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with application to differential inclusions in a Banach space
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Abstract: The existence theorems for (1) a differential inclusion in a Banach space and
(2) a variational problem governed by it are presented. In order to solve this problem, some
implications of the weak convergence in the space of vector-valued absolutely continuous functions
are also explored.
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1. Introduction. Let X be a real separable
refiexjve Banach space. A correspondence (=multi-
valued mapping) Γ : [0, T ]× X →→ X and a function
u : [0, T ] × X × X → R are assumed to be given. A
double arrow →→ indicates the domain and the range
of a correspondence. The compact interval [0, T ] is
endowed with the Lebesgue measure dt. L. denotes
the σ-field of the Lebesgue-measurable sets of [0, T ].

Let W1,p([0, T ],X) be the Sobolev space con-
sisting of functions of [0, T ] into X. And let ∆(a)
be the set of all the solutions in the Sobolev space
W1,p([0, T ],X) of a differential inclusion:

ẋ(t) ∈ Γ(t, x(t)), x(0) = a,(∗)

where ẋ denotes the derivative of x and a is a fixed
vector in X. We consider a variational problem:

Minimizex∈∆(a)

∫ T

0

u(t, x(t), ẋ(t))dt.(])

The object of this paper is to discuss a couple
of existence problems as follows:
(i) the existence of a solution for the differential

inclusion (∗), and
(ii) the existence of an optimal solution for the vari-

ational problem (]).
In Maruyama [8][9], I presented a solution of

these problems in the special case X = R` by making
use of the convenient properties of the weak conver-
gence in the Sobolev space W1,2 ([0, T ], R`); i.e. if a
sequence {xn} in W1,2 ([0, T ], R`), weakly converges
to some x∗ ∈ W1,2 ([0, T ], R`), then there exists a
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subsequence {zn} of {xn} such that

zn → x∗ uniformly on [0, T ], and

żn → ẋ∗ weakly in L2([0, T ],R`).
(W)

However it deserves a special notice that this
property does not hold in the space W1,2([0, T ],X) if
dim X = ∞. Taking account of this fact, I provided
a new convergence result to overcome this difficulty
in the case X is a real separable Hilbert space in
Maruyama [10]. I also gave a existence theory for
the problems (i) and (ii) being based upon this new
tool in the framework of a separable Hilbert space.

The purpose of the present paper is a further
generalization of my previous results to the case X is
a real separable refiexive Banach space.

I have also to mention about another improve-
ment added on this occasion. In Maruyama [10], I
imposed a very restrictive requirement on the conti-
nuity of the correspondence Γ; i.e.

the correspondence x 7→→ Γ(t, x) is upper hemi-
continuous for each fixed t ∈ [0, T ] with respect
to the weak topology for the domain and the
strong topology for the range.
I have to admit frankly that this is a very un-

pleasant assumption. In the present paper, I propose
the upper hemi-contimuity of x 7→→ Γ(t, x) with re-
spect to the “weak-weak” combination of topologies
instead of the “weak-strong” combination.

2. A convergence theorem in W1,p([0, T ],
X). As I have already said, any weakly convergent
sequence {xn} in the Sobolev space W1,2([0, T ],R`)
has a subsequence which satisfies the property (W)
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in section 1.
On the other hand, let X be a real Banach space

with the Radon-Nikodym property (RNP). Then any
absolutely continuous function f : [0, T ] → X is
Frechet-differentiable a.e. (If the Banach space X

does not have RNP, this property does not hold.
For a counter-example, see Komura [7].) Let {xn}
be a sequence in W1,p([0, T ],X) which weakly con-
verges to some x∗ ∈ W1,p([0, T ],X). We should keep
in mind that it is not necessarily true that the se-
quence {xn} has a subsequence {zn} which satisfies
the propery (W) if dim X = ∞ even in the case p = 2.
(See Maruyama [10] for a counter-example.)

The following theorem cultivated to overcome
this difficulty is a generalization of Theorem 1 of
Maruyama [10]. Henceforth we denote by Xs (resp.
Xw) a Banach space X endowed with the strong
(resp. weak) topology.

Theorem 1. Let X be a real separable reflex-
ive Banach space. And consider a sequence {xn} in
the Sobolev space W1,p([0, T ],X)(p = 1). Assume
that
(i) the set {xn(t)}∞n=1 is bounded (and hence rela-

tively compact) in Xw for each t ∈ [0, T ], and
(ii) there exists some function ψ ∈ Lp([0, T ], 0,

+∞)) such that

||ẋn(t)|| 5 ψ(t)a.e.

Then there exist a subsequence {zn} of {xn} and
some function x∗ ∈ W1,p([0, T ],X) such that
(a) zn → x∗ uniformly in Xw on [0, T ], and
(b) żn → ẋ∗ weakly in Lp([0, T ],X).

Remark. Since X is separable and reflexive,
the following results hold true. Assume that p = 1.
[I] Lp([0, T ],X) is separable.

[II] Lp([0, T ],X)′ is isomorphic to Lp([0, T ],X′),
where 1/p + 1/q = 1 and “ ′ ”denotes the dual
space.

[III] Any absolutely continuous function f : [0, T ] →
X is Fréchet-differentiable a.e. and the “ funda-
mental theorem of calculus ” , i.e.

f(t) = f(0) +
∫ t

0

ḟ(τ)dτ ; t ∈ [0, T ]

is valid.
Proof of Theorem 1. (a) To start with, we

shall show the equicontinuity of {xn}. Since ψ is
integrable, there exists some δ > 0 for each ε > 0
such that

||xn(t)− xn(s)|| 5
∫ t

s

||ẋn(τ)||dτ

5
∫ t

s

ψ(τ)dτ 5 ε for all n

provided that |t − s| 5 δ. This proves the equicon-
tinuity of {xn} in the strong topology for X. Hence
{xn} is also equicontinuous in the weak topology.

Taking account of this fact as well as the as-
sumption (i), we can claim, thanks to the Ascoli-
Arzelà theorem, that {xn} is relatively compact in
C([0, T ],Xw) (the set of continuous functions of [0, T ]
into Xw) with respect to the topology of uniform con-
vergence.

By the assumption (i), {xn(0)} is bounded in X,
say supn ||xn(0)|| 5 C < +∞. And the assump-
tion (ii) implies that∣∣∣∣∣∣∣∣∫ t

0

ẋn(τ)dτ
∣∣∣∣∣∣∣∣ 5 ||ψ||1 for all t ∈ [0, T ].

Hence

sup
n
||xn(t)|| = sup

n

∣∣∣∣∣∣∣∣xn(0) +
∫ t

0

ẋn(τ)dτ
∣∣∣∣∣∣∣∣

5 C + ||ψ||1 for all t ∈ [0, T ].

Thus each xn can be regarded as a mapping of [0, T ]
into the set

M = {w ∈ X | ||w|| 5 C + ||ψ||1}.

The weak topology on M is metrizable because M is
bounded and X is a separable refiexive Banach space.
Hence if we denote by Mw the space M endowed
with the weak topology, then the uniform conver-
gence topology on C([0, T ],Mw) is metrizable.

Since we can regard {xn} as a relatively compact
subset of C([0, T ],Mw), there exists a subsequence
{yn} of {xn} which uniformly converges to some x∗ ∈
C([0, T ],Xw).

(b) Since

||ẏn(t)|| 5 ψ(t) a.e.,

the sequence {wn : [0, T ] → X} defined by

wn(t) =
ẏn(t)
ψ(t)

; n = 1, 2, · · ·

is contained in the unit-ball of L∞([0, T ],X) which is
weak∗-compact (as the dual space of L1([0, T ],X′))
by Alaogln’s theorem. Note that the weak∗ topol-
ogy on the unit ball of L∞([0, T ],X) is metrizable
since L1([0, T ],X′) is separable. Hence {wn} has a
subsequence {wn′} which converges to some w∗ ∈
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L∞([0, T ],X) in the weak∗ topology. We shall write
żn = ẏn′ = ψ · wn′ .

If we define an operator A : L∞([0, T ],X) →
Lp([0, T ],X) by

A : g 7→ ψ · g,

then A is continuous in the weak∗ topology for L∞

and the weak topology for Lp. In order to see this,
let {gλ} be a net in L∞([0, T ],X) such that
w∗-limλgλ

= g∗ ∈ L∞([0, T ],X); i.e.∫ T

0

〈α(t), gλ(t)〉dt→
∫ T

0

〈α(t), g∗(t)〉dt

for all α ∈ L1([0, T ],X′).

Then it is quite easy to verify that∫ T

0

〈β(t), ψ(t)gλ(t)〉dt =
∫ T

0

〈ψ(t)β(t), gλ(t)〉dt

→
∫ T

0

〈ψ(t)β(t), g∗(t)〉dt

for all β ∈ Lp([0, T ],X′),
1
p

+
1
q

= 1

since ψ ·β ∈ L1([0, T ],X′). This proves the continuity
of A.

Hence

żn = ψ · wn′ → ψ · w∗ weakly in Lp([0, T ],X),(1)

which implies〈
θ,

∫ t

s

żn(τ)dτ
〉

=
∫ t

s

〈θ, żn(τ)〉dτ(2)

→
∫ t

s

〈θ, ψ(τ) · w∗(τ)〉dτ for all θ ∈ X′.

On the other hand, since

zn(t)− zn(s) =
∫ t

s

żn(τ)dτ for all n,

and zn(t)− zn(s) → x∗(t)− x∗(s) in Xw, we get〈
θ,

∫ t

s

żn(τ)dτ
〉

= 〈θ, zn(t)− zn(s)〉(3)

→ 〈θ, x∗(t)− x∗(s)〉 for all θ ∈ X′.

(2) and (3) imply the relation

〈θ, x∗(t)− x∗(s)〉 =
〈
θ,

∫ t

s

ψ(τ) · w∗(τ)dτ
〉

for all θ ∈ X′,

from which we can deduce the equality

x∗(t)− x∗(s) =
∫ t

s

ψ(τ) · w∗(τ)dτ.(4)

By (1) and (4), we get the desired result:

żn → ẋ∗ = ψ · w∗ weakly in Lp([0, T ],X).

In the proof of our Theorem 1, we are making
use of some ideas of Aubin and Cellina [1] (pp. 13–
14) as in Maruyama [10].

3. Differential inclusions. Throughout
this section, X is assumed to be a real separable
reflexive Banach space.

Let us begin by specifying some assumptions im-
posed on the correspondence Γ : [0, T ]×Xw →→ Xw.
Special attentions should be paid to the fact that
both of the domain and the range of Γ are endowed
with the weak topology.

Assumption 1. Γ is compact-convex-valued;
i.e. Γ(t, x) is a non-empty, compact and convex sub-
set of Xw for all t ∈ [0, T ] and all x ∈ X.

Assumption 2. The correspondence x 7→→
Γ(t, x) is upper hemi-continuous (abbreviated as
u.h.c.) for each fixed t ∈ [0, T ]; i.e. for any fixed
(t, x) ∈ [0, T ] × Xw and for any neighborhood V of
Γ(t, x) ⊂ Xw, there exists some neighborhood U of x
such that Γ(t, z) ⊂ V for all z ∈ U .

Assumption 3. The graph of the correspon-
dence t 7→→ Γ(t, x) is (L,B(Xw))-measurable for each
fixed x ∈ X where B(Xw) denotes the Barel σ-field on
Xw. (For the concept of “measurability” of a corre-
spondence, the best reference is Castaing-Valadier [5]
Chap. III.)

Assumption 4. Γ is Lp-integrably bounded;
i.e. there exists ψ ∈ Lp([0, T ], (0,+∞)) (p > 1) such
that Γ(t, x) ⊂ Sψ(t) for every (t, x) ∈ [0, T ]×X, where
Sψ(t) is the closed ball in X with the center 0 and the
radius ψ(t).

Lemma 1 (Castaing [2]). Suppose that a cor-
respondence Γ : [0, T ] × X →→ X satisfies the As-
sumptions 1-3, and that a function x : [0, T ] → X is
Bochner-integrable. Then there exists a closed-valued
correspondence Σ : [0, T ] 7→→ Xw such that

Σ(t) ⊂ Γ(t, x(t)) for all t ∈ [0, T ],

and the graph G(Σ) of Σ is (L,B(Xw))-measurable.
We can show the next lemma in a similar way

as in Maruyama [10], taking account of [III] of the
Remark on page 6.

Lemma 2. Let A be a non-empty com-
pact and convex set in Xw, and X a subset of
W1,p([0, T ],X) (p > 1) defined by

X = {x ∈ W1,p | ||ẋ(t)|| 5 ψ(t) a.e., x(0) ∈ A},
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where ψ ∈ Lp([0, T ], (0,+∞)). Then X is non-empty
convex and compact in Xw.

We denote by B(0;Xw) a neighborhood base of
the zero element of Xw which consists of convex sets.
The following lemma plays a crucial role in the sub-
sequent arguments although its proof is easy.

Lemma 3. Suppose that the Assumptions 1-2
are satisfied. Let (t∗, x∗) be any point of [0, T ] × X.
Define, for any V ∈ B(0;Xw), a subset K(t∗;x∗, V ),
of [0, T ]× X by

K(t∗;x∗, V )

= {(t, x) ∈ [0, T ]× X|x ∈ x∗ + V, t = t∗}.

Then we have

Γ(t∗, x∗) = ∩V ∈B(0;Xw) co Γ(K(t∗;x∗, V )).

(Here we do not have to distinquish the convex
closure with respect to the strong topology and that
with respect to the weak topology. So I simply denote
it by co.)

Lemma 4. Suppose that the Assumptions 1,
2 and 4 (with p > 1) are satisfied. Let A be a non-
empty convex compact subset of Xw. Then the set

H ≡ {(a, x, y) ∈ A×X ×X | ẏ(t) ∈ Γ(t, x(t))

a.e. and x(0) = y(0) = a}

is weakly compact in A × X × X. (The set X is
defined in Lemma 2.)

Sketch of proof. Since we have already
known that A × X × X is weakly compact in
X × W1,p × W1,p, it is enough to show that H is a
weakly closed subset of A×X ×X.

Since W1,p is a refiexive Banach space, the dual
of which is separable, the weak topology on the
bounded set X is metrizable. So we are permitted
to use a sequence argument.

Let {qn = (an, xn, yn)} be a sequence in H

which weakly converges to some q∗ = (a∗, x∗, y∗) in
A ×X ×X. We have to show that q∗ ∈ H. And it
is cnough to check that

y∗(t) ∈ Γ(t, x∗(t)) a.e.

The set {xn(t)} is relatively compact in Xw (for
each t ∈ [0, T ]) since we have the evaluation:

||xn(t)|| 5 ||a||+
∫ t

0

||ẋn(τ)||dτ 5 ||a||+
∫ T

0

ψ(τ)dτ

by the Assumption 4. Hence, thanks to Theorem 1,
{qn} has a subsequence (no change in notation) such

that

xn(t) → x∗(t) niformly in Xw, and(1)

ẏn(t) → ẏ∗(t) weakly in Lp.(2)

Then we can show that

ẏ∗(t) ∈ co Γ(K(t;x∗(t), V )) a.e.(3)

by a similar reasoning as in Maruyama [10] based
upon Mazur’s Theorem. Since (3) holds true for all
V ∈ B(0;Xw), it follows that

y∗(t) ∈ ∩V ∈B(0;Xw) co Γ(K(t;x∗(t), V ))(4)

Γ(t, x∗(t)) a.e.

The last equality in (4) comes from Lemma 3. Thus
we have proved that (a∗, x∗, y∗) ∈ H.

We are now going to find out a solution of (∗)
in the Sobolev space W1,p([0, T ],X), p > 1. Define a
set ∆(a) in W1,p by

∆(a) = {x ∈ W1,p | x satisfies (∗) a.e.}

for a fixed a ∈ X.
Theorem 2. Suppose that the correspondence

Γ satisfies the Assumptions 1-4. Let A be a non-
empty, convex and compact subset of Xw. Then
(i) ∆(a∗) 6= ∅ for any a∗ ∈ A, and
(ii) the correspondence ∆ : A → W1,p is compact-

valued and u.h.c. on Aw, in the weak topology
for W1,p.
The proof can be achieved essentially by the

same reasoning as in Maruyama [10], based upon
preceding lemmas.

Remark. Among other things, the assumption
that the set Γ(t, x) is always convex is seriously re-
strictive, especially from the viewpoint of applica-
tions. However there seems to be no easy way to
wipe out the convexity assumption. (See Tateishi
[12].)

Here it may be suggestive for us to glimpse the
special case in which Γ is a (single-valued) mapping.
A related result was obtained by Szep [11]. (I am
indebted to the late Prof. Tosio Kato for this refer-
ence.)

Corollary. Let f : [0, T ] × Xw → Xw be a
(single-valued) mapping which satisfies the following
three conditions.
(i) The function x 7→ f(t, x) is continuous for each

fixed t ∈ [0, T ].
(ii) The function t 7→ f(t, x) is measurable for each

fixed x ∈ X.
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(iii) There exists ψ ∈ Lp([0, T ], (0,+∞)), p > 1 such
that f(t, x) ∈ Sψ(t) for every (t, x) ∈ [0, T ]× X;
i.e. supx∈X ||f(t, x)|| 5 ψ(t) for all t ∈ [0, T ].

Then the differential equation

ẋ = f(t, x), x(0) = a (fixed vector in X)(∗∗)

has at least a solution in W1,p([0, T ],X). (A solution
of (∗∗) is a function x ∈ W1,p which satisfies (∗∗)
a.e.)

4. Variational problem governed by dif-
ferential inclusion. Let X be a real separable re-
flexive Banach space throughout this section, too.
Assume that u : [0, T ] × Xw × Xs, (−∞,+∞] is a
given proper function. Consider a variational prob-
lem:

Minimizex∈∆(a)J(x) =
∫ T

0

u(t, x(t), ẋ(t))dt,(])

where ∆(a) is the set of all the solutions of the dif-
ferential inclusion (∗) discussed in the preceding sec-
tion.

Definition. Let (Ω, E , µ) be a measure space,
S a topological space, and V a real Banach space.
A function f : Ω × S × V → R is assumed to be
given. We denote by M(Ω, S) the set of all the
(E ,B(S))-measurable functions of Ω into S. (B(S)
denotes the Borel σ-field on S.) f is said to have the
lower compactness property if {f−(ω, ϕn(ω), θn(ω))}
is weakly relatively compact in L1(Ω,R) for any se-
quence {(ϕn, θn)} in M(Ω, S) × Lp(Ω,V) (p = 1)
which satisfies the following three conditions:
(a) {ϕn} converges in ineasure to some ϕ∗ ∈

M(Ω, S),
(b) {θn} converges weakly to some θ∗ ∈ Lp(Ω,V),

and
(c) there exists some C < +∞ such that

sup
n

∫
Ω

f(ω, ϕn(ω), θn(ω))dµ 5 C.

The following theorem is a variation of a result
due to Castaing-Clauzure [3] in the spirit of Ioffe [6].

Theorem 3. Let (Ω, E , µ) be a finite complete
measare space, S a metrizable Souslin space, and V

a separable reflexive Banach space. Suppose that a
proper function f : Ω × S × V → R satisfies the
following conditions:
(i) f is a normal integrand ; i.e.

(a) f is (E⊗B(S)⊗B(V),B(R))-measurable, and
(b) the function (ξ, v) 7→ f(ω, ξ, v) is lower semi-

continuous for any fixed ω ∈ Ω,

(ii) the function v 7→ f(ω, ξ, v) is convex for any
fixed (ω, ξ) ∈ Ω× S, and

(iii) f has the lower compactness property.
Let {ϕn} be a sequence in M(Ω, S) which con-

varges in measure to some ϕ∗ ⊂ M(Ω, S), Let {θn}
be a sequence in Lp(Ω,V)(1 5 p < +∞) which con-
verges weakly to some θ∗ ∈ Lp(Ω,V). Then we have∫

Ω

f(ω, ϕ∗(ω), θ∗(ω))dµ

5 lim inf
n

∫
Ω

f(ω, ϕn(ω), θn(ω))dµ.

Remark. 1◦ A normal integrand f : Ω×S×
V → R which also satisfies the condition (ii) is called
a convex normal integrand.

2◦ Ioffe [6] established a fundamental theorem
on the lower semi-continuity of a nonlinear integral
functional as above in the case both of S and V are
finite dimensional Euclidean spaces. Theorem 3 is an
extension of Ioffe’s result to the case of a nonlinear
integral functional defined on the space of Bochner
integrable functions. See also Valadier [13] for some
important results based on the theory of Young mea-
sures.

Lemma 5. Suppose that the Assumptions 1-
4 are satisfied. Let {xn} be a sequence in ∆(a) ⊂
W1,p([0, T ],X) (p > 1). Let u : [0, T ]×Xw×Xs → R
be a proper convex normal integrand with the lower
compactness property. Then there exist a subse-
quence {zn} of {xn} and x∗ ∈ ∆(a) such that

J(x∗) 5 lim inf
n

J(zn),(1)

where

J(x) =
∫ T

0

u(t, x(t), x(t))dt.

Proof. By the Assumption 4, all the images of
xn’s are contained in some closed ball B with the
center 0; i.e.

xn(t) ∈ B for all t ∈ [0, T ] and n.

Hence we may restrict the domain of u to
[0, T ] × Bw × Xs provided that the sequence {xn}
is concerned. Denoting u = u|[0,T ]×B×X, (restriction
of u to [0, T ]×B×X) we have to show that there ex-
ist a subsequence {zn} of {xn} and some x∗ ∈ ∆(a)
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such that ∫ T

0

u(t, x∗(t), ẋ∗(t))dt

5 lim inf
n

∫ T

0

u(t, zn(t), żn(t))dt

which is equivalent to (1).
The set B endowed with the weak topology is

metrizable and compact. Hence it is a Polish space.
According to Theorem 1, there exist a subsequence
{zn} of {xn} and x∗ ∈ W1,p([0, T ],X) such that
(a) zn → x∗ uniformly in Bw, and
(b) żn → ẋ∗ weakly in Lp([0, T ],X).

(a) implies, of course, that zn → x∗ in measure.
Thus applying Theorem 3, we obtain the relation∫ T

0

u(t, x∗(t), ẋ∗(t))dt

5 lim inf
n

∫ T

0

u(t, zn(t), żn(t))dt.

Finally we have to prove that x∗ ∈ ∆(a). By
(a), it follows that

lim
n→∞

〈zn(t), η(t)〉 = 〈x∗(t), η(t)〉

for any t ∈ [0, T ] and η ∈ Lp([0, T ],X′), where 1/p+
1/q = 1. Since zn(t) ∈ B, there exists some positive
constant C <∞ such that

|〈zn(t), η(t)〉| 5 C||η(t)||.

Hence we have, by the Dominated Convergence
Theorem, that

lim
n→∞

∫ T

0

〈zn(t), η(t)〉dt =
∫ T

0

〈x∗(t), η(t)〉dt

for any η ∈ Lp([0, T ],X′).

This proves that zn → x∗ weakly in Lp.
Conbining this result with (b), we can conclude

that {zn} weakly converges to x∗ in W1,p. Since
∆(a) is weakly closed, x∗ ∈ ∆(a).

Let {xn} be a minimizing sequence of the prob-
lem (]). Then, by Lemma 5, {xn} has a subsequence
(without change of notaion) such that

J(x∗) 5 lim inf
n

J(xn)

for some x∗ ∈ ∆(a). It is also obvious that

inf
x∈∆(a)

J(x) = lim inf
n

J(xn) 5 J(x∗).

Thus we have proved that x∗ is a solution of the
problem (]). Summing up —

Theorem 4. Suppose that the Assumptions
1-4 with p > 1 are satisfied for a correspondence
Γ : [0, T ] × X →→ X. Furthermore let u : [0, T ] ×
Xw×Xs → R be a convex normal integrand with the
lower compactness property. Then the problem (])
has a solution.
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