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Abstract: In this paper we consider the inverse scattering problem for the following
Hartree type equation:
ou
i— = —Au x|~ % [ul?)u.
= At (a7 ful?)

We prove the uniqueness theorem on the inverse scattering problem with respect to the power o.
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1. Introduction. In this paper we consider
the following Hartree type equation:

(1.1) z% = —Au+ F(u),

where A is the n-dimensional Laplacian in x, and

(12) F(u) = (Jz|=7  [ul*)u

= ([ 1o lutePay) utt. o)

The inverse scattering problem for the nonlinear
Schrodinger equation has been studied by Strauss [7],
Weder ([9], [10], [12]) and Watanabe [8]. In [7] (pp.
64-67), the power nonlinearity case;

F(u) = V(2)|uPtu

(t,z) e R xR,

was studied. Weder ([9], [12]) studied the nonlinear

Schrédinger equation with a potential;
F(u) = Vo(z)u + Aulf'u, XeR"

and
0 . .
F(u) = Vo(a)u+ 3 V() [u200 ),
=1

A cubic convolution nonlinearity case;

F(u) = q(@)u+ pla] " *JuP)u, peR”

was studied in Watanabe [8]. In those papers, it was
shown that if one of powers (p,jo,j, or o in each
cases) is given in some suitable conditions, then co-
efficients (V' (z), Vo(x), A, V;(x), ¢(z), 1) are uniquely

Mathematics Subject Classification. 35Q55, 35R30.

Inverse scattering; uniqueness theorem.

determined from the scattering operator. In addi-
tion, a method for the reconstruction of coefficients
were given.

Then the following problem arises.

Problem. When the power (p or o) is un-
known, can we determine the power from the scat-
tering operator?

As far as the author knows, there are no results
on this problem. In this paper we shall obtain the
uniqueness theorem on this inverse scattering prob-
lem for Hartree type equation (1.1), (1.2).

Before stating our theorem, we give notations
and introduce a result on the scattering problem for
the equation (1.1), (1.2).

Notation and function spaces. For a Ba-
nach space Z, LP(Z) = LP(R; Z) is the space of all
Z valued LP functions in R™. The function space S
is indefinitely differentiable on R™ and all of whose
derivatives remain bounded when multiplied by poly-
nominals. Let F¢ or " be the Fourier transform of ¢
defined by

1 ,
7(271_)”/2 / ) eflwf(j)(x) dx.

The inverse Fourier transform F~! is given by

1 .
(27T)”/2/Rn 6”05(25(5)(15

Forr e Rand 1 < p < oo, let H™? = H"?(R") be
the completions of C3° with respect to the norm,

A llzzre = 1IF7HET FE Mo
Different positive constants might be denoted by

Fo(§) =

Flp(a) =
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the same letter C.
Put

W =L3R; H") N L>®(R; H?),

where ¢ satisfies

1 1 2
1.3 —==——.
(1.3) q 2 3n
The following result on the scattering problem

for equation (1.1), (1.2) has been known.

Theorem (Mochizuki [3]). If o satisfies 2 <
o0 <4 and 0 < n, then there exists p > 0 with the
following properties: If ¢_ € H, = {¢p € H"? :
lollgrz < p}, then there exists a unique solution
ue W of (1.1), (1.2) such that

[u(t)

Furthermore, there exists a unique ¢, € HY? such
that

—e g g2 — 0 ast — —oo.

u(t) — e og ||z — 0 ast— oc.

The map S : ¢_ — ¢4, which is called a scat-
tering operator, is defined on a neighborhood of 0 in
H"? and represented as

(14 So() = o)+ [ R

— 00

where Hy = —A and wu is a solution of (1.1), (1.2)
with the initial data ¢ € H, at t = —oo
Now we state our theorem. Put

e 0 (|| 770 s fuy (¢, 2) )

xuj(t,x)dt, j=1,2,

where u;(z) is a solution of (1.
stead of o.

Theorem 1.1. Assume that the power o sat-
isfies 2 < o <4 and o <n. If Sy = S,, then o1 =
g9g.

1), (1.2) with o; in-

Remark 1.1. In Hayashi-Tsutsumi [1], the
scattering problem for equation (1.1), (1.2) was stud-
ied under the condition 1 < o < min(4,n). Using
their results, we can also obtain Theorem 1.1 for 1 <
o < min(4,n) in the same way as we shall prove.

This paper is organized as follows:

In Section 2 we give some preliminary results used
throughout this paper. Theorem 1.1 is proved in
Section 3.

[Vol. T7(A),

2. Preliminaries. We sumimarize some use-

ful lemmas in this section.
Lemma 2.1. Let 0 <o <n. Then for any f,

geSs,
(1ol = £,9) = 7*1(0)(| 5
F((n = a)/2)

where
I'(0/2)
and I is the Gamma function.
For Lemma 2.1, see, e.g., Stein [4].
Lemma 2.2. Let2<oc<4ando<n,l/q=
1/2 —2/(3n). Then there exist positive constants C
such that
le=* 0 ¢llw < Cllgll 1z, for ¢ € H'2,
(2™ % [fgDhllrz < Clflrallgllmrallhl e

for f.g,h € H',

Lemma 2.3.

—n+o . .
f,g),

v(o) =

D (=7 s fu(, @) *)u(r, @) dT

w
forue W.

Let2 <o <4 and o <n. Then
for a solution u(t,x) of the integral equation

ult, ) = e~ (o)
o/

we have

< Cllullyy

e~ DI (ja] = x Ju(r, @) [*ulT, 7) dr,

lullw < Cellgllme for ¢ € HY2.

For Lemma 2.2 and Lemma 2.3,
Mochizuki [3].

Lemma 2.4. Let2<0c<4 and o <n. Then
for any ¢ € H'2,

lim *((S I)(e9), 0)
= / / (‘xl—o * |e—itHo¢|2)|e—itH0¢|2 dr dt,
R n

where S is (1.4).
Proof. Letv = e "o(¢¢) and w = u—v. Then
it follows that

((S = I)(=), ¢)

- / ((j2] 7 * [uf)u,
R

=0+ 1+ I3

—|—€3/R/ (Jz| 77 =

see, e.g.,

(2.1)

e tog) dt

e itHg]2) e~ itHo g du dt,
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where
f= [ (el ). eH06) d
I = /R((|z|*0 * [uw))v, e~ "Hog) dt
I3 = /R((|x|*0 * [wo])v, e "o g) dt

By Schwarz inequarity, Lemma 2.2 and Lemma 2.3,
we have

| 12|
/| (|x| =7 * [uw])v, itH"qﬁ)‘dt

<C [ el + fulyoll . e
R
<C [ Nl

<c /R ol g (lalZnn + [ollZr.0) dt

1/3
sc(/ ||w|§{1,th>
R
( 2/3 ( 2/3
{(/ ||u|ip,th) +(/ ||U|§,1,th> }
R
<CH/

x(l[ullfy + vll%)
< Cllulliy (lullfy +e*10l171.2)
< C°||gll3.2-

D (2] =7 Ju(r, @) |)u(r, @) dr

w

In the same way we have |I1| < Ce®||¢[|%12, |I3] <
C’<€5||<;5||H1 ,. Hence we get

o [l e g e o du
R T

as e — 0. Il
3. Proof of Theorem 1.1. Put

. 1
L[] = lim ;3((5;‘ —1)(e9), ¢),
From Lemma 2.1 and Lemma 2.4

A= | (aies \e-itH0¢|2>|e-“Ho¢\2dmdt

o[ o n|§/2|" w5 [ (e ol

= —itHg 2
*C/ / e V| F(emto o) (26)| dé dt.

j=1,2.

©)|* de dt
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Subtracting I from I7, by the assumption S; = So
we obtain for any ¢ € H?

0= foho (s - )

x | F (e~ o p|)(2€)[* d€ dt.

We assume that o1 > oo. If |£] is sufficiently

small, then we have

V(o) (o2)
I K Y e

Taking ¢ € S such that supp i C {€ :
sufficiently small}, then

supp {|F (e~ 0y 2)(2)[*} < (€1 1¢] < &').

<0.

€] <&, e is

Moreover, |}'(|e*“H°w|2)(2§)}2 > 0 on a neighbor-
hood of £ = 0. Hence for such ¢ we have

Jodao (s s

x |F(je™ oy

2)(2¢)|* de dt < 0.

This contradicts with (3.1). Therefore we have com-
pleted the proof of Theorem 1.1. L]
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