On certain cohomology set for $\Gamma_{0}(N)$. II

By Takashi Ono
Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218-2689, U.S.A.
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 2001)

Abstract

Let $G=\Gamma_{0}(N)$ and g be the group generated by the involution $z \mapsto-1 / N z$ of the upper half plane. We determine the cohomology set $H^{1}(g, G)$ in terms of the class numbers $h(-N)$ and $h(-4 N)$ of quadratic forms.

Key words: Congruence subgroups of level N; the involution; cohomology sets; binary quadratic forms; class number of orders.

1. Introduction. This is a continuation (and a completion) of my preceding paper [3] which will be referred to as (I) in this paper.

For any positive integer N, let $G=\Gamma_{0}(N)$ and $S=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$. Using this S we can let $g=\langle s\rangle$, $s^{2}=1$, act on G by $A^{s}=S A S^{-1}$ and speak of the first cohomology set $H^{1}(g, G)$. In (I), we determined this set when $N \not \equiv 3(\bmod 4)$. In this paper, we shall remove this restriction on N. As usual, for a negative integer $D, D \equiv 0$ or $1(\bmod 4)$, we denote by $h(D)$ the number of classes of primitive positive integral binary quadratic forms of discriminant D. Then we have the following
(1.1) Theorem.

$$
\begin{aligned}
& \sharp H^{1}\left(g, \Gamma_{0}(N)\right) \\
& = \begin{cases}2 h(-4 N), & N \not \equiv 3(\bmod 4), \\
2(h(-4 N)+h(-N)), & N \equiv 3(\bmod 4) .\end{cases}
\end{aligned}
$$

2. $\mathcal{F}^{+}(\boldsymbol{N})$. As in (I), the proof of (1.1) is based on the equality

$$
\begin{equation*}
H^{1}\left(g, \Gamma_{0}(N)\right)=\mathcal{F}(N) / \Gamma^{0}(N), \quad(\mathrm{I},(2.8)) \tag{2.1}
\end{equation*}
$$

where

$$
\mathcal{F}(N)=\left\{F=\left(\begin{array}{cc}
a & N b \tag{2.2}\\
N b & N c
\end{array}\right) ; a c-N b^{2}=1\right\} .
$$

On the right side of (2.1), we consider the right action of $\Gamma^{0}(N)$ on the set (2.2) defined by $F \mapsto{ }^{t} T F T$, $T \in \Gamma^{0}(N)$.

As usual, for a negative integer $D, D \equiv 0$, or 1 $(\bmod 4)$, we denote by $\Phi(D)$ the set of all primitive positive integral binary quadratic forms of discriminant D :

2000 Mathematics Subject Classification. 11F75.

(2.3) $\quad \Phi(D)$

$$
=\left\{\begin{array}{l}
f=a x^{2}+b x y+c y^{2} ;(a, b, c)=1 \\
a>0, b^{2}-4 a c=D<0
\end{array}\right\} .
$$

We often identify $f \in \Phi(D)$ with the half-integral matrix $\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$. The right action of the group $\mathrm{SL}_{2}(\mathbf{Z})$ on $\Phi(D)$ is given by $f \mapsto{ }^{t} U f U, U \in \mathrm{SL}_{2}(\mathbf{Z})$. We denote by $C(D)$ the orbit space $\Phi(D) / \mathrm{SL}_{2}(\mathbf{Z})$ and by $h(D)$ the cardinality of $C(D)$, i.e., the class number of forms of discriminant D.

Back to the set $\mathcal{F}(N)$ in (2.2), we set

$$
\begin{align*}
& \mathcal{F}^{+}(N)=\{F \in \mathcal{F}(N) ; a>0\} \\
& \mathcal{F}^{-}(N)=\{F \in \mathcal{F}(N) ; a<0\} \tag{2.4}
\end{align*}
$$

Since $\mathcal{F}(N)$ is a disjoint sum of $\mathcal{F}^{+}(N)$ and $\mathcal{F}^{-}(N)$, and each summand is stable under the action of $\Gamma^{0}(N)$, we have

$$
\begin{equation*}
\sharp H^{1}\left(g, \Gamma_{0}(N)\right)=2 \sharp\left(\mathcal{F}^{+}(N) / \Gamma^{0}(N)\right) . \tag{2.5}
\end{equation*}
$$

In view of (2.2), (2.3), (2.4), the set $\mathcal{F}^{+}(N)$ may be written as

$$
\mathcal{F}^{+}(N)=\left\{\begin{array}{l}
f=a x^{2}+2 N b x y+N c y^{2} ; \tag{2.6}\\
a>0, D_{f}=-4 N
\end{array}\right\}
$$

For an integral form $f=a x^{2}+b x y+c y^{2}$, we put
(2.7) $\quad i(f)=(a, b, c)=$ the g.c.d. of coefficients.

It is easy to see that $i(f)=i(g)$ if $f \sim g$, i.e., if $g={ }^{t} T f T, T \in \mathrm{SL}_{2}(\mathbf{Z})$. Needless to say $i(f)=$ 1 means f is primitive. Since forms in $\mathcal{F}^{+}(N)$ are not necessary primitive for general N, we are forced to reclassify $\mathcal{F}^{+}(N)$ according to the invariant $i(f)$ when we compare it with the set $\Phi(D)$ where $i(f)=$ 1 always. Thus, we set, for an integer $k>0$,

$$
\begin{align*}
& (2.8) \quad \mathcal{F}_{k}(N) \\
& =\left\{f=a x^{2}+2 N b x y+N c y^{2} \in \mathcal{F}^{+}(N) ; i(f)=k\right\} . \tag{4.5}
\end{align*}
$$

$$
b+f \omega_{K}=\frac{h+\sqrt{D}}{2}
$$

To prove that π_{k} is surjective, for any form $F=$ $a x^{2}+b x y+c y^{2}$ in $\Phi(D)$ we must find a form G in $\mathcal{F}_{k}(N)$ such that the form class of $k^{-1} G$ is mapped on the class of F. By the well-known isomorphism

$$
\begin{array}{r}
C(D) \approx C(\mathcal{O}) \approx I_{K}(f) / P_{K, \mathbf{Z}}(f) \tag{4.6}\\
(\text { see }[1, \text { Prop. } 7.22])
\end{array}
$$

we may assume that the coefficient a of x^{2} in F is prime to $f,(a, f)=1$. In view of (4.5), the ideal corresponding to F is of the form

$$
\begin{equation*}
\mathfrak{a}=\left[a, \frac{b+\sqrt{D}}{2}\right] . \tag{4.7}
\end{equation*}
$$

Since we are dealing with ideal classes in the last term of (4.6), by the Cěbotarev theorem applied to the ideal class group in (4.6), we can replace \mathfrak{a} by a prime ideal $\mathfrak{p}=[p,(r+\sqrt{D}) / 2]$ such that $(p, N)=1$.

Now we have

$$
D= \begin{cases}-4 N, & \text { if } k=1 \tag{4.8}\\ -N, & \text { if } k=2 \\ (\text { the case } N \equiv 3(\bmod 4) \text { only })\end{cases}
$$

Since the argument in (I, 4) works for $k=1$ without any change, from now on we shall consider exclusively the case $k=2$, and so $N \equiv 3(\bmod 4)$. First note that, by (4.4),

$$
\begin{equation*}
4 p \mid N+r^{2} \tag{4.9}
\end{equation*}
$$

Next choose u so that $N u \equiv-r(\bmod 4 p)$. In view of (4.9), we have $N^{2} u^{2} \equiv r^{2} \equiv-N(\bmod 4 p)$, hence $4 p \mid N\left(1+N u^{2}\right)$ and so $4 p \mid 1+N u^{2}$.
Consequently, we find

$$
\begin{equation*}
\mathfrak{p}=\left[p, \frac{r+\sqrt{-N}}{2}\right]=\left[p, \frac{-N u+\sqrt{-N}}{2}\right] \tag{4.10}
\end{equation*}
$$

Using v such that $4 p v=1+N u^{2}$, put $G=2 p x^{2}+$ $2 N u x y+2 N v y^{2}$. Then, one verifies that $D_{G}=-4 N$ and $i(G)=2$, i.e., $G \in \mathcal{F}_{2}(N)$. Since the ideal \mathfrak{p} corresponds to $2^{-1} G$, the form class of $2^{-1} G$ is mapped to the class of F since $\mathfrak{p}, \mathfrak{a}$ are in the same ideal class.

Having verified that the map π_{k} is bijective, our proof of (1.1) Theorem is a consequence of materials in 2 , especially of (2.9)-(2.12).
5. $\Gamma_{\mathbf{0}}\left(p^{\mathbf{2 n + 1}}\right)$. Let p be a prime and n be a nonnegative integer. As an application of (1.1) Theorem we shall determine the cardinality of the set $H^{1}\left(g, \Gamma_{0}\left(p^{2 n+1}\right)\right)$ where the action of g on $\Gamma_{0}\left(p^{2 n+1}\right)$

Table

Case 1. $D=-4 p^{2 n+1}$.

	$p \equiv 1,2(\bmod 4)$	$p=3$	$p \equiv 3(\bmod 4),(p \neq 3)$
d_{K}	$-4 p$	-3	$-p$
f	p^{n}	$2 \cdot 3^{n}$	$-2 p^{n}$
$\left[\mathcal{O}_{K}^{\times}: \mathcal{O}_{f}^{\times}\right]$	1	3	1
$\prod_{p \mid f}$	1	$3 / 2$	$3 / 2, p \equiv 3(\bmod 8)$ $1 / 2, p \equiv 7(\bmod 8)$
$h(D)$	$h_{K} p^{n}$	$h_{K} 3^{n}$	$3 h_{K} p^{n}, p \equiv 3(\bmod 8)$ $h_{K} p^{n}, p \equiv 7(\bmod 8)$

Case 2. $D=-p^{2 n+1}, p \equiv 3(\bmod 4)$.

	$p=3$	$p \equiv 3(\bmod 4),(p \neq 3)$
d_{K}	-3	$-p$
f	3^{n}	p^{n}
$\left[\mathcal{O}_{K}^{\times}: \mathcal{O}_{f}^{\times}\right]$	$1, n=0$	1
$\prod_{p \mid f}$	$3, n \geq 1$	1
$h(D)$	$h_{K}, \quad n=0$	
$h_{K} 3^{n-1}, n \geq 1$	$h_{K} p^{n}$	

is the one described in 1 . For simplicity we denote this cardinality by $h^{1}\left(\Gamma_{0}\left(p^{2 n+1}\right)\right)$. Hence (1.1) Theorem implies that

$$
\begin{aligned}
& (5.1) \quad h^{1}\left(\Gamma_{0}\left(p^{2 n+1}\right)\right) \\
& = \begin{cases}2 h\left(-4 p^{2 n+1}\right), & p \not \equiv 3(\bmod 4), \\
2\left(h\left(-4 p^{2 n+1}\right)+h\left(-p^{2 n+1}\right)\right), & p \equiv 3(\bmod 4) .\end{cases}
\end{aligned}
$$

Since

$$
K=\mathbf{Q}\left(\sqrt{-4 p^{2 n+1}}\right)=\mathbf{Q}\left(\sqrt{-p^{2 n+1}}\right)=\mathbf{Q}(\sqrt{-p})
$$

the class numbers on the right side of (5.1) can be expressed in terms of $h(-p)=h_{K}$, the class number of K. This is based on the well-known formula:
$(5.2) h(D)=\frac{h_{K} f}{\left[\mathcal{O}_{K}^{\times}: \mathcal{O}_{f}^{\times}\right]} \prod_{p \mid f}\left(1-\left(\frac{d_{K}}{p}\right) p^{-1}\right)$
where D is a negative integer, $\equiv 0,1(\bmod 4), K=$ $\mathbf{Q}(\sqrt{D}), d_{K}$ the discriminant of K, \mathcal{O}_{f} the order of conductor f in \mathcal{O}_{K} and $\left(d_{K} / p\right)$ is the Kronecker symbol. Note that $D=d_{K} f^{2}$. The above tables exhibit
values of ingredients of (5.2) for $D=-4 p^{2 n+1}$ and $-p^{2 n+1}$.
Substituting these data in (5.1), we obtain
(5.3) $h^{1}\left(\Gamma_{0}\left(p^{2 n+1}\right)\right)$

$$
= \begin{cases}2 h_{K} p^{n}, & p \neq 3(\bmod 4) \\ 8 h_{K} p^{n}, & p \equiv 3(\bmod 8),(p \neq 3) \\ 4 h_{K} p^{n}, & p \equiv 7(\bmod 8) \\ 4, & p=3, n=0 \\ 8 h_{K} 3^{n-1}, & p=3, n \geq 1\end{cases}
$$

References

[1] Cox, D.: Primes of the Form $x^{2}+n y^{2}$. John Wiley, New York (1989).
[2] Ono, T.: On certain cohomology sets attached to Riemann surfaces. Proc. Japan Acad., 76A, 116117 (2000).
[3] Ono, T.: On certain cohomology set for $\Gamma_{0}(N)$. Proc. Japan Acad., 77A, 39-41 (2001).

