On metaplectic representations of unitary groups: II. Character formula

By Atsushi MURASE

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Communicated by Shigefumi MORI, M. J. A., April 12, 2001)

Abstract: Character formulas of metaplectic representations of unitary groups are given.

Key words: Metaplectic representation; Weil representation; unitary group; lattice model; character formula.

0. Introduction. Let G be a unitary group of degree n over a non-archimedean local field F of characteristic different from 2 and M a metaplectic representation of G. The object of the paper is to give a simple proof of character formula for M (Theorem 1.4). The main ingredient of the proof is a trace formula for M realized on a lattice model.

The character formula for M is first studied by Howe [H] when F is a finite field and $G = Sp_n$. D. Prasad [P] studied in the case where G = U(1)and the residual characteristic of F is odd. For the archimedean case, we refer to Adams [A].

1. Main result. 1.1. Let K be a quadratic extension of a non-archimedean local field F of characteristic different from 2 and σ the nontrivial automorphism of K/F. Let G = U(Q) be the unitary group of an anti-Hermitian matrix $Q \in GL_n(K)$. Define a nondegenerate alternating form \langle , \rangle on $W = K^n$ by $\langle w, w' \rangle = \text{Tr}_{K/F}(w^*Qw') (w, w' \in W)$, where $w^* = {}^t w^{\sigma}$. Denote by $H = W \times F$ the Heisenberg group attached to (W, \langle , \rangle) ([MVW, Ch. 2]; see also [M,§1.2]). Hereafter we fix a nontrivial additive character ψ of F. Let (ρ, V) be a smooth irreducible representation of H with central character $(0, x) \mapsto \psi(x)$. To simplify the notation, we write $\rho(w, x)$ for $\rho((w, x))$.

1.2. We now recall the definition of the metaplectic representation M of G attached to (ρ, V) given in [MVW, Ch.2]. If g = 1, we set $M(g) = \text{Id}_V$. If $g \neq 1$, we put

$$M(g)v = \int_L \psi\Big(\frac{1}{2}\langle w, gw\rangle\Big)\rho((1-g)w, 0)vd_gw$$

for $v \in V$. Here L is a sufficiently large lattice of $W_q = W/\operatorname{Ker}(g-1)$ and $d_q w$ is the Haar measure

on W_g self-dual with respect to the pairing $(w, w') \mapsto \psi(\langle w, (g-1)w' \rangle)$.

1.3. Let \mathcal{X} be the set of unitary characters χ of K^{\times} with $\chi|_{F^{\times}} = \omega$, where ω denotes the quadratic character of F^{\times} corresponding to K/F. In [M], we have constructed a family $\{\mathcal{M}_{\chi}\}$ of splittings of M parametrized by $\chi \in \mathcal{X}$ given as follows. For $g \in G, g \neq 1$, we put $\nu_q = \dim_K(W_q)$ and

$$\xi_g = \det\left((w_i^*Q(g-1)w_j)_{1 \le i,j \le \nu_g}\right)$$

$$\in K^{\times}/N_{K/F}(K^{\times}),$$

where $\{w_i\}_{1 \le i \le \nu_g}$ is a K-basis of W_g . For g = 1, we put $\nu_g = 0$ and $\xi_g = 1$. For $\chi \in \mathcal{X}$ and $g \in G$, we set

$$\gamma_{\chi}(g) = \lambda_K(\psi)^{-\nu_g} \chi(\xi_g),$$

where $\lambda_K(\psi)$ is the Weil constant ([W]; see also [M,§1.5]). Then

$$g \mapsto \mathcal{M}_{\chi}(g) = \gamma_{\chi}(g)M(g)$$

defines a smooth representation of G on V ([M, Theorem 1.8]). The main result of this paper is stated as follows:

1.4. Theorem. The character of $\mathcal{M}_{\chi}(g)$ at $g \in G' = \{g \in G \mid \det(g-1) \neq 0\}$ is equal to

$$\frac{\gamma_{\chi}(g)}{|\det(g-1)|_K^{1/2}},$$

where $|\cdot|_K$ is the normalized valuation of K.

Remark. A similar formula holds for metaplectic representations of Sp_n .

2. Proof of the main result. 2.1. In this section, we prove Theorem 1.4 by taking a lattice model as (ρ, V) and using a trace formula for M(g) on V. We keep the notation of §1. By a lattice of $W = K^n$ we mean an \mathcal{O}_F -lattice of W. A lattice L of W is said to be *self-dual* if L coincides with its dual lattice $L^* = \{z \in W \mid \psi(\langle z, w \rangle) = 1 \text{ for any } w \in L\}$.

¹⁹⁹¹ Mathematics Subject Classification. 11F27, 22E50.

2.2. Lemma. There exist a lattice \mathcal{L} of W and a smooth function $\alpha \colon \mathcal{L} \to F$ satisfying the following three conditions:

(2.1) \mathcal{L} is self-dual.

(2.2) $\alpha(0) = 0 \text{ and } \alpha(-l) = \alpha(l) \quad (l \in \mathcal{L}).$ (2.3) $\psi\left(\alpha(l_1 + l_2) - \alpha(l_1) - \alpha(l_2) + \frac{1}{2}\langle l_1, l_2 \rangle\right) = 1$ $(l_1, l_2 \in \mathcal{L}).$

Proof. Take an $A \in GL_n(K)$ so that $Q' = A^*QA$ is diagonal. Set

$$\mathcal{L} = A(\mathcal{O}_F^n + (2Q')^{-1}(\mathcal{D}_{\psi}^{-1})^n),$$

where $\mathcal{D}_{\psi}^{-1} = \{x \in F \mid \psi(xy) = 1 \text{ for any } y \in \mathcal{O}_F\}.$ Let $l = A(x + (2Q')^{-1}y) \in \mathcal{L}$ and $w = A(u + (2Q')^{-1}v) \in W$, where $x \in \mathcal{O}_F^n, y \in (\mathcal{D}_{\psi}^{-1})^n, u, v \in F^n$. Since $\langle l, w \rangle = {}^txv - {}^tyu$, we see that \mathcal{L} is self-dual. Set

$$\alpha(l) = \frac{1}{4} \operatorname{Tr}_{K/F} \left({}^{t} (A^{-1}l) Q'(A^{-1}l) \right) \quad (l \in \mathcal{L}).$$

Clearly α satisfies (2.2). Let $l_1, l_2 \in \mathcal{L}$ and put $l'_i = A^{-1}l_i = x_i + (2Q')^{-1}y_i$ $(x_i \in \mathcal{O}_F^n, y_i \in (\mathcal{D}_{\psi}^{-1})^n)$ for i = 1, 2. Since ${}^tQ' = Q'$, we have

$$\alpha(l_1 + l_2) - \alpha(l_1) - \alpha(l_2) + \frac{1}{2} \langle l_1, l_2 \rangle$$

= $\operatorname{Tr}_{K/F} \left\{ \frac{1}{4} \left({}^t l_2' Q' l_1' + {}^t l_1' Q' l_2' \right) + \frac{1}{2} (l_1')^* Q' l_2' \right\}$
= $\frac{1}{2} \operatorname{Tr}_{K/F} \left({}^t (l_1' + (l_1')^\sigma) Q' l_2' \right) = {}^t x_1 y_2 \in \mathcal{D}_{\psi}^{-1},$

which implies (2.3).

2.3. From now on, we fix a lattice \mathcal{L} of W and a function $\alpha: \mathcal{L} \to F$ satisfying the conditions of Lemma 2.2. Note that (2.2) and (2.3) imply $\psi(\alpha(l)) = \pm 1$ for $l \in \mathcal{L}$. We normalize a Haar measure dz on W by $\operatorname{vol}(\mathcal{L}) = 1$. Define a function $\psi_{\mathcal{L}}$ on $H_{\mathcal{L}} = \mathcal{L} \times F$ by $\psi_{\mathcal{L}}((l, x)) = \psi(\alpha(l) + x)$ for $(l, x) \in H_{\mathcal{L}}$. In view of (2.3), $\psi_{\mathcal{L}}$ is a character of $H_{\mathcal{L}}$. By general theory (cf. [MVW, Ch.2, I.3]), $\operatorname{Ind}_{H_{\mathcal{L}}}^{H} \psi_{\mathcal{L}}$ is a smooth irreducible representation of H with central character $(0, x) \mapsto \psi(x)$. It is straightforward to see that $\operatorname{Ind}_{H_{\mathcal{L}}}^{H} \psi_{\mathcal{L}}$ is equivalent to (ρ, V) , where

$$V = \{ \Phi \in \mathcal{S}(W) \mid \Phi(z+l) \\ = \psi \left(\frac{1}{2} \langle z, l \rangle + \alpha(l) \right) \Phi(z) \ (z \in W, l \in \mathcal{L}) \}$$

and

$$\rho(h)\Phi(z) = \psi\left(\frac{1}{2}\langle z, w \rangle + x\right)\Phi(z+w)$$
$$(h = (w, x) \in H, \Phi \in V, z \in W).$$

Here $\mathcal{S}(W)$ stands for the space of locally constant and compactly supported functions on W. We call the realization (ρ, V) the *lattice model*. Define an *H*-invariant inner product on V by

$$(\Phi, \Phi') = \int_{W} \Phi(z)\overline{\Phi'(z)}dz \qquad (\Phi, \Phi' \in V).$$

2.4. Set
$$\Phi_{0}(z) = \begin{cases} \psi(\alpha(z)) \cdots & z \in \mathcal{L} \\ 0 & \cdots & z \in W - \mathcal{L}. \end{cases}$$

Then Φ_0 belongs to V and satisfies the following: (2.4) We have $\rho(l, -\alpha(l))\Phi_0 = \Phi_0$ for $l \in \mathcal{L}$. (2.5) For $\Phi \in V$, we have

$$\Phi(z) = (\rho(z, 0)\Phi, \Phi_0) \quad (z \in W).$$

2.5. We take a $\nu \in \mathcal{D}_{K/F}^{-1}$ satisfying $\nu + \nu^{\sigma} = 1$. For $w \in W$, put $x_w = 2^{-1}(\nu - \nu^{\sigma})w^*Qw \in F$. For a lattice L of W, we put $H(L) = \{(w, x_w + x) \mid w \in L, x \in \mathfrak{a}_L\}$, where \mathfrak{a}_L is the fractional ideal of Fgenerated by $\operatorname{Tr}_{K/F}(\nu l^*Ql')$ $(l, l' \in L)$. Then H(L)is an open compact subgroup of H. Let $V(L) = V^{H(L)}$ be the H(L)-invariant subspace of V. We have $V(L) = \{0\}$ unless

(2.6)
$$\psi|_{\mathfrak{a}_L} = 1.$$

For a lattice L satisfying (2.6), put

$$\mathcal{P}_L = \int_L \rho(w, x_w) d_L w \in \operatorname{End}(V),$$

where $d_L w$ is the Haar measure on W normalized by vol(L) = 1. Then we have $\mathcal{P}_L^2 = \mathcal{P}_L$ and $V(L) = \{\Phi \in V \mid \mathcal{P}_L \Phi = \Phi\}.$

2.6. Let M be the metaplectic representation of G attached to the lattice model (ρ, V) as in §1.2. It is easily seen that

$$(M(g)\Phi, \Phi') = (\Phi, M(g^{-1})\Phi') \quad (g \in G, \Phi, \Phi' \in V)$$

and that $\mathcal{P}_L M(g)$ is of trace class. To prove Theorem 1.4, it is sufficient to show the following fact:

2.7. Proposition. For $g \in G'$, there exists a lattice L_g of W such that, for any lattice L with $L \subset L_g$, we have

$$\operatorname{Tr}(\mathcal{P}_L M(g)) = |\det(g-1)|_K^{-1/2}$$

Proof. Take a sufficiently small lattice L_g of W such that $\psi|_{\mathfrak{a}_{L_g}} = 1$ and $x_w + (1/2)\langle (g-1)^{-1}w, w \rangle \in \mathcal{D}_{\psi}^{-1}$ holds for any $w \in L_g$. By (2.5) and (2.7), we

have

$$M(g)\Phi(z) = \int_{W} k_g(z, z')\Phi(z')dz' \quad (\Phi \in V, z \in W)$$

with a kernel function

$$k_g(z, z') = \overline{(M(g^{-1})\rho(-z, 0)\Phi_0)(z')}.$$

Let L be any lattice of W contained in L_g . Then

$$\mathcal{P}_L M(g) \Phi(z) = \int_W k_{g,L}(z, z') \Phi(z') dz',$$

where

$$k_{g,L}(z,z') = \int_L \psi\left(\frac{1}{2}\langle z,w\rangle + x_w\right) k_g(z+w,z') d_L w.$$

Observe that $z \mapsto k_{g,L}(z,z')$ is in V(L) and $z' \mapsto \overline{k_{g,L}(z,z')}$ in V. Hence we have

$$\operatorname{Tr}(\mathcal{P}_L M(g)) = \int_{L_1} k_{g,L}(z, z) dz$$

with a sufficiently large lattice L_1 of W (depending only on g and L). Taking a sufficiently large lattice L_2 of W, we have

$$\begin{split} k_{g}(z+w,z) &= \int_{g(L_{2})} \psi\left(-\frac{1}{2} \langle w',g^{-1}w'\rangle\right) \\ &= \int_{g(L_{2})} \psi\left(-\frac{1}{2} \langle w',g^{-1}w'\rangle\right) \\ &= \int_{L_{2}} \psi\left(\frac{1}{2} \langle w',gw'\rangle + \frac{1}{2} \langle (g-1)w',z+w\rangle\right) \\ &\quad -\frac{1}{2} \langle z,(g-1)w'-w\rangle \Big) \overline{\Phi_{0}((g-1)w'-w)} d_{g}w' \end{split}$$

for $(z, w) \in L_1 \times L$, and hence

$$\operatorname{Tr}(\mathcal{P}_{L}M(g)) = \int_{L_{1}} dz \int_{L} d_{L}w \ \psi\left(\frac{1}{2}\langle z,w\rangle + x_{w}\right) k_{g}(z+w,z)$$
$$= \int_{L_{1}} dz \int_{L} d_{L}w \int_{L_{2}} d_{g}w'$$
$$\psi(\langle z,w - (g-1)w'\rangle + x_{w} + \frac{1}{2}\langle w', (g-1)w'\rangle$$
$$+ \frac{1}{2}\langle (g-1)w',w\rangle)\overline{\Phi_{0}((g-1)w'-w)}.$$

We may assume that $(g-1)^{-1}L \subset L_2$. Changing the variable w' into $w' + (g-1)^{-1}w$, we have

$$\operatorname{Tr}(\mathcal{P}_{L}M(g)) = \int_{L} d_{L}w \int_{L_{2}} d_{g}w' \int_{L_{1}} dz \ \psi \left(\langle z, -(g-1)w' \rangle\right)$$
$$\frac{\psi \left(x_{w} + \frac{1}{2}\langle (g-1)^{-1}w, w \rangle + \langle w', g^{-1}w \rangle\right)}{\overline{\Phi_{0}((g-1)w')}} = \operatorname{vol}(L_{1}) \int_{L} d_{L}w \int_{L_{2} \cap (g-1)^{-1}L_{1}^{*}} d_{g}w'\psi(\langle w', g^{-1}w \rangle)$$
$$\overline{\Phi_{0}((g-1)w')},$$

since $\psi \left(x_w + (1/2) \langle (g-1)^{-1} w, w \rangle \right) = 1$ for $w \in L$. Taking L_1^* sufficiently small, we obtain

$$Tr(\mathcal{P}_L M(g)) = vol(L_1) vol((g-1)^{-1} L_1^*) \frac{d_g w'}{dw'}$$
$$= |\det(g-1)|_K^{-1/2}$$

as claimed.

References

- [A] Adams, J.: Character of the oscillator representation. Israel J. Math., 98, 229–252 (1997).
- [H] Howe, R.: On the character of Weil's representation. Trans. Amer. Math. Soc., 177, 287–298 (1973).
- [M] Murase, A.: On metaplectic representations of unitary groups: I. Splitting. Proc. Japan Acad., 77A, 59–62 (2001).
- [MVW] Mœglin, C., Vignéras, M.-F., and Waldspurger, J.-L.: Correspondences de Howe sur un corps *p*-adique. Lecture Notes in Math., no. 1291, Springer, New York (1987).
- [P] Prasad, D.: A brief survey on the theta correspondence. Contemporary Math., 210, 171–193 (1998).
- [W] Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math., 111, 143–211 (1964).

65

No. 4]