarzian derivative. Ann. Sci. École Norm. Sup., 22, 55-81 (1989).
[4] Matsuzaki, K., and Taniguchi, M.: Hyperbolic Manifolds and Kleinian Groups. Oxford Univ. Press, New York (1998).
[5] Morosawa, S., Nishimura, Y., Taniguchi, M., and Ueda, T.: Holomorphic Dynamics. Cambridge Univ. Press, Cambridge (1999).
[6] Nevanlinna, R.: Analytic Functions. Springer, Berlin-Heidelberg-New York (1970).
[7] Schleicher, D.: Dynamics of exponential maps and the dimension paradox. A 1-hour talk in the 2000Autumn meeting of MSJ (2000).
[8] Taniguchi, M.: Maskit surgery of entire functions. RIMS Kokyuroku (to appear).
[9] Taniguchi, M.: Synthetic deformation spaces of an entire function (to appear).

[^0]: 1991 Mathematics Subject Classification. Primary 32G15, 30D20.

