A generalization of the weak convergence theorem in Sobolev spaces with application to differential inclusions in a Banach space

By Toru Maruyama

Department of Economica, Keio University, 2-15-45, Mita, Minato-ku, Tokyo 108-8345 (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 2001)

Abstract: The existence theorems for (1) a differential inclusion in a Banach space and (2) a variational problem governed by it are presented. In order to solve this problem, some implications of the weak convergence in the space of vector-valued absolutely continuous functions are also explored.

Key words: Differential inclusion; vector-valued absolutely continuous function; convex normal integrand; lower compactness property.

1. Introduction. Let \mathfrak{X} be a real separable refiexive Banach space. A correspondence (=multivalued mapping) $\Gamma : [0, T] \times \mathfrak{X} \longrightarrow \mathfrak{X}$ and a function $u : [0, T] \times \mathfrak{X} \times \mathfrak{X} \longrightarrow \mathbf{R}$ are assumed to be given. A double arrow \longrightarrow indicates the domain and the range of a correspondence. The compact interval [0, T] is endowed with the Lebesgue measure dt. \mathcal{L} . denotes the σ -field of the Lebesgue-measurable sets of [0, T].

Let $\mathfrak{W}^{1,p}([0,T],\mathfrak{X})$ be the Sobolev space consisting of functions of [0,T] into \mathfrak{X} . And let $\Delta(a)$ be the set of all the solutions in the Sobolev space $\mathfrak{W}^{1,p}([0,T],\mathfrak{X})$ of a differential inclusion:

$$(*) \qquad \dot{x}(t) \in \Gamma(t, x(t)), x(0) = a,$$

where \dot{x} denotes the derivative of x and a is a fixed vector in \mathfrak{X} . We consider a variational problem:

(#) Minimize_{$$x \in \Delta(a)$$} $\int_0^T u(t, x(t), \dot{x}(t)) dt$.

The object of this paper is to discuss a couple of existence problems as follows:

- (i) the existence of a solution for the differential inclusion (*), and
- (ii) the existence of an optimal solution for the variational problem (\$\$).

In Maruyama [8][9], I presented a solution of these problems in the special case $\mathfrak{X} = \mathbf{R}^{\ell}$ by making use of the convenient properties of the weak convergence in the Sobolev space $\mathfrak{W}^{1,2}$ ([0, T], \mathbf{R}^{ℓ}); i.e. if a sequence $\{x_n\}$ in $\mathfrak{W}^{1,2}$ ([0, T], \mathbf{R}^{ℓ}), weakly converges to some $x^* \in \mathfrak{W}^{1,2}$ ([0, T], \mathbf{R}^{ℓ}), then there exists a subsequence $\{z_n\}$ of $\{x_n\}$ such that

(W)
$$z_n \to x^*$$
 uniformly on $[0, T]$, and
 $\dot{z}_n \to \dot{x}^*$ weakly in $\mathfrak{L}^2([0, T], \mathbf{R}^\ell)$.

However it deserves a special notice that this property does not hold in the space $\mathfrak{W}^{1,2}([0,T],\mathfrak{X})$ if dim $\mathfrak{X} = \infty$. Taking account of this fact, I provided a new convergence result to overcome this difficulty in the case \mathfrak{X} is a real separable Hilbert space in Maruyama [10]. I also gave a existence theory for the problems (i) and (ii) being based upon this new tool in the framework of a separable Hilbert space.

The purpose of the present paper is a further generalization of my previous results to the case \mathfrak{X} is a real separable refiexive Banach space.

I have also to mention about another improvement added on this occasion. In Maruyama [10], I imposed a very restrictive requirement on the continuity of the correspondence Γ ; i.e.

the correspondence $x \mapsto \Gamma(t, x)$ is upper hemicontinuous for each fixed $t \in [0, T]$ with respect to the weak topology for the domain and the strong topology for the range.

I have to admit frankly that this is a very unpleasant assumption. In the present paper, I propose the upper hemi-continuity of $x \mapsto \Gamma(t, x)$ with respect to the "weak-weak" combination of topologies instead of the "weak-strong" combination.

2. A convergence theorem in $\mathfrak{W}^{1,p}([0,T], \mathfrak{X})$. As I have already said, any weakly convergent sequence $\{x_n\}$ in the Sobolev space $\mathfrak{W}^{1,2}([0,T], \mathbf{R}^{\ell})$ has a subsequence which satisfies the property (W)

¹⁹⁹¹ Mathematics Subject Classification. 49J24, 49J40.

in section 1.

On the other hand, let \mathfrak{X} be a real Banach space with the Radon-Nikodym property (RNP). Then any absolutely continuous function $f : [0,T] \to \mathfrak{X}$ is Frechet-differentiable a.e. (If the Banach space \mathfrak{X} does not have RNP, this property does not hold. For a counter-example, see Komura [7].) Let $\{x_n\}$ be a sequence in $\mathfrak{W}^{1,p}([0,T],\mathfrak{X})$ which weakly converges to some $x^* \in \mathfrak{W}^{1,p}([0,T],\mathfrak{X})$. We should keep in mind that it is not necessarily true that the sequence $\{x_n\}$ has a subsequence $\{z_n\}$ which satisfies the property (W) if dim $\mathfrak{X} = \infty$ even in the case p = 2. (See Maruyama [10] for a counter-example.)

The following theorem cultivated to overcome this difficulty is a generalization of Theorem 1 of Maruyama [10]. Henceforth we denote by \mathfrak{X}_s (resp. \mathfrak{X}_w) a Banach space \mathfrak{X} endowed with the strong (resp. weak) topology.

Theorem 1. Let \mathfrak{X} be a real separable reflexive Banach space. And consider a sequence $\{x_n\}$ in the Sobolev space $\mathfrak{W}^{1,p}([0,T],\mathfrak{X})(p \geq 1)$. Assume that

- (i) the set $\{x_n(t)\}_{n=1}^{\infty}$ is bounded (and hence relatively compact) in \mathfrak{X}_w for each $t \in [0, T]$, and
- (ii) there exists some function $\psi \in \mathfrak{L}^p([0,T], 0, +\infty)$ such that

 $||\dot{x}_n(t)|| \leq \psi(t)$ a.e.

Then there exist a subsequence $\{z_n\}$ of $\{x_n\}$ and some function $x^* \in \mathfrak{W}^{1,p}([0,T],\mathfrak{X})$ such that

- (a) $z_n \to x^*$ uniformly in \mathfrak{X}_w on [0,T], and
- (b) $\dot{z}_n \to \dot{x}^*$ weakly in $\mathfrak{L}^p([0,T],\mathfrak{X})$.

Remark. Since \mathfrak{X} is separable and reflexive, the following results hold true. Assume that $p \geq 1$.

- [I] $\mathfrak{L}^p([0,T],\mathfrak{X})$ is separable.
- [II] $\mathfrak{L}^p([0,T],\mathfrak{X})'$ is isomorphic to $\mathfrak{L}^p([0,T],\mathfrak{X}')$, where 1/p + 1/q = 1 and "'" denotes the dual space.
- [III] Any absolutely continuous function $f : [0, T] \rightarrow \mathfrak{X}$ is Fréchet-differentiable a.e. and the "fundamental theorem of calculus", i.e.

$$f(t) = f(0) + \int_0^t \dot{f}(\tau) d\tau \, ; \, t \in [0, T]$$

is valid.

Proof of Theorem 1. (a) To start with, we shall show the equicontinuity of $\{x_n\}$. Since ψ is integrable, there exists some $\delta > 0$ for each $\varepsilon > 0$ such that

$$\begin{aligned} ||x_n(t) - x_n(s)|| &\leq \int_s^t ||\dot{x}_n(\tau)|| d\tau \\ &\leq \int_s^t \psi(\tau) d\tau \leq \varepsilon \quad \text{for all } n \end{aligned}$$

provided that $|t - s| \leq \delta$. This proves the equicontinuity of $\{x_n\}$ in the strong topology for \mathfrak{X} . Hence $\{x_n\}$ is also equicontinuous in the weak topology.

Taking account of this fact as well as the assumption (i), we can claim, thanks to the Ascoli-Arzelà theorem, that $\{x_n\}$ is relatively compact in $\mathfrak{C}([0,T],\mathfrak{X}_w)$ (the set of continuous functions of [0,T]into \mathfrak{X}_w) with respect to the topology of uniform convergence.

By the assumption (i), $\{x_n(0)\}$ is bounded in \mathfrak{X} , say $\sup_n ||x_n(0)|| \leq C < +\infty$. And the assumption (ii) implies that

$$\left| \left| \int_0^t \dot{x}_n(\tau) d\tau \right| \right| \leq ||\psi||_1 \quad \text{for all} \quad t \in [0, T].$$

Hence

$$\sup_{n} ||x_n(t)|| = \sup_{n} \left| \left| x_n(0) + \int_0^t \dot{x}_n(\tau) d\tau \right| \right|$$
$$\leq C + ||\psi||_1 \quad \text{for all} \quad t \in [0, T].$$

Thus each x_n can be regarded as a mapping of [0, T] into the set

$$M = \{ w \in \mathfrak{X} \mid ||w|| \le C + ||\psi||_1 \}.$$

The weak topology on M is metrizable because M is bounded and \mathfrak{X} is a separable reflexive Banach space. Hence if we denote by M_w the space M endowed with the weak topology, then the uniform convergence topology on $\mathfrak{C}([0,T], M_w)$ is metrizable.

Since we can regard $\{x_n\}$ as a relatively compact subset of $\mathfrak{C}([0,T], M_w)$, there exists a subsequence $\{y_n\}$ of $\{x_n\}$ which uniformly converges to some $x^* \in \mathfrak{C}([0,T], \mathfrak{X}_w)$.

(b) Since

$$||\dot{y}_n(t)|| \leq \psi(t)$$
 a.e.,

the sequence $\{w_n : [0,T] \to \mathfrak{X}\}$ defined by

$$w_n(t) = \frac{\dot{y}_n(t)}{\psi(t)}; \ n = 1, 2, \cdots$$

is contained in the unit-ball of $\mathfrak{L}^{\infty}([0,T],\mathfrak{X})$ which is weak*-compact (as the dual space of $\mathfrak{L}^{1}([0,T],\mathfrak{X}'))$ by Alaogln's theorem. Note that the weak* topology on the unit ball of $\mathfrak{L}^{\infty}([0,T],\mathfrak{X})$ is metrizable since $\mathfrak{L}^{1}([0,T],\mathfrak{X}')$ is separable. Hence $\{w_n\}$ has a subsequence $\{w_{n'}\}$ which converges to some $w^* \in$ $\mathfrak{L}^{\infty}([0,T],\mathfrak{X})$ in the weak^{*} topology. We shall write $\dot{z}_n = \dot{y}_{n'} = \psi \cdot w_{n'}.$

If we define an operator $A : \mathfrak{L}^{\infty}([0,T],\mathfrak{X}) \to \mathfrak{L}^{p}([0,T],\mathfrak{X})$ by

$$A: g \mapsto \psi \cdot g,$$

then A is continuous in the weak^{*} topology for \mathfrak{L}^{∞} and the weak topology for \mathfrak{L}^p . In order to see this, let $\{g_{\lambda}\}$ be a net in $\mathfrak{L}^{\infty}([0,T],\mathfrak{X})$ such that $w^*-\lim_{\lambda g_{\lambda}} = g^* \in \mathfrak{L}^{\infty}([0,T],\mathfrak{X})$; i.e.

$$\begin{split} \int_0^T \langle \alpha(t), g_\lambda(t) \rangle dt & \to \int_0^T \langle \alpha(t), g^*(t) \rangle dt \\ & \text{for all} \quad \alpha \in \mathfrak{L}^1([0,T], \mathfrak{X}'). \end{split}$$

Then it is quite easy to verify that

$$\int_0^T \langle \beta(t), \psi(t)g_\lambda(t) \rangle dt = \int_0^T \langle \psi(t)\beta(t), g_\lambda(t) \rangle dt$$
$$\to \int_0^T \langle \psi(t)\beta(t), g^*(t) \rangle dt$$
for all $\beta \in \mathfrak{L}^p([0,T], \mathfrak{X}'), \ \frac{1}{p} + \frac{1}{q} = 1$

since $\psi \cdot \beta \in \mathfrak{L}^1([0,T],\mathfrak{X}')$. This proves the continuity of A.

Hence

(1)
$$\dot{z}_n = \psi \cdot w_{n'} \to \psi \cdot w^*$$
 weakly in $\mathfrak{L}^p([0,T],\mathfrak{X})$,
which implies

(2)
$$\left\langle \theta, \int_{s}^{t} \dot{z}_{n}(\tau) d\tau \right\rangle = \int_{s}^{t} \langle \theta, \dot{z}_{n}(\tau) \rangle d\tau$$

 $\rightarrow \int_{s}^{t} \langle \theta, \psi(\tau) \cdot w^{*}(\tau) \rangle d\tau \text{ for all } \theta \in \mathfrak{X}'$

On the other hand, since

$$z_n(t) - z_n(s) = \int_s^t \dot{z}_n(\tau) d\tau$$
 for all n ,

and $z_n(t) - z_n(s) \to x^*(t) - x^*(s)$ in \mathfrak{X}_w , we get

(3)
$$\left\langle \theta, \int_{s}^{t} \dot{z}_{n}(\tau) d\tau \right\rangle = \left\langle \theta, z_{n}(t) - z_{n}(s) \right\rangle$$

 $\rightarrow \left\langle \theta, x^{*}(t) - x^{*}(s) \right\rangle \text{ for all } \theta \in \mathfrak{X}'.$

(2) and (3) imply the relation

$$\langle \theta, x^*(t) - x^*(s) \rangle = \left\langle \theta, \int_s^t \psi(\tau) \cdot w^*(\tau) d\tau \right\rangle$$
 for all $\theta \in \mathfrak{X}',$

from which we can deduce the equality

(4)
$$x^*(t) - x^*(s) = \int_s^t \psi(\tau) \cdot w^*(\tau) d\tau.$$

By
$$(1)$$
 and (4) , we get the desired result:

$$\dot{z}_n \to \dot{x}^* = \psi \cdot w^*$$
 weakly in $\mathfrak{L}^p([0,T],\mathfrak{X})$.

In the proof of our Theorem 1, we are making use of some ideas of Aubin and Cellina [1] (pp. 13– 14) as in Maruyama [10].

3. Differential inclusions. Throughout this section, \mathfrak{X} is assumed to be a real separable reflexive Banach space.

Let us begin by specifying some assumptions imposed on the correspondence $\Gamma : [0, T] \times \mathfrak{X}_w \longrightarrow \mathfrak{X}_w$. Special attentions should be paid to the fact that both of the domain and the range of Γ are endowed with the weak topology.

Assumption 1. Γ is compact-convex-valued; i.e. $\Gamma(t, x)$ is a non-empty, compact and convex subset of \mathfrak{X}_w for all $t \in [0, T]$ and all $x \in \mathfrak{X}$.

Assumption 2. The correspondence $x \mapsto \Gamma(t,x)$ is upper hemi-continuous (abbreviated as u.h.c.) for each fixed $t \in [0,T]$; i.e. for any fixed $(t,x) \in [0,T] \times \mathfrak{X}_w$ and for any neighborhood V of $\Gamma(t,x) \subset \mathfrak{X}_w$, there exists some neighborhood U of x such that $\Gamma(t,z) \subset V$ for all $z \in U$.

Assumption 3. The graph of the correspondence $t \mapsto \Gamma(t, x)$ is $(\mathcal{L}, \mathcal{B}(\mathfrak{X}_w))$ -measurable for each fixed $x \in \mathfrak{X}$ where $\mathcal{B}(\mathfrak{X}_w)$ denotes the Barel σ -field on \mathfrak{X}_w . (For the concept of "measurability" of a correspondence, the best reference is Castaing-Valadier [5] Chap. III.)

Assumption 4. Γ is \mathfrak{L}^p -integrably bounded; i.e. there exists $\psi \in \mathfrak{L}^p([0,T], (0, +\infty))$ (p > 1) such that $\Gamma(t,x) \subset S_{\psi(t)}$ for every $(t,x) \in [0,T] \times \mathfrak{X}$, where $S_{\psi(t)}$ is the closed ball in \mathfrak{X} with the center 0 and the radius $\psi(t)$.

Lemma 1 (Castaing [2]). Suppose that a correspondence $\Gamma : [0,T] \times \mathfrak{X} \longrightarrow \mathfrak{X}$ satisfies the Assumptions 1-3, and that a function $x : [0,T] \rightarrow \mathfrak{X}$ is Bochner-integrable. Then there exists a closed-valued correspondence $\Sigma : [0,T] \mapsto \mathfrak{X}_w$ such that

$$\Sigma(t) \subset \Gamma(t, x(t)) \quad for \ all \quad t \in [0, T],$$

and the graph $G(\Sigma)$ of Σ is $(\mathcal{L}, \mathcal{B}(\mathfrak{X}_w))$ -measurable.

We can show the next lemma in a similar way as in Maruyama [10], taking account of [III] of the Remark on page 6.

Lemma 2. Let A be a non-empty compact and convex set in \mathfrak{X}_w , and X a subset of $\mathfrak{W}^{1,p}([0,T],\mathfrak{X})$ (p > 1) defined by

$$X = \{ x \in \mathfrak{W}^{1,p} \mid ||\dot{x}(t)|| \leq \psi(t) \quad a.e., \quad x(0) \in A \},$$

No. 1]

where $\psi \in \mathfrak{L}^p([0,T], (0, +\infty))$. Then X is non-empty convex and compact in \mathfrak{X}_w .

We denote by $\mathcal{B}(0; \mathfrak{X}_w)$ a neighborhood base of the zero element of \mathfrak{X}_w which consists of convex sets. The following lemma plays a crucial role in the subsequent arguments although its proof is easy.

Lemma 3. Suppose that the Assumptions 1-2 are satisfied. Let (t^*, x^*) be any point of $[0, T] \times \mathfrak{X}$. Define, for any $V \in \mathcal{B}(0; \mathfrak{X}_w)$, a subset $K(t^*; x^*, V)$, of $[0, T] \times \mathfrak{X}$ by

$$\begin{split} & K(t^*; x^*, V) \\ &= \{(t, x) \in [0, T] \times \mathfrak{X} | x \in x^* + V, t = t^* \}. \end{split}$$

Then we have

$$\Gamma(t^*, x^*) = \bigcap_{V \in \mathcal{B}(0;\mathfrak{X}_w)} \overline{\operatorname{co}} \Gamma(K(t^*; x^*, V)).$$

(Here we do not have to distinguish the convex closure with respect to the strong topology and that with respect to the weak topology. So I simply denote it by \overline{co} .)

Lemma 4. Suppose that the Assumptions 1, 2 and 4 (with p > 1) are satisfied. Let A be a nonempty convex compact subset of \mathfrak{X}_w . Then the set

$$H \equiv \{(a, x, y) \in A \times X \times X \mid \dot{y}(t) \in \Gamma(t, x(t))$$

a.e. and $x(0) = y(0) = a\}$

is weakly compact in $A \times X \times X$. (The set X is defined in Lemma 2.)

Sketch of proof. Since we have already known that $A \times X \times X$ is weakly compact in $\mathfrak{X} \times \mathfrak{W}^{1,p} \times \mathfrak{W}^{1,p}$, it is enough to show that H is a weakly closed subset of $A \times X \times X$.

Since $\mathfrak{W}^{1,p}$ is a refiexive Banach space, the dual of which is separable, the weak topology on the bounded set X is metrizable. So we are permitted to use a sequence argument.

Let $\{q_n = (a_n, x_n, y_n)\}$ be a sequence in Hwhich weakly converges to some $q^* = (a^*, x^*, y^*)$ in $A \times X \times X$. We have to show that $q^* \in H$. And it is chough to check that

$$y^*(t) \in \Gamma(t, x^*(t))$$
 a.e.

The set $\{x_n(t)\}$ is relatively compact in \mathfrak{X}_w (for each $t \in [0, T]$) since we have the evaluation:

$$||x_n(t)|| \le ||a|| + \int_0^t ||\dot{x}_n(\tau)|| d\tau \le ||a|| + \int_0^T \psi(\tau) d\tau$$

by the Assumption 4. Hence, thanks to Theorem 1, $\{q_n\}$ has a subsequence (no change in notation) such

that

(1)
$$x_n(t) \to x^*(t)$$
 niformly in \mathfrak{X}_w , and
(2) $(t) = (t) + (t)$

(2) $\dot{y}_n(t) \to \dot{y}^*(t)$ weakly in \mathfrak{L}^p .

Then we can show that

(3)
$$\dot{y}^*(t) \in \overline{\operatorname{co}} \Gamma(K(t; x^*(t), V))$$
 a.e.

by a similar reasoning as in Maruyama [10] based upon Mazur's Theorem. Since (3) holds true for all $V \in \mathcal{B}(0; \mathfrak{X}_w)$, it follows that

(4)
$$y^*(t) \in \bigcap_{V \in \mathcal{B}(0;\mathfrak{X}_w)} \overline{\operatorname{co}} \Gamma(K(t; x^*(t), V))$$

 $\Gamma(t, x^*(t))$ a.e.

The last equality in (4) comes from Lemma 3. Thus we have proved that $(a^*, x^*, y^*) \in H$.

We are now going to find out a solution of (*) in the Sobolev space $\mathfrak{W}^{1,p}([0,T],\mathfrak{X}), p > 1$. Define a set $\Delta(a)$ in $\mathfrak{W}^{1,p}$ by

$$\Delta(a) = \{ x \in \mathfrak{W}^{1,p} \mid x \text{ satisfies } (*) \text{ a.e.} \}$$

for a fixed $a \in \mathfrak{X}$.

Theorem 2. Suppose that the correspondence Γ satisfies the Assumptions 1-4. Let A be a nonempty, convex and compact subset of \mathfrak{X}_w . Then

- (i) $\Delta(a^*) \neq \emptyset$ for any $a^* \in A$, and
- (ii) the correspondence Δ : A → 𝔅^{1,p} is compactvalued and u.h.c. on A_w, in the weak topology for 𝔅^{1,p}.

The proof can be achieved essentially by the same reasoning as in Maruyama [10], based upon preceding lemmas.

Remark. Among other things, the assumption that the set $\Gamma(t, x)$ is always convex is seriously restrictive, especially from the viewpoint of applications. However there seems to be no easy way to wipe out the convexity assumption. (See Tateishi [12].)

Here it may be suggestive for us to glimpse the special case in which Γ is a (single-valued) mapping. A related result was obtained by Szep [11]. (I am indebted to the late Prof. Tosio Kato for this reference.)

Corollary. Let $f : [0,T] \times \mathfrak{X}_w \to \mathfrak{X}_w$ be a (single-valued) mapping which satisfies the following three conditions.

- (i) The function $x \mapsto f(t, x)$ is continuous for each fixed $t \in [0, T]$.
- (ii) The function t → f(t, x) is measurable for each fixed x ∈ X.

(iii) There exists $\psi \in \mathfrak{L}^p([0,T], (0,+\infty)), p > 1$ such that $f(t,x) \in S_{\psi(t)}$ for every $(t,x) \in [0,T] \times \mathfrak{X}$; i.e. $\sup_{x \in \mathfrak{X}} ||f(t,x)|| \leq \psi(t)$ for all $t \in [0,T]$.

Then the differential equation (1, 1) = (1, 2) = (1, 2)

(**)
$$\dot{x} = f(t, x), x(0) = a$$
 (fixed vector in X)

has at least a solution in $\mathfrak{W}^{1,p}([0,T], \mathbf{X})$. (A solution of (**) is a function $x \in \mathfrak{W}^{1,p}$ which satisfies (**) a.e.)

4. Variational problem governed by differential inclusion. Let \mathfrak{X} be a real separable reflexive Banach space throughout this section, too. Assume that $u : [0,T] \times \mathfrak{X}_w \times \mathfrak{X}_s$, $(-\infty, +\infty]$ is a given proper function. Consider a variational problem:

(#) Minimize_{$$x \in \Delta(a)$$} $J(x) = \int_0^T u(t, x(t), \dot{x}(t)) dt$,

where $\Delta(a)$ is the set of all the solutions of the differential inclusion (*) discussed in the preceding section.

Definition. Let $(\Omega, \mathcal{E}, \mu)$ be a measure space, S a topological space, and \mathfrak{V} a real Banach space. A function $f : \Omega \times S \times \mathfrak{V} \to \overline{\mathbf{R}}$ is assumed to be given. We denote by $\mathfrak{M}(\Omega, S)$ the set of all the $(\mathcal{E}, \mathcal{B}(S))$ -measurable functions of Ω into S. $(\mathcal{B}(S))$ denotes the Borel σ -field on S.) f is said to have the lower compactness property if $\{f^-(\omega, \varphi_n(\omega), \theta_n(\omega))\}$ is weakly relatively compact in $\mathfrak{L}^1(\Omega, \overline{\mathbf{R}})$ for any sequence $\{(\varphi_n, \theta_n)\}$ in $\mathfrak{M}(\Omega, S) \times \mathfrak{L}^p(\Omega, \mathfrak{V})$ $(p \geq 1)$ which satisfies the following three conditions:

- (a) $\{\varphi_n\}$ converges in ineasure to some $\varphi^* \in \mathfrak{M}(\Omega, S)$,
- (b) $\{\theta_n\}$ converges weakly to some $\theta^* \in \mathfrak{L}^p(\Omega, \mathfrak{V})$, and
- (c) there exists some $C < +\infty$ such that

$$\sup_{n} \int_{\Omega} f(\omega, \varphi_n(\omega), \theta_n(\omega)) d\mu \leq C.$$

The following theorem is a variation of a result due to Castaing-Clauzure [3] in the spirit of Ioffe [6].

Theorem 3. Let $(\Omega, \mathcal{E}, \mu)$ be a finite complete measure space, S a metrizable Souslin space, and \mathfrak{V} a separable reflexive Banach space. Suppose that a proper function $f : \Omega \times S \times \mathfrak{V} \to \overline{\mathbf{R}}$ satisfies the following conditions:

(i) f is a normal integrand; i.e.

- (a) f is $(\mathcal{E} \otimes \mathcal{B}(S) \otimes \mathcal{B}(\mathfrak{V}), \mathcal{B}(\overline{\mathbf{R}}))$ -measurable, and
- (b) the function $(\xi, v) \mapsto f(\omega, \xi, v)$ is lower semicontinuous for any fixed $\omega \in \Omega$,

- (ii) the function $v \mapsto f(\omega, \xi, v)$ is convex for any fixed $(\omega, \xi) \in \Omega \times S$, and
- (iii) f has the lower compactness property.

Let $\{\varphi_n\}$ be a sequence in $\mathfrak{M}(\Omega, S)$ which convarges in measure to some $\varphi^* \subset \mathfrak{M}(\Omega, S)$, Let $\{\theta_n\}$ be a sequence in $\mathfrak{L}^p(\Omega, \mathfrak{V})(1 \leq p < +\infty)$ which converges weakly to some $\theta^* \in \mathfrak{L}^p(\Omega, \mathfrak{V})$. Then we have

$$\int_{\Omega} f(\omega, \varphi^*(\omega), \theta^*(\omega)) d\mu$$
$$\leq \liminf_n \int_{\Omega} f(\omega, \varphi_n(\omega), \theta_n(\omega)) d\mu.$$

Remark. 1° A normal integrand $f: \Omega \times S \times \mathfrak{V} \to \overline{\mathbf{R}}$ which also satisfies the condition (ii) is called a *convex normal integrand*.

 2° Ioffe [6] established a fundamental theorem on the lower semi-continuity of a nonlinear integral functional as above in the case both of S and \mathfrak{V} are finite dimensional Euclidean spaces. Theorem 3 is an extension of Ioffe's result to the case of a nonlinear integral functional defined on the space of Bochner integrable functions. See also Valadier [13] for some important results based on the theory of Young measures.

Lemma 5. Suppose that the Assumptions 1-4 are satisfied. Let $\{x_n\}$ be a sequence in $\Delta(a) \subset \mathfrak{W}^{1,p}([0,T],\mathfrak{X}) \ (p>1)$. Let $u:[0,T] \times \mathfrak{X}_w \times \mathfrak{X}_s \to \overline{\mathbf{R}}$ be a proper convex normal integrand with the lower compactness property. Then there exist a subsequence $\{z_n\}$ of $\{x_n\}$ and $x^* \in \Delta(a)$ such that

(1)
$$J(x^*) \leq \liminf_n J(z_n),$$

where

$$J(x) = \int_0^T u(t, x(t), x(t)) dt.$$

Proof. By the Assumption 4, all the images of x_n 's are contained in some closed ball \overline{B} with the center 0; i.e.

$$x_n(t) \in B$$
 for all $t \in [0,T]$ and n .

Hence we may restrict the domain of u to $[0,T] \times \overline{B}_w \times \mathfrak{X}_s$ provided that the sequence $\{x_n\}$ is concerned. Denoting $\overline{u} = u|_{[0,T] \times \overline{B} \times \mathfrak{X}}$, (restriction of u to $[0,T] \times \overline{B} \times \mathfrak{X}$) we have to show that there exist a subsequence $\{z_n\}$ of $\{x_n\}$ and some $x^* \in \Delta(a)$

No. 1]

$$\int_0^T \overline{u}(t, x^*(t), \dot{x}^*(t)) dt$$
$$\leq \liminf_n \int_0^T \overline{u}(t, z_n(t), \dot{z}_n(t)) dt$$

which is equivalent to (1).

The set \overline{B} endowed with the weak topology is metrizable and compact. Hence it is a Polish space. According to Theorem 1, there exist a subsequence $\{z_n\}$ of $\{x_n\}$ and $x^* \in \mathfrak{W}^{1,p}([0,T],\mathfrak{X})$ such that (a) $z_n \to x^*$ uniformly in \overline{B}_w , and

(b) $\dot{z}_n \to \dot{x}^*$ weakly in $\mathcal{L}^p([0,T],\mathfrak{X})$.

(a) implies, of course, that $z_n \to x^*$ in measure. Thus applying Theorem 3, we obtain the relation

$$\int_0^T \overline{u}(t, x^*(t), \dot{x}^*(t)) dt$$
$$\leq \liminf_n \int_0^T \overline{u}(t, z_n(t), \dot{z}_n(t)) dt.$$

Finally we have to prove that $x^* \in \Delta(a)$. By (a), it follows that

$$\lim_{n \to \infty} \langle z_n(t), \eta(t) \rangle = \langle x^*(t), \eta(t) \rangle$$

for any $t \in [0, T]$ and $\eta \in \mathfrak{L}^p([0, T], \mathfrak{X}')$, where 1/p + 1/q = 1. Since $z_n(t) \in \overline{B}$, there exists some positive constant $C < \infty$ such that

$$|\langle z_n(t), \eta(t) \rangle| \leq C ||\eta(t)||.$$

Hence we have, by the Dominated Convergence Theorem, that

$$\lim_{n \to \infty} \int_0^T \langle z_n(t), \eta(t) \rangle dt = \int_0^T \langle x^*(t), \eta(t) \rangle dt$$

for any $\eta \in \mathfrak{L}^p([0,T], \mathfrak{X}').$

This proves that $z_n \to x^*$ weakly in \mathfrak{L}^p .

Combining this result with (b), we can conclude that $\{z_n\}$ weakly converges to x^* in $\mathfrak{W}^{1,p}$. Since $\Delta(a)$ is weakly closed, $x^* \in \Delta(a)$.

Let $\{x_n\}$ be a minimizing sequence of the problem (\sharp). Then, by Lemma 5, $\{x_n\}$ has a subsequence (without change of notaion) such that

$$J(x^*) \leq \liminf J(x_n)$$

for some $x^* \in \Delta(a)$. It is also obvious that

$$\inf_{x \in \Delta(a)} J(x) = \liminf_{n} J(x_n) \leq J(x^*).$$

Thus we have proved that x^* is a solution of the problem (\sharp). Summing up —

Theorem 4. Suppose that the Assumptions 1-4 with p > 1 are satisfied for a correspondence $\Gamma : [0,T] \times \mathfrak{X} \longrightarrow \mathfrak{X}$. Furthermore let $u : [0,T] \times \mathfrak{X}_w \times \mathfrak{X}_s \to \overline{\mathbf{R}}$ be a convex normal integrand with the lower compactness property. Then the problem (\sharp) has a solution.

References

- Aubin, J. P., and Cellina, A.: Differential Inclusions. Springer, Berlin (1984).
- [2] Castaing, C.: Sur les équations différentielles multivoques. C. R. Acad. Sci. Paris, Sér. A, 263, 63–66 (1966).
- [3] Castaing, C., and Clauzure, P.: Semi continuité des fonctionelles intégrales. Acta Math. Vietnam, 7, 139–170 (1982).
- [4] Castaing, C., and Valadier, M.: Equations différentielles multivoques dans les éspaces vectoriels localement convexes. Rev. Française Informat. Recherche Opérationelles, 3, 3–16 (1969).
- [5] Castaing, C., and Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977).
- [6] Ioffe, A. D.: On lower semicontinuity of integral functionals I. SIAM J. Control Optim., 15, 521– 538 (1977).
- [7] Komura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19, 493–507 (1967).
- [8] Maruyama, T.: On a multi-valued differential equation: an existence theorem. Proc. Japan Acad., 60A, 161–164 (1984).
- [9] Maruyama, T.: Variational problems governed by a multi-valued differential equation. Proc. Japan Acad., 60A, 212–214 (1984).
- [10] Maruyama, T.: Weak convergence theorem in Sobolev spaces with application to Filippov's evolution equations. Proc. Japan Acad., 66A, 217– 221 (1990).
- [11] Szep, A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar., 6, 197– 203 (1971).
- [12] Tatcishi, H.: Nonconvex-valued differential inclusions in a separable Hilbert space. Proc. Japan Acad., 68A, 296–301 (1992).
- [13] Valadier, M.: Young Measures (ed. Cellina, A.). Methods of Nonconvex Analysis, Springer, Berlin-Heidelberg-New York (1990).