On certain cohomology set for $\Gamma_{0}(N)$

By Takashi Ono
Department of Mathematics, The Johns Hopkins University Baltimore, Maryland, 21218-2689, U.S.A.
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 2001)

Abstract

Let $G=\Gamma_{0}(N), N \not \equiv 3(\bmod 4)$ and g be the group generated by the involution $z \mapsto-1 / N z$ of the upper half plane. We determine the cohomology set $H^{1}(g, G)$ in terms of the class number of quadratic forms of discriminant $-4 N$.

Key words: Congruence subgroups of level N; the involution; cohomology sets; binary quadratic forms; class number of orders.

1. Introduction. Let g, G be groups where g acts on G to the left and $H(g, G)$ be the (first) cohomology set of (g, G). When $g=\langle s\rangle, s^{2}=1$, let us put $a^{*}=a^{-s}$. Then $(a b)^{*}=b^{*} a^{*}, a^{* *}=a$ for $a, b \in G$ and so we can make the identification:

$$
H(g, G)
$$

(1.1) $=\left\{a \in G ; a^{*}=a\right.$, symmetric elements $\} / \sim$ where $a \sim b$ (congruence) $\Longleftrightarrow b=c^{*} a c, c \in G$

In [2], we treated the case where $G=\Gamma(N)$ with $s=(z \mapsto-1 / z)$. This time, as the second step, we take the case where $G=\Gamma_{0}(N)$ with $s=(z \mapsto$ $-1 / N z$). Unlike in [2] where $a^{*}={ }^{t} a$ (transpose), we shall meet various binary positive quadratic forms and hence imaginary quadratic fields $K=\mathbf{Q}(\sqrt{-N})$. We shall show that there is a bijection between the set $H^{+}\left(g, \Gamma_{0}(N)\right)$, the positive part of $H\left(g, \Gamma_{0}(N)\right)$, and the form class group $C(-4 N)$ whenever $N \not \equiv$ $3(\bmod 4)$.
2. $\boldsymbol{F}^{+}(N)$. For a positive integer N, put

$$
S=\left(\begin{array}{cc}
0 & -1 \tag{2.1}\\
N & 0
\end{array}\right), \quad U=\left(\begin{array}{cc}
1 & 0 \\
0 & N
\end{array}\right) .
$$

For $g=\langle s\rangle, s^{2}=1$ and $A \in G=\Gamma_{0}(N)$, put

$$
\begin{equation*}
A^{s}=S A S^{-1}=U^{t} A^{-1} U^{-1} \tag{2.2}
\end{equation*}
$$

One checks that g acts on G. We also put

$$
\begin{equation*}
A^{*}=A^{-s}=U^{t} A U^{-1} \tag{2.3}
\end{equation*}
$$

Denoting by $Z(g, G)$ the set of all cocycles in (g, G), we have, from (2.2), (2.3),

$$
\begin{equation*}
Z(g, G)=\left\{A \in G ; A^{*}=A\right\} \tag{2.4}
\end{equation*}
$$

2000 Mathematics Subject Classification. 11F75.
Dedicated to Professor S. Iyanaga, M.J.A., on his 95th birthday.

Now put

$$
\begin{equation*}
F=\varphi(A)=A U, \quad A \in Z(g, G) \tag{2.5}
\end{equation*}
$$

Then, we find that

$$
\begin{equation*}
A^{*}=A \Longleftrightarrow{ }^{t} F=F \tag{2.6}
\end{equation*}
$$

From (2.4), (2.5), (2.6) we see that the map φ identifies the set $Z(g, G)$ of cocycles with the following set $\mathcal{F}(N)$ of symmetric matrices:
(2.7) $\mathcal{F}(N)=\left\{F=\left(\begin{array}{cc}a & N b \\ N b & N c\end{array}\right) ; a c-N b^{2}=1\right\}$.

Furthermore, note that the (right) action $A \mapsto T^{*} A T$ of $T \in \Gamma_{0}(N)$ on $Z(g, G)$ corresponds to the (right) action $F \mapsto{ }^{t} T_{1} F T_{1}$ of $T_{1}=U^{-1} T U \in \Gamma^{0}(N)$ on $\mathcal{F}(N)$ under the identification of $Z(g, G)$ and $\mathcal{F}(N)$ by the map φ. In other words, we have, via φ,

$$
\begin{equation*}
H\left(g, \Gamma_{0}(N)\right)=\mathcal{F}(N) / \Gamma^{0}(N) \tag{2.8}
\end{equation*}
$$

As usual, for a negative integer D, we denote by $\Phi(D)$ the set of all integral primitive positive definite binary quadratic forms of discriminant D :

$$
\begin{gather*}
\Phi(D)=\left\{f=a x^{2}+b x y+c y^{2} ;(a, b, c)=1,\right. \tag{2.9}\\
\left.a>0, b^{2}-4 a c=D<0\right\} .
\end{gather*}
$$

We identify $f \in \Phi(D)$ with the half-integral matrix $\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$, as usual.

From now on we assume that
$N \not \equiv 3(\bmod 4)$, i.e., $N \equiv 0,1$ or $2(\bmod 4)$.
Back to the set $\mathcal{F}(N)$ of (2.7), we set

$$
\left\{\begin{align*}
\mathcal{F}^{+}(N) & =\{F \in \mathcal{F}(N) ; a>0\} \tag{2.10}\\
\mathcal{F}^{-}(N) & =\{F \in \mathcal{F}(N) ; a<0\} \\
& =\left\{-F ; F \in \mathcal{F}^{+}(N)\right\}
\end{align*}\right.
$$

Then $\mathcal{F}(N)$ is a disjoint sum of $\mathcal{F}^{+}(N)$ and $\mathcal{F}^{-}(N)$, and each summand is stable under the the action of $\Gamma^{0}(N)$. Hence the following definition makes sense:

$$
\begin{equation*}
H^{e}\left(g, \Gamma_{0}(N)\right)=\mathcal{F}^{e}(N) / \Gamma^{0}(N), e= \pm \tag{2.11}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\sharp H\left(g, \Gamma_{0}(N)\right)=2 \sharp\left(\mathcal{F}^{+}(N) / \Gamma^{0}(N)\right) . \tag{2.12}
\end{equation*}
$$

In view of (2.7), (2.9), (2.10), the set $\mathcal{F}^{+}(N)$ may be considered as

$$
\begin{gather*}
\mathcal{F}^{+}(N)=\left\{f=a x^{2}+2 N b x y+N c y^{2}\right. \\
\left.a>0, D_{f}=-4 N\right\} \tag{2.13}
\end{gather*}
$$

and so, by (2.9), (2.13), we have

$$
\begin{equation*}
\mathcal{F}^{+}(N) \subset \Phi(-4 N) . .^{*)} \tag{2.14}
\end{equation*}
$$

Consequently, from (2.8), (2.11), we see that the embedding (2.14) induces naturally a map

$$
\begin{align*}
\pi: H^{+}\left(g, \Gamma_{0}(N)\right)= & \mathcal{F}^{+}(N) / \Gamma^{0}(N) \tag{2.15}\\
& \rightarrow \Phi(-4 N) / S L_{2}(\mathbf{Z})
\end{align*}
$$

3. $\boldsymbol{\pi}$ is injective. We shall prove that the map π in (2.15) is injective. So, for a matrix (or a quadratic form) $F \in \mathcal{F}^{+}(N)$, we denote by $[F],[F]^{0}$, the class of F modulo $S L_{2}(\mathbf{Z}), \Gamma^{0}(N)$, respectively. We must then show that $[F]=[G], F, G \in \mathcal{F}^{+}(N)$, $\Rightarrow[F]^{0}=[G]^{0}$. Now the assumption says that

$$
\begin{equation*}
G={ }^{t} T F T \text { for some } T \in S L_{2}(\mathbf{Z}) . \tag{3.1}
\end{equation*}
$$

If we put

$$
\begin{align*}
& T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), F=\left(\begin{array}{cc}
p & N q \\
N q & N r
\end{array}\right), G=\left(\begin{array}{cc}
u & N v \\
N v & N w
\end{array}\right), \tag{3.2}\\
& a d-b c=1, p r-N q^{2}=1, u w-N v^{2}=1,
\end{align*}
$$

then, (3.1) means that
(3.3) $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\left(\begin{array}{cc}p & N q \\ N q & N r\end{array}\right)=\left(\begin{array}{cc}u & N v \\ N v & N w\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.

On taking (3.3) modulo N we have

$$
\left(\begin{array}{cc}
a p & 0 \\
b p & 0
\end{array}\right) \equiv\left(\begin{array}{cc}
d u & -b u \\
0 & 0
\end{array}\right) \quad(\bmod N)
$$

and hence $b p \equiv 0(\bmod N)$. As $p r \equiv 1(\bmod N)$ by (3.2), we have $b \equiv 0(\bmod N)$, i.e., $T \in \Gamma^{0}(N)$, or $[F]^{0}=[F]^{0}$.

[^0]4. $\quad \boldsymbol{\pi}$ is surjective. Let $F=F(x, y)=a x^{2}+$ $2 N b x y+N c y^{2}$ be a quadratic form in $\mathcal{F}^{+}(N)$ for $N \not \equiv 3(\bmod 4)$. The discriminant of F is $D=-4 N$. Call τ the root of $F(x, 1)=a x^{2}+2 N b x+N c=0$ in the upper half plane. Then $a \tau=-b N+\sqrt{-N}$ is an algebraic integer in \mathcal{O}_{K} with $K=\mathbf{Q}(\sqrt{-N})$. We put
\[

$$
\begin{equation*}
\mathcal{O}(N)=[1, a \tau]=\mathbf{Z}+a \tau \mathbf{Z} \tag{4.1}
\end{equation*}
$$

\]

which is an order of the ring \mathcal{O}_{K}. The index $f=$ $\left[\mathcal{O}_{K}: \mathcal{O}(N)\right]$ is the conductor of $\mathcal{O}(N)$. The discriminant of $\mathcal{O}(N)$ becomes $D=-4 N$ above. We have the equality: $D=-4 N=f^{2} d_{K}$ where d_{K} is the discriminant of K. If we put

$$
\begin{equation*}
\omega_{K}=\frac{d_{K}+\sqrt{d_{K}}}{2} \tag{4.2}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\mathcal{O}_{K}=\left[1, \omega_{K}\right], \quad \mathcal{O}(N)=\left[1, f \omega_{K}\right] \tag{4.3}
\end{equation*}
$$

In what follows, let $\mathcal{O}=\mathcal{O}(N) \subset \mathcal{O}_{K}$ with conductor $f .^{* *)}$ We denote by $I(\mathcal{O})$ the group of proper fractional \mathcal{O}-ideals, by $P(\mathcal{O})$ the subgroup of principal \mathcal{O}-ideals and put $C(\mathcal{O})=I(\mathcal{O}) / P(\mathcal{O})$, the ideal class group of the order \mathcal{O}. On the other hand, we set $C(D)=\Phi(D) / S L_{2}(\mathbf{Z})$, the form class group for the discriminant $D=-4 N$. There is an isomorphism

$$
\begin{equation*}
C(D) \xrightarrow{\sim} C(\mathcal{O}) \tag{4.4}
\end{equation*}
$$

which is induced by sending the quadratic form $a x^{2}+$ $b x y+c y^{2}$ in $\Phi(D)$ to the proper ideal $[a, h+\sqrt{-N}]$ $\subset \mathcal{O}$, with $b=2 h$.

Next, let $I(\mathcal{O}, f)$ be the subgroup of $I(\mathcal{O})$ generated by ideals prime to $f, P(\mathcal{O}, f)$ be the subgroup of $I(\mathcal{O}, f)$ generated by principal ideals $\alpha \mathcal{O}$ where $\alpha \in \mathcal{O}$ has the norm prime to f.

Finally, let $I_{K}(f)$ be the subgroup of the group of fractional \mathcal{O}_{K}-ideals I_{K} generated by ideals prime to $f, P_{K, \mathbf{Z}}(f)$ be the subgroup of $I_{K}(f)$ generated by principal ideals of the form $\alpha \mathcal{O}_{K}$, where $\alpha \in \mathcal{O}_{K}$ satisfies $\alpha \equiv a\left(\bmod f \mathcal{O}_{K}\right)$ for some integer a relatively prime to f. Then there are natural isomorphisms

$$
\begin{align*}
C(\mathcal{O}) & \xrightarrow{\sim} I(\mathcal{O}, f) / P(\mathcal{O}, f) \\
& \xrightarrow{\sim} I_{K}(f) / P_{K, \mathbf{Z}}(f), \tag{4.5}
\end{align*}
$$

where the second isomorphism is the inverse one induced by the map:

$$
\begin{equation*}
\left[a, b+\omega_{K}\right] \mapsto\left[a, f\left(b+\omega_{K}\right)\right] \tag{4.6}
\end{equation*}
$$

from $I_{K}(f)$ to $I(\mathcal{O}, f)$.

Consequently we end up with the isomorphism

$$
\begin{equation*}
C(-4 N) \xrightarrow{\sim} I_{K}(f) / P_{K, \mathbf{Z}}(f) \tag{4.7}
\end{equation*}
$$

induced by $F=a x^{2}+b x y+c y^{2} \mapsto[a,-h+\sqrt{-N}]$, $b=2 h$.

We are now ready to prove that π is surjective. So take any form $F=a x^{2}+b x y+c y^{2} \in \Phi(-4 N)$. By (4.7), an ideal $\mathfrak{a}_{F}=[a,-h+\sqrt{-N}]$ in $I_{K}(f)$ corresponds to F. Let $\mathfrak{p}=[p, r+\sqrt{-N}]$ be a prime ideal in $I_{K}(f)$ which is congruent to \mathfrak{a}_{F} modulo $P_{K, \mathbf{Z}}(f)$. The existence of such a \mathfrak{p} is guaranteed by the Cebotarev density theorem. Since \mathfrak{p} is an ideal, we have

$$
\begin{equation*}
p \mid \operatorname{Norm}(r+\sqrt{-N})=r^{2}+N \tag{4.8}
\end{equation*}
$$

Choose u such that $-r \equiv N u(\bmod p)$. In view of (4.8), we have $N^{2} u^{2} \equiv r^{2} \equiv-N(\bmod p)$, hence $p \mid 1+N u^{2}$ as $p \nmid N$. Consequently

$$
\begin{equation*}
\mathfrak{p}=[p, r+\sqrt{-N}]=[p,-N u+\sqrt{-N}] \tag{4.9}
\end{equation*}
$$

Using v such that $p v=1+N u^{2}$, put $G=p x^{2}+$ $2 N u x y+N v y^{2}$. Then $D_{G}=(2 N u)^{2}-4 p N v=$ $4 N^{2} u^{2}-4 N\left(1+N u^{2}\right)=-4 N$, hence $G \in \mathcal{F}^{+}(N)$ and $G \sim F$. Since $\pi([G])=[\mathfrak{p}]$, we see from (4.7), (4.9) that π is surjective.

Summarizing arguments in 3 and 4 up to here, we obtain
(4.10) Theorem. Let N be a positive integer $\equiv 3(\bmod 4), \pi$ be the map $H^{+}\left(g, \Gamma_{0}(N)\right)=$ $\mathcal{F}^{+}(N) / \Gamma^{0}(N) \rightarrow C(-4 N)=\Phi(-4 N) / S L_{2}(\mathbf{Z})$ given in (2.15). Then π is a bijection. In particular, the cohomology set $H^{+}\left(g, \Gamma_{0}(N)\right)$ acquires a structure of a finite abelian group isomorphic to the form class group of discriminant $-4 N$.

From (2.12), (4.10), we have
(4.11) Theorem. Notation being as before, $\sharp H\left(g, \Gamma_{0}(N)\right)=2 h(-4 N)$ where $h(-4 N)$ means the class number of the order $\mathcal{O}(N)((4.1))$.
5. Examples. (5.1) Assume that the positive integer $N \not \equiv 3(\bmod 4)$ is square free. Hence $N \equiv 1,2(\bmod 4)$. Since $-N \equiv 2,3(\bmod 4), d_{K}=$ $-4 N, K=\mathbf{Q}(\sqrt{-N})$. Let $\mathcal{O}(N)$ be the order of \mathcal{O}_{K} in (4.1). As the discriminant D of $\mathcal{O}(N)$ is $-4 N$, we see that $\mathcal{O}(N)=\mathcal{O}_{K}$ and hence $h(-4 N)=h_{K}$, the ordinary class number of K.
(5.2) Let p be a prime number $\equiv 1(\bmod 4)$ and $N=p^{2 K+1}, k \geq 0$. Then $K=\mathbf{Q}(\sqrt{-N})=\mathbf{Q}(\sqrt{-p})$, $d_{K}=-4 p$. Let D be as before the discriminant of the order $\mathcal{O}(N)$. Then $D=-4 N=f^{2} d_{K}$. Hence we find $f=p^{k}$. We have $\mathcal{O}_{K}^{\times}=\mathcal{O}(N)^{\times}=\{ \pm 1\}$. By a well-known formula on class numbers of orders, we have

$$
h(-4 N)=h_{K} f\left(1-\left(\frac{d_{K}}{p}\right) p^{-1}\right)=p^{k} h_{K}
$$

and we find

$$
\frac{\sharp H\left(g_{K}, \Gamma_{0}\left(p^{2 k+1}\right)\right)}{p^{k}}=2 h_{K} \text { for all } k \geq 0 \text {, }
$$

where g_{K} shows the dependence of the group g on k.

References

[1] Cox, D.: Primes of the Form $x^{2}+n y^{2}$. John Wiley, New York (1989).
[2] Ono, T.: On certain cohomology sets attached to Riemann surfaces. Proc. Japan Acad., 76A, 116117 (2000).

[^0]: *) It is easy to verify that every form in $\mathcal{F}^{+}(N)$ is primitive whenever $N \not \equiv 3(\bmod 4)$. For $N \equiv 3(\bmod 4)$, this is not true: e.g., $N=3, a=c=2, b=1, f=2 x^{2}+6 x y+6 y^{2}$. One finds similar nonprimitive forms for any $N \equiv 3(\bmod 4)$.
 ${ }^{* *)}$ As for basic facts on orders see $[2, \S 7, \S 8]$.

