Greenberg's conjecture for Dirichlet characters of order divisible by p

By Takae Tsuji

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914 (Communicated by Shokichi Iyanaga, M. J. A., April 12, 2001)

Abstract: Fix an odd prime number p. For an even Dirichlet character χ , it is conjectured that the Iwasawa λ -invariant $\lambda_{p,\chi}$ related to the χ -part of ideal class group is zero ([5], [2]). In this note, we show (under some assumptions) that there exist infinitely many characters χ of order divisible by p for which the conjecture is true by using Kida's formula ([6]).

Key words: Iwasawa theory; Greenberg's conjecture; Kida's formula.

For a prime number p and a number field k, let k_{∞}/k be the cyclotomic \mathbf{Z}_p -extension with its n-th layer k_n . We denote by A_n the p-Sylow subgroup of the ideal class group of k_n for each $n \geq 0$ and put $X_{\infty} = \varprojlim A_n$ where the projective limit is taken with respect to the relative norms. It is conjectured that X_{∞} is a finite abelian group if k is totally real([2], [5, p. 316]), which is often called Greenberg's conjecture.

When k is a real abelian field, decomposing X_{∞} by the action of $\Delta = \operatorname{Gal}(k_{\infty}/\mathbf{Q}_{\infty})$, we can formulate Greenberg's conjecture for (p,χ) for each character χ of Δ (see below). In [7], when the order of χ is divisible by p and χ satisfies some assumptions, the author gave a sufficient (but not necessary) condition for the conjecture for (p,χ) to be true (Proposition 1). In this note, we will rewrite this sufficient condition by using Kida's formula for p-adic L-function proved by Sinnott [6]. Furthermore, we will show that there exist infinitely many characters χ which satisfy the condition (Proposition 5).

In the following, we fix an odd prime number p. Let χ be a $\overline{\mathbf{Q}}_p^{\times}$ -valued nontrivial even primitive Dirichlet character of the first kind, i.e. the conductor of χ is not divisible by p^2 . Let k be the real abelian field corresponding to χ . Since χ is of the first kind, we have $\operatorname{Gal}(k/\mathbf{Q}) \cong \Delta$, and hence X_{∞} becomes a $\mathbf{Z}_p[\Delta]$ -module. We define V^{χ} by

$$V^{\chi} := \{ x \in X_{\infty} \otimes_{\mathbf{Z}_p} \Phi \mid \delta x = \chi(\delta) x, \forall \delta \in \Delta \},\$$

where Φ denotes the field generated by the values of χ over \mathbf{Q}_p . It is known that V^{χ} is a finite dimensional Φ -vector space (cf. [5, Theorem 5]). We put $\lambda_{\chi} = \lambda_{p,\chi} = \dim_{\Phi} V^{\chi}$. We know that X_{∞} is finitely generated over \mathbf{Z}_p ([1]). Then Greenberg's

 $2000~{\rm Mathematics}$ Subject Classification. Primary 11R23.

conjecture for (p,χ) is stated as follows:

$$\lambda_{\chi} = 0.$$

Let $L_p(s,\chi)$ denote the Kubota-Leopoldt p-adic Lfunction associated to χ . By Iwasawa, it is shown
that there exists a unique power series $g_{\chi}(T)$ with
coefficients in \mathcal{O} , the integer ring of Φ , such that

$$g_{\chi}((1+p)^s-1)=L_p(1-s,\chi)$$

(cf. [9, Theorem 7.10]). By using Ferrero-Washington theorem([1]), we can define $\lambda_{\chi}^* = \min\{n \mid a_n \in \mathcal{O}^{\times}\}$, where $g_{\chi}(T) = \sum a_n T^n$. It follows from the Iwasawa main conjecture proved in [3] that

$$\lambda_{\chi} \leq \lambda_{\chi}^*$$

(cf. e.g. [7, \S 3]). Hence, if $\lambda_\chi^*=0,$ we clearly have $\lambda_\chi=0.$

When $\chi\omega^{-1}(p)$ is in $\mu_{p^{\infty}}$, the group of all p-power roots of unity, we have $\lambda_{\chi}^* \geq 1$ by the formula for $L_p(0,\chi)$ (cf. [9, Theorem 5.11]) where ω denotes the Teichmüller character. However, Ichimura and Sumida showed that $\lambda_{\chi} \leq \lambda_{\chi}^* - 1$ in the case where $\chi\omega^{-1}(p) = 1$ ([4, (5'_B) p.724, Remark 5]). Hence, in this case, we have $\lambda_{\chi} = 0$ if $\lambda_{\chi}^* = 1$. For other cases, the author proved the following:

Proposition 1 [7, Proposition 2.3]. Assume that $\chi\omega^{-1}(p) \in \mu_{p^{\infty}}$ and $\chi\omega^{-1}(p) \neq 1$. We further assume that $\lambda_{\chi}^* = 1$ or that $B_{1,\chi\omega^{-1}}$ is a p-unit. Then we have $\lambda_{\chi} = 0$. Here $B_{1,\chi\omega^{-1}}$ denotes the generalized first Bernoulli number.

In this note, we concentrate on the case where $\chi\omega^{-1}(p)\in\boldsymbol{\mu}_{p^{\infty}}$ and $\chi\omega^{-1}(p)\neq 1$, and consider the condition that $\lambda_{\chi}^{*}=1$ (resp. $B_{1,\chi\omega^{-1}}$ is a p-unit).

We write

$$\chi = \psi \rho$$

where the order of ψ (resp. ρ) is prime to p (resp. a p-power). We note that if $\chi \omega^{-1}(p) \in \mu_{p^{\infty}}$ and $\chi \omega^{-1}(p) \neq 1$, we have $\psi \omega^{-1}(p) = 1$ and $\rho(p) \neq 1$ (in particular ρ is non-trivial). Then the following is known:

Lemma 2. Let χ be an even Dirichlet character of the first kind. We write $\chi = \psi \rho$ as above. Then the following hold:

(i) (Sinnott [6, Theorem 2.1]) Let N be the number of places v on \mathbf{Q}_{∞} satisfying $\rho(l) = 0$ and $\psi\omega^{-1}(l) = 1$ where l is the prime number below v. Then we have

$$\lambda_{\chi}^* = \lambda_{\psi}^* + N.$$

(ii) We have the following congruence

$$B_{1,\chi\omega^{-1}} \equiv \left(\prod_{l} (1 - \psi\omega^{-1}(l))\right) B_{1,\psi\omega^{-1}} \mod \pi$$

where l runs over all prime numbers such that $\rho(l) = 0$ and π denotes a prime element of \mathcal{O} .

Proof of (ii). Although we can show the assertion (ii) in the same way as in the proof of (i) in [6], we give its proof for the convenience of the reader. For the properties of the generalized Bernoulli number, see [9, § 4.1]. Let m be the conductor of $\chi \omega^{-1}$. We have

$$B_{1,\chi\omega^{-1}} = \frac{1}{m} \sum_{a=1}^{m} \chi \omega^{-1}(a) a$$

$$= \frac{1}{m} \sum_{\substack{a=1 \ (a,m)=1}}^{m} \psi \omega^{-1}(a) \rho(a) a$$

$$\equiv \frac{1}{m} \sum_{\substack{a=1 \ (a,m)=1}}^{m} \psi \omega^{-1}(a) a \mod \pi.$$

On the other hand, we have

$$\frac{1}{m} \sum_{\substack{a=1\\(a,m)=1}}^{m} \psi \omega^{-1}(a) a = \left(\prod_{l|m} (1 - \psi \omega^{-1}(l)) \right) B_{1,\psi\omega^{-1}},$$

where l runs over all prime divisors of m. This proves the assertion (ii).

By the above lemma, we can rewrite the sufficient condition for $\lambda_{\chi} = 0$ in Proposition 1 as follows:

Lemma 3. Assume $\chi \omega^{-1}(p) \in \mu_{p^{\infty}}$ and $\chi \omega^{-1}(p) \neq 1$. We write $\chi = \psi \rho$ as above. The following hold:

- (i) $\lambda_{\chi}^* = 1$ if and only if $\lambda_{\psi}^* = 1$ and $\psi \omega^{-1}(l) \neq 1$ for any prime number l such that $\rho(l) = 0$.
- (ii) $B_{1,\chi\omega^{-1}}$ is a p-unit if and only if $B_{1,\psi\omega^{-1}}$ is a p-unit and $\psi\omega^{-1}(l) \neq 1$ for any prime number l such that $\rho(l) = 0$.

Using Chebotarev density theorem, we will show the following:

Lemma 4. Let ψ be an even Dirichlet character of the first kind of order prime to p which is distinct from a power of ω . Let r and s be integers such that $r \geq s \geq 0$ and $r \geq 1$. Then there exist infinitely many characters ρ such that

- (a') ρ is of the first kind of order p^r ,
- (b') $\rho(p)$ is a primitive p^s -th root of unity,
- (c') $\psi \omega^{-1}(l) \neq 1$ for any prime number l such that $\rho(l) = 0$.

By Proposition 1, Lemmas 3 and 4, we obtain the following.

Proposition 5. Let ψ be an even Dirichlet character of the first kind of order prime to p such that $\psi\omega^{-1}(p)=1$ and $r\geq s\geq 1$ integers. We assume that $\lambda_{\psi}^*=1$ or $B_{1,\psi\omega^{-1}}$ is a p-unit. Then there exist infinitely many even characters χ such that

- (a) $\chi = \psi \rho$ with a character ρ of the first kind of order p^r ,
- (b) $\chi \omega^{-1}(p)$ is a primitive p^s -th root of unity,
- (c) $\lambda_{\chi} = 0$.

Indeed, let ρ be a character satisfying the conditions (a'), (b') and (c') in Lemma 4 and put $\chi = \psi \rho$. Then the condition (b') implies (b) in Proposition 5. Combining the condition (c'), the assumption that $\lambda_{\psi}^* = 1$ (resp. $B_{1,\psi\omega^{-1}}$ is a p-unit) and Lemma 3, we have $\lambda_{\chi}^* = 1$ (resp. $B_{1,\chi\omega^{-1}}$ is a p-unit). Thus, by Proposition 1, we obtain $\lambda_{\chi} = 0$.

Proof of Lemma 4. We give a proof when $s \geq 1$. Let F be the abelian field corresponding to $\psi\omega^{-1}$, and we put $L = \mathbf{Q}(\zeta_{p^r}, p^{1/p^{r-s+1}})$ and $L' = \mathbf{Q}(\zeta_{p^r}, p^{1/p^{r-s}})$. Here ζ_m denotes a primitive m-th root of unity for any integer $m \geq 1$. By the assumption that ψ is distinct from a power of ω , we have $F \not\subset L'$. Thus we can take $\delta \in \operatorname{Gal}(FL/\mathbf{Q})$ satisfying $\delta|_F \neq 1$, $\delta|_L \neq 1$ and $\delta|_{L'} = 1$. Let \mathfrak{l} be a prime of FL such that the Frobenius $\delta_{\mathfrak{l}}$ of \mathfrak{l} in $\operatorname{Gal}(FL/\mathbf{Q})$ coincides with δ and l the prime number below \mathfrak{l} . Chebotarev density theorem guarantees the existence of infinitely many such l. By $\delta_{\mathfrak{l}}|_L \neq 1$ and $\delta_{\mathfrak{l}}|_{L'} = 1$, we obtain $l \equiv 1 \mod p^r$, $p \in ((\mathbf{Z}/l\mathbf{Z})^\times)^{p^{r-s}}$ and $p \notin ((\mathbf{Z}/l\mathbf{Z})^\times)^{p^{r-s+1}}$, that is, $l \equiv 1 \mod p^r$ and $p^{r-s} \parallel [(\mathbf{Z}/l\mathbf{Z})^\times : \langle p \rangle]$. Let $k^{(l)}$

be the cyclic extension of \mathbf{Q} of degree p^r contained in $\mathbf{Q}(\zeta_l)$ and ρ_l a Dirichlet character corresponding to $k^{(l)}$. Then ρ_l satisfies (a'). By using a canonical isomorphism from $(\mathbf{Z}/l\mathbf{Z})^{\times}$ to $\mathrm{Gal}(\mathbf{Q}(\zeta_l)/\mathbf{Q})$, we have $p^{r-s} \parallel [(\mathbf{Z}/l\mathbf{Z})^{\times} : \langle p \rangle]$ if and only if the order of the decomposition group of p in $\mathrm{Gal}(k^{(l)}/\mathbf{Q})$ is p^s , i.e., $\rho_l(p)$ is a primitive p^s -th root of unity. Hence ρ_l satisfies (b'). On the other hand, by $\delta_{\mathfrak{l}}|_F \neq 1$, we have $\psi\omega^{-1}(l) \neq 1$, that is, ρ_l satisfies (c').

For the case where s=0, one can show the assertion as above.

In conclusion, we remark on the case $\chi\omega^{-1}(p) \notin \mu_{p^{\infty}}$ (resp. $\chi\omega^{-1}(p)=1$). It is known and follows immediately from the formula for $L_p(0,\chi)$ (cf. [9, Theorem 5.11]) that $\lambda_{\chi}^*=0$ if and only if $B_{1,\chi\omega^{-1}}$ is a p-unit when $\chi\omega^{-1}(p) \notin \mu_{p^{\infty}}$. Further, we can show that $\lambda_{\chi}=0$ if $B_{1,\chi\omega^{-1}}$ is a p-unit even when $\chi\omega^{-1}(p)=1$ (cf. e.g. [8]). Thus, by Lemmas 2, 4 and the comment above Proposition 1, we obtain the following:

Proposition 6. Let ψ be an even Dirichlet character of the first kind of order prime to p which is distinct from a power of ω and $r \geq 1$ an integer. We assume that $B_{1,\psi\omega^{-1}}$ is a p-unit (resp. $\lambda_{\psi}^* = 1$ or $B_{1,\psi\omega^{-1}}$ is a p-unit) if $\psi\omega^{-1}(p) \neq 1$ (resp. $\psi\omega^{-1}(p) = 1$). Then there exist infinitely many even characters χ such that

- (a) $\chi = \psi \rho$ with a character ρ of the first kind of order p^r ,
- (b) $\chi \omega^{-1}(p) = 1$ if $\psi \omega^{-1}(p) = 1$,
- (c) $\lambda_{\chi} = 0$.

Acknowledgements. I would like to thank Professor Humio Ichimura for various advice and for carefully reading the manuscript. I would also like to thank Dr. Yoshitaka Hachimori who gave me a hint of the proof of Lemma 4.

References

- [1] Ferrero, B., and Washington, L. C.: The Iwasawa invariant μ_p vanishes for abelian number fields. Ann. of Math., **109**, 377–395 (1979).
- [2] Greenberg, R.: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263– 284 (1976).
- [3] Mazur, B., and Wiles, A.: Class fields of abelian extensions of Q. Invent. Math., 76, 179–330 (1984).
- Ichimura, H., and Sumida, H.: On the Iwasawa invariants of certain real abelian fields II. Internat.
 J. Math., 7, 721–744 (1996).
- [5] Iwasawa, K.: On Z_ℓ-extension of algebraic number fields. Ann. of Math., 98, 246–326 (1973).
- [6] Sinnott, W.: On p-adic L-functions and the Riemann-Hurwitz genus formula. Compositio Math., 53, 3-17 (1984).
- [7] Tsuji, T.: On the Iwasawa λ -invariants of real abelian fields. (2000) (preprint).
- [8] Tsuji, T.: On Iwasawa λ-invariants for odd Dirichlet characters (2001) (in preparation).
- [9] Washington, L. C.: Introduction to Cyclotomic Fields. Grad. Texts in Math., vol. 83, Springer, Berlin-Heidelberg-New York (1982).