# On metaplectic representations of unitary groups: II. Character formula 

By Atsushi Murase<br>Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555<br>(Communicated by Shigefumi Mori, M. J. A., April 12, 2001)


#### Abstract

Character formulas of metaplectic representations of unitary groups are given. Key words: Metaplectic representation; Weil representation; unitary group; lattice model;


 character formula.0. Introduction. Let $G$ be a unitary group of degree $n$ over a non-archimedean local field $F$ of characteristic different from 2 and $M$ a metaplectic representation of $G$. The object of the paper is to give a simple proof of character formula for $M$ (Theorem 1.4). The main ingredient of the proof is a trace formula for $M$ realized on a lattice model.

The character formula for $M$ is first studied by Howe $[\mathrm{H}]$ when $F$ is a finite field and $G=S p_{n}$. D. Prasad $[\mathrm{P}]$ studied in the case where $G=U(1)$ and the residual characteristic of $F$ is odd. For the archimedean case, we refer to Adams [A].

1. Main result. 1.1. Let $K$ be a quadratic extension of a non-archimedean local field $F$ of characteristic different from 2 and $\sigma$ the nontrivial automorphism of $K / F$. Let $G=U(Q)$ be the unitary group of an anti-Hermitian matrix $Q \in G L_{n}(K)$. Define a nondegenerate alternating form $\langle$,$\rangle on$ $W=K^{n}$ by $\left\langle w, w^{\prime}\right\rangle=\operatorname{Tr}_{K / F}\left(w^{*} Q w^{\prime}\right)\left(w, w^{\prime} \in W\right)$, where $w^{*}={ }^{t} w^{\sigma}$. Denote by $H=W \times F$ the Heisenberg group attached to $(W,\langle\rangle$,$) ([MVW, Ch. 2];$ see also $[\mathrm{M}, \S 1.2]$ ). Hereafter we fix a nontrivial additive character $\psi$ of $F$. Let $(\rho, V)$ be a smooth irreducible representation of $H$ with central character $(0, x) \mapsto \psi(x)$. To simplify the notation, we write $\rho(w, x)$ for $\rho((w, x))$.
1.2. We now recall the definition of the metaplectic representation $M$ of $G$ attached to $(\rho, V)$ given in [MVW, Ch.2]. If $g=1$, we set $M(g)=\mathrm{Id}_{V}$. If $g \neq 1$, we put

$$
M(g) v=\int_{L} \psi\left(\frac{1}{2}\langle w, g w\rangle\right) \rho((1-g) w, 0) v d_{g} w
$$

for $v \in V$. Here $L$ is a sufficiently large lattice of $W_{g}=W / \operatorname{Ker}(g-1)$ and $d_{g} w$ is the Haar measure

[^0]on $W_{g}$ self-dual with respect to the pairing $\left(w, w^{\prime}\right) \mapsto$ $\psi\left(\left\langle w,(g-1) w^{\prime}\right\rangle\right)$.
1.3. Let $\mathcal{X}$ be the set of unitary characters $\chi$ of $K^{\times}$with $\left.\chi\right|_{F \times}=\omega$, where $\omega$ denotes the quadratic character of $F^{\times}$corresponding to $K / F$. In $[\mathrm{M}]$, we have constructed a family $\left\{\mathcal{M}_{\chi}\right\}$ of splittings of $M$ parametrized by $\chi \in \mathcal{X}$ given as follows. For $g \in$ $G, g \neq 1$, we put $\nu_{g}=\operatorname{dim}_{K}\left(W_{g}\right)$ and
\[

$$
\begin{aligned}
\xi_{g}= & \operatorname{det}\left(\left(w_{i}^{*} Q(g-1) w_{j}\right)_{1 \leq i, j \leq \nu_{g}}\right) \\
& \in K^{\times} / N_{K / F}\left(K^{\times}\right),
\end{aligned}
$$
\]

where $\left\{w_{i}\right\}_{1 \leq i \leq \nu_{g}}$ is a $K$-basis of $W_{g}$. For $g=1$, we put $\nu_{g}=0$ and $\xi_{g}=1$. For $\chi \in \mathcal{X}$ and $g \in G$, we set

$$
\gamma_{\chi}(g)=\lambda_{K}(\psi)^{-\nu_{g}} \chi\left(\xi_{g}\right)
$$

where $\lambda_{K}(\psi)$ is the Weil constant ([W]; see also [M,§1.5]). Then

$$
g \mapsto \mathcal{M}_{\chi}(g)=\gamma_{\chi}(g) M(g)
$$

defines a smooth representation of $G$ on $V$ ( $[\mathrm{M}$, Theorem 1.8]). The main result of this paper is stated as follows:
1.4. Theorem. The character of $\mathcal{M}_{\chi}(g)$ at $g \in G^{\prime}=\{g \in G \mid \operatorname{det}(g-1) \neq 0\}$ is equal to

$$
\frac{\gamma_{\chi}(g)}{|\operatorname{det}(g-1)|_{K}^{1 / 2}},
$$

where $|\cdot|_{K}$ is the normalized valuation of $K$.
Remark. A similar formula holds for metaplectic representations of $S p_{n}$.
2. Proof of the main result. 2.1. In this section, we prove Theorem 1.4 by taking a lattice model as $(\rho, V)$ and using a trace formula for $M(g)$ on $V$. We keep the notation of $\S 1$. By a lattice of $W=K^{n}$ we mean an $\mathcal{O}_{F}$-lattice of $W$. A lattice $L$ of $W$ is said to be self-dual if $L$ coincides with its dual lattice $L^{*}=\{z \in W \mid \psi(\langle z, w\rangle)=1$ for any $w \in L\}$.
2.2. Lemma. $\quad$ There exist a lattice $\mathcal{L}$ of $W$ and a smooth function $\alpha: \mathcal{L} \rightarrow F$ satisfying the following three conditions:
(2.1) $\mathcal{L}$ is self-dual.
$(2.2) \alpha(0)=0$ and $\alpha(-l)=\alpha(l) \quad(l \in \mathcal{L})$.
(2.3) $\left.\psi\left(\alpha\left(l_{1}+l_{2}\right)-\alpha\left(l_{1}\right)-\alpha\left(l_{2}\right)+\frac{1}{2}\left\langle l_{1}, l_{2}\right\rangle\right)\right)=1$

$$
\left(l_{1}, l_{2} \in \mathcal{L}\right)
$$

Proof. Take an $A \in G L_{n}(K)$ so that $Q^{\prime}=$ $A^{*} Q A$ is diagonal. Set

$$
\mathcal{L}=A\left(\mathcal{O}_{F}^{n}+\left(2 Q^{\prime}\right)^{-1}\left(\mathcal{D}_{\psi}^{-1}\right)^{n}\right),
$$

where $\mathcal{D}_{\psi}^{-1}=\left\{x \in F \mid \psi(x y)=1\right.$ for any $\left.y \in \mathcal{O}_{F}\right\}$. Let $l=A\left(x+\left(2 Q^{\prime}\right)^{-1} y\right) \in \mathcal{L}$ and $w=A(u+$ $\left.\left(2 Q^{\prime}\right)^{-1} v\right) \in W$, where $x \in \mathcal{O}_{F}^{n}, y \in\left(\mathcal{D}_{\psi}^{-1}\right)^{n}, u, v \in$ $F^{n}$. Since $\langle l, w\rangle={ }^{t} x v-{ }^{t} y u$, we see that $\mathcal{L}$ is selfdual. Set

$$
\alpha(l)=\frac{1}{4} \operatorname{Tr}_{K / F}\left({ }^{t}\left(A^{-1} l\right) Q^{\prime}\left(A^{-1} l\right)\right) \quad(l \in \mathcal{L}) .
$$

Clearly $\alpha$ satisfies (2.2). Let $l_{1}, l_{2} \in \mathcal{L}$ and put $l_{i}^{\prime}=$ $A^{-1} l_{i}=x_{i}+\left(2 Q^{\prime}\right)^{-1} y_{i}\left(x_{i} \in \mathcal{O}_{F}^{n}, y_{i} \in\left(\mathcal{D}_{\psi}^{-1}\right)^{n}\right)$ for $i=1,2$. Since ${ }^{t} Q^{\prime}=Q^{\prime}$, we have

$$
\begin{aligned}
& \alpha\left(l_{1}+l_{2}\right)-\alpha\left(l_{1}\right)-\alpha\left(l_{2}\right)+\frac{1}{2}\left\langle l_{1}, l_{2}\right\rangle \\
= & \operatorname{Tr}_{K / F}\left\{\frac{1}{4}\left({ }^{t} l_{2}^{\prime} Q^{\prime} l_{1}^{\prime}+{ }^{t} l_{1}^{\prime} Q^{\prime} l_{2}^{\prime}\right)+\frac{1}{2}\left(l_{1}^{\prime}\right)^{*} Q^{\prime} l_{2}^{\prime}\right\} \\
= & \frac{1}{2} \operatorname{Tr}_{K / F}\left({ }^{t}\left(l_{1}^{\prime}+\left(l_{1}^{\prime}\right)^{\sigma}\right) Q^{\prime} l_{2}^{\prime}\right)={ }^{t} x_{1} y_{2} \in \mathcal{D}_{\psi}^{-1},
\end{aligned}
$$

which implies (2.3).
2.3. From now on, we fix a lattice $\mathcal{L}$ of $W$ and a function $\alpha: \mathcal{L} \rightarrow F$ satisfying the conditions of Lemma 2.2. Note that (2.2) and (2.3) imply $\psi(\alpha(l))= \pm 1$ for $l \in \mathcal{L}$. We normalize a Haar measure $d z$ on $W$ by $\operatorname{vol}(\mathcal{L})=1$. Define a function $\psi_{\mathcal{L}}$ on $H_{\mathcal{L}}=\mathcal{L} \times F$ by $\psi_{\mathcal{L}}((l, x))=\psi(\alpha(l)+x)$ for $(l, x) \in H_{\mathcal{L}}$. In view of $(2.3), \psi_{\mathcal{L}}$ is a character of $H_{\mathcal{L}}$. By general theory (cf. [MVW, Ch.2, I.3]) $\operatorname{Ind}_{H_{\mathcal{L}}}^{H} \psi_{\mathcal{L}}$ is a smooth irreducible representation of $H$ with central character $(0, x) \mapsto \psi(x)$. It is straightforward to see that $\operatorname{Ind}_{H_{\mathcal{L}}}^{H} \psi_{\mathcal{L}}$ is equivalent to $(\rho, V)$, where

$$
\begin{aligned}
& V=\{\Phi \in \mathcal{S}(W) \mid \Phi(z+l) \\
& \left.=\psi\left(\frac{1}{2}\langle z, l\rangle+\alpha(l)\right) \Phi(z)(z \in W, l \in \mathcal{L})\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho(h) \Phi(z)=\psi\left(\frac{1}{2}\langle z, w\rangle+x\right) \Phi(z+w) \\
& (h=(w, x) \in H, \Phi \in V, z \in W) .
\end{aligned}
$$

Here $\mathcal{S}(W)$ stands for the space of locally constant and compactly supported functions on $W$. We call the realization $(\rho, V)$ the lattice model. Define an $H$-invariant inner product on $V$ by

$$
\left(\Phi, \Phi^{\prime}\right)=\int_{W} \Phi(z) \overline{\Phi^{\prime}(z)} d z \quad\left(\Phi, \Phi^{\prime} \in V\right)
$$

2.4. Set

$$
\Phi_{0}(z)=\left\{\begin{array}{lll}
\psi(\alpha(z)) & \cdots & z \in \mathcal{L} \\
0 & \cdots & z \in W-\mathcal{L}
\end{array}\right.
$$

Then $\Phi_{0}$ belongs to $V$ and satisfies the following:
(2.4) We have $\rho(l,-\alpha(l)) \Phi_{0}=\Phi_{0}$ for $l \in \mathcal{L}$.
(2.5) For $\Phi \in V$, we have

$$
\Phi(z)=\left(\rho(z, 0) \Phi, \Phi_{0}\right) \quad(z \in W)
$$

2.5. We take a $\nu \in \mathcal{D}_{K / F}^{-1}$ satisfying $\nu+\nu^{\sigma}=1$. For $w \in W$, put $x_{w}=2^{-1}\left(\nu-\nu^{\sigma}\right) w^{*} Q w \in F$. For a lattice $L$ of $W$, we put $H(L)=\left\{\left(w, x_{w}+x\right) \mid\right.$ $\left.w \in L, x \in \mathfrak{a}_{L}\right\}$, where $\mathfrak{a}_{L}$ is the fractional ideal of $F$ generated by $\operatorname{Tr}_{K / F}\left(\nu l^{*} Q l^{\prime}\right)\left(l, l^{\prime} \in L\right)$. Then $H(L)$ is an open compact subgroup of $H$. Let $V(L)=$ $V^{H(L)}$ be the $H(L)$-invariant subspace of $V$. We have $V(L)=\{0\}$ unless

$$
\begin{equation*}
\left.\psi\right|_{\mathfrak{a}_{L}}=1 \tag{2.6}
\end{equation*}
$$

For a lattice $L$ satisfying (2.6), put

$$
\mathcal{P}_{L}=\int_{L} \rho\left(w, x_{w}\right) d_{L} w \in \operatorname{End}(V)
$$

where $d_{L} w$ is the Haar measure on $W$ normalized by $\operatorname{vol}(L)=1$. Then we have $\mathcal{P}_{L}^{2}=\mathcal{P}_{L}$ and $V(L)=$ $\left\{\Phi \in V \mid \mathcal{P}_{L} \Phi=\Phi\right\}$.
2.6. Let $M$ be the metaplectic representation of $G$ attached to the lattice model $(\rho, V)$ as in $\S 1.2$. It is easily seen that

$$
\begin{equation*}
\left(M(g) \Phi, \Phi^{\prime}\right)=\left(\Phi, M\left(g^{-1}\right) \Phi^{\prime}\right) \quad\left(g \in G, \Phi, \Phi^{\prime} \in V\right) \tag{2.7}
\end{equation*}
$$

and that $\mathcal{P}_{L} M(g)$ is of trace class. To prove Theorem 1.4, it is sufficient to show the following fact:
2.7. Proposition. For $g \in G^{\prime}$, there exists a lattice $L_{g}$ of $W$ such that, for any lattice $L$ with $L \subset$ $L_{g}$, we have

$$
\operatorname{Tr}\left(\mathcal{P}_{L} M(g)\right)=|\operatorname{det}(g-1)|_{K}^{-1 / 2}
$$

Proof. Take a sufficiently small lattice $L_{g}$ of $W$ such that $\left.\psi\right|_{\mathfrak{a}_{L_{g}}}=1$ and $x_{w}+(1 / 2)\left\langle(g-1)^{-1} w, w\right\rangle \in$ $\mathcal{D}_{\psi}^{-1}$ holds for any $w \in L_{g}$. By (2.5) and (2.7), we
have

$$
M(g) \Phi(z)=\int_{W} k_{g}\left(z, z^{\prime}\right) \Phi\left(z^{\prime}\right) d z^{\prime} \quad(\Phi \in V, z \in W)
$$

with a kernel function

$$
k_{g}\left(z, z^{\prime}\right)=\overline{\left(M\left(g^{-1}\right) \rho(-z, 0) \Phi_{0}\right)\left(z^{\prime}\right)} .
$$

Let $L$ be any lattice of $W$ contained in $L_{g}$. Then

$$
\mathcal{P}_{L} M(g) \Phi(z)=\int_{W} k_{g, L}\left(z, z^{\prime}\right) \Phi\left(z^{\prime}\right) d z^{\prime}
$$

where
$k_{g, L}\left(z, z^{\prime}\right)=\int_{L} \psi\left(\frac{1}{2}\langle z, w\rangle+x_{w}\right) k_{g}\left(z+w, z^{\prime}\right) d_{L} w$.
Observe that $z \mapsto k_{g, L}\left(z, z^{\prime}\right)$ is in $V(L)$ and $z^{\prime} \mapsto$ $\overline{k_{g, L}\left(z, z^{\prime}\right)}$ in $V$. Hence we have

$$
\operatorname{Tr}\left(\mathcal{P}_{L} M(g)\right)=\int_{L_{1}} k_{g, L}(z, z) d z
$$

with a sufficiently large lattice $L_{1}$ of $W$ (depending only on $g$ and $L$ ). Taking a sufficiently large lattice $L_{2}$ of $W$, we have

$$
\begin{aligned}
& k_{g}(z+w, z) \\
& \quad=\int_{g\left(L_{2}\right)} \psi\left(-\frac{1}{2}\left\langle w^{\prime}, g^{-1} w^{\prime}\right\rangle\right) \\
& \quad \overline{\rho\left(\left(1-g^{-1}\right) w^{\prime}, 0\right) \rho(-z-w, 0) \Phi_{0}(z)} d_{g^{-1}} w^{\prime} \\
& =\int_{L_{2}} \psi\left(\frac{1}{2}\left\langle w^{\prime}, g w^{\prime}\right\rangle+\frac{1}{2}\left\langle(g-1) w^{\prime}, z+w\right\rangle\right. \\
& \left.\quad-\frac{1}{2}\left\langle z,(g-1) w^{\prime}-w\right\rangle\right) \overline{\Phi_{0}\left((g-1) w^{\prime}-w\right)} d_{g} w^{\prime}
\end{aligned}
$$

for $(z, w) \in L_{1} \times L$, and hence

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathcal{P}_{L} M(g)\right) \\
= & \int_{L_{1}} d z \int_{L} d_{L} w \psi\left(\frac{1}{2}\langle z, w\rangle+x_{w}\right) k_{g}(z+w, z) \\
= & \int_{L_{1}} d z \int_{L} d_{L} w \int_{L_{2}} d_{g} w^{\prime} \\
& \psi\left(\left\langle z, w-(g-1) w^{\prime}\right\rangle+x_{w}+\frac{1}{2}\left\langle w^{\prime},(g-1) w^{\prime}\right\rangle\right. \\
& \left.+\frac{1}{2}\left\langle(g-1) w^{\prime}, w\right\rangle\right) \overline{\Phi_{0}\left((g-1) w^{\prime}-w\right)} .
\end{aligned}
$$

We may assume that $(g-1)^{-1} L \subset L_{2}$. Changing the variable $w^{\prime}$ into $w^{\prime}+(g-1)^{-1} w$, we have

$$
\begin{aligned}
= & \int_{L} d_{L} w \int_{L_{2}} d_{g} w^{\prime} \int_{L_{1}} d z \psi\left(\left\langle z,-(g-1) w^{\prime}\right\rangle\right) \\
& \frac{\psi\left(x_{w}+\frac{1}{2}\left\langle(g-1)^{-1} w, w\right\rangle+\left\langle w^{\prime}, g^{-1} w\right\rangle\right)}{\Phi_{0}\left((g-1) w^{\prime}\right)} \\
= & \operatorname{vol}\left(L_{1}\right) \int_{L} d_{L} w \int_{L_{2} \cap(g-1)^{-1} L_{1}^{*}} d_{g} w^{\prime} \psi\left(\left\langle w^{\prime}, g^{-1} w\right\rangle\right) \\
& \frac{\Phi_{0}\left((g-1) w^{\prime}\right)}{},
\end{aligned}
$$

since $\psi\left(x_{w}+(1 / 2)\left\langle(g-1)^{-1} w, w\right\rangle\right)=1$ for $w \in L$. Taking $L_{1}^{*}$ sufficiently small, we obtain

$$
\begin{aligned}
\operatorname{Tr}\left(\mathcal{P}_{L} M(g)\right) & =\operatorname{vol}\left(L_{1}\right) \operatorname{vol}\left((g-1)^{-1} L_{1}^{*}\right) \frac{d_{g} w^{\prime}}{d w^{\prime}} \\
& =|\operatorname{det}(g-1)|_{K}^{-1 / 2}
\end{aligned}
$$

as claimed.

## References

[A] Adams, J.: Character of the oscillator representation. Israel J. Math., 98, 229-252 (1997).
[H] Howe, R.: On the character of Weil's representation. Trans. Amer. Math. Soc., 177, 287-298 (1973).
[M] Murase, A.: On metaplectic representations of unitary groups: I. Splitting. Proc. Japan Acad., 77A, 59-62 (2001).
[MVW] Mœglin, C., Vignéras, M.-F., and Waldspurger, J.-L.: Correspondences de Howe sur un corps p-adique. Lecture Notes in Math., no. 1291, Springer, New York (1987).
[P] Prasad, D.: A brief survey on the theta correspondence. Contemporary Math., 210, 171-193 (1998).
[W] Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math., 111, 143-211 (1964).


[^0]:    1991 Mathematics Subject Classification. 11F27, 22E50.

