On certain cohomology set for $\Gamma_0(N)$. II

By Takashi Ono

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218-2689, U.S.A. (Communicated by Shokichi Iyanaga, M. J. A., Sept. 12, 2001)

Abstract: Let $G = \Gamma_0(N)$ and g be the group generated by the involution $z \mapsto -1/Nz$ of the upper half plane. We determine the cohomology set $H^1(g, G)$ in terms of the class numbers h(-N) and h(-4N) of quadratic forms.

Key words: Congruence subgroups of level N; the involution; cohomology sets; binary quadratic forms; class number of orders.

1. Introduction. This is a continuation (and a completion) of my preceding paper [3] which will be referred to as (I) in this paper.

For any positive integer N, let $G = \Gamma_0(N)$ and $S = \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$. Using this S we can let $g = \langle s \rangle$, $s^2 = 1$, act on G by $A^s = SAS^{-1}$ and speak of the first cohomology set $H^1(g, G)$. In (I), we determined this set when $N \not\equiv 3 \pmod{4}$. In this paper, we shall remove this restriction on N. As usual, for a negative integer D, $D \equiv 0$ or $1 \pmod{4}$, we denote by h(D) the number of classes of primitive positive integral binary quadratic forms of discriminant D. Then we have the following

(1.1) Theorem.

2. $\mathcal{F}^+(N)$. As in (I), the proof of (1.1) is based on the equality

(2.1)
$$H^1(g, \Gamma_0(N)) = \mathcal{F}(N) / \Gamma^0(N), \quad (\mathbf{I}, (2.8)),$$

where

(2.2)
$$\mathcal{F}(N) = \left\{ F = \begin{pmatrix} a & Nb \\ Nb & Nc \end{pmatrix}; ac - Nb^2 = 1 \right\}.$$

On the right side of (2.1), we consider the right action of $\Gamma^0(N)$ on the set (2.2) defined by $F \mapsto {}^tTFT$, $T \in \Gamma^0(N)$.

As usual, for a negative integer D, $D \equiv 0$, or 1 (mod 4), we denote by $\Phi(D)$ the set of all primitive positive integral binary quadratic forms of discriminant D:

(2.3)
$$\Phi(D)$$

= $\begin{cases} f = ax^2 + bxy + cy^2; (a, b, c) = 1, \\ a > 0, b^2 - 4ac = D < 0 \end{cases}$.

We often identify $f \in \Phi(D)$ with the half-integral matrix $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$. The right action of the group $\operatorname{SL}_2(\mathbf{Z})$ on $\Phi(D)$ is given by $f \mapsto {}^t U f U, U \in \operatorname{SL}_2(\mathbf{Z})$. We denote by C(D) the orbit space $\Phi(D)/\operatorname{SL}_2(\mathbf{Z})$ and by h(D) the cardinality of C(D), i.e., the class number of forms of discriminant D.

Back to the set $\mathcal{F}(N)$ in (2.2), we set

(2.4)
$$\mathcal{F}^+(N) = \{ F \in \mathcal{F}(N); \ a > 0 \}, \\ \mathcal{F}^-(N) = \{ F \in \mathcal{F}(N); \ a < 0 \}.$$

Since $\mathcal{F}(N)$ is a disjoint sum of $\mathcal{F}^+(N)$ and $\mathcal{F}^-(N)$, and each summand is stable under the action of $\Gamma^0(N)$, we have

(2.5)
$$\sharp H^1(g, \Gamma_0(N)) = 2\sharp (\mathcal{F}^+(N)/\Gamma^0(N)).$$

In view of (2.2), (2.3), (2.4), the set $\mathcal{F}^+(N)$ may be written as

(2.6)
$$\mathcal{F}^+(N) = \left\{ \begin{array}{l} f = ax^2 + 2Nbxy + Ncy^2; \\ a > 0, \ D_f = -4N \end{array} \right\}.$$

For an integral form $f = ax^2 + bxy + cy^2$, we put

(2.7) i(f) = (a, b, c) =the g.c.d. of coefficients.

It is easy to see that i(f) = i(g) if $f \sim g$, i.e., if $g = {}^{t}TfT$, $T \in SL_2(\mathbb{Z})$. Needless to say i(f) = 1 means f is primitive. Since forms in $\mathcal{F}^+(N)$ are not necessary primitive for general N, we are forced to reclassify $\mathcal{F}^+(N)$ according to the invariant i(f) when we compare it with the set $\Phi(D)$ where i(f) = 1 always. Thus, we set, for an integer k > 0,

²⁰⁰⁰ Mathematics Subject Classification. 11F75.

(2.8)
$$\mathcal{F}_k(N)$$

= { $f = ax^2 + 2Nbxy + Ncy^2 \in \mathcal{F}^+(N); i(f) = k$ }.

Actually, there are not many choices for the values $i(f), f \in \mathcal{F}^+(N)$. In fact the condition $ac - Nb^2 = 1$ in (2.2) implies that

(2.9)
$$\mathcal{F}_k(N) = \phi$$
 for all N and $k > 2$,

and

 $\mathcal{F}_2(N) \neq \phi \iff N \equiv 3 \pmod{4}.$ (2.10)

Hence we have the decomposition

(2.11)
$$\mathcal{F}^+(N) = \mathcal{F}_1(N) \cup \mathcal{F}_2(N)$$
 for all N

and

(2.12)
$$\mathcal{F}^+(N) = \mathcal{F}_1(N) \text{ when } N \not\equiv 3 \pmod{4}.$$

A typical element in $\mathcal{F}_2(N)$ for $N \equiv 3 \pmod{4}$ is $f = 2x^2 + 2Nxy + (1/2)N(N+1).$

From now on let k = 1 or 2. Clearly $\mathcal{F}_k(N)$ is stable under the action of $\Gamma^0(N)$. For a form $f \in$ $\mathcal{F}_k(N)$ the form $k^{-1}f$ is primitive of discriminant $-4k^{-2}N$ and hence a form in $\Phi(-4k^{-2}N)$. Consequently the map $f \mapsto k^{-1}f$ induces naturally a map:

(2.13)
$$\pi_k : \mathcal{F}_k(N)/\Gamma^0(N) \to \Phi(-4k^{-2}N)/\operatorname{SL}_2(\mathbf{Z}).$$

We shall prove that π_k is bijective.

3. π_k is injective. To prove that π_k is injective, take $F, G \in \mathcal{F}_k(N)$ such that $k^{-1}F \sim k^{-1}G$ (mod SL₂(**Z**)). We must then show that $F \sim G \pmod{1}$ $\Gamma^0(N)$). The assumption, however, implies that $F \sim$ $G \pmod{\operatorname{SL}_2(\mathbf{Z})}$ and hence the same argument as in (I, 3) works to conclude $F \sim G \pmod{\Gamma^0(N)}$.

4. π_k is surjective. For k = 1 or 2, put

$$(4.1) D = -4k^{-2}N < 0.$$

Since k = 2 only if $N \equiv 3 \pmod{4}$, we have $D \equiv 0, 1$ (mod 4). Let K be the quadratic field $\mathbf{Q}(\sqrt{D}) =$ $\mathbf{Q}(\sqrt{-N})$ with the discriminant d_K and

(4.2)
$$\omega_K = \frac{d_K + \sqrt{d_K}}{2}.$$

Then $\mathcal{O}_K = [1, \omega_K]$ is the ring of integers of K. Any order \mathcal{O} of K is given as $\mathcal{O} = [1, f\omega_K]$ with the conductor f such that $D = f^2 d_K$ and $[\mathcal{O}_K : \mathcal{O}] = f$. Any ideal in \mathcal{O} is of the form

(4.3)
$$\mathbf{a} = [a, b + f\omega_K], \quad a, b \in \mathbf{Z}, \ a = (\mathcal{O} : \mathbf{a}),$$

(4.4) $a|N(b+f\omega_K)$, N being the norm in K/\mathbf{Q} .

Notice that there is an integer h so that

(4.5)
$$b + f\omega_K = \frac{h + \sqrt{D}}{2}.$$

To prove that π_k is surjective, for any form F = $ax^2 + bxy + cy^2$ in $\Phi(D)$ we must find a form G in $\mathcal{F}_k(N)$ such that the form class of $k^{-1}G$ is mapped on the class of F. By the well-known isomorphism

(4.6)
$$C(D) \approx C(\mathcal{O}) \approx I_K(f)/P_{K,\mathbf{Z}}(f)$$

(see [1, Prop. 7.22])

we may assume that the coefficient a of x^2 in F is prime to f, (a, f) = 1. In view of (4.5), the ideal corresponding to F is of the form

(4.7)
$$\mathbf{a} = \left[a, \frac{b + \sqrt{D}}{2} \right]$$

Since we are dealing with ideal classes in the last term of (4.6), by the Cěbotarev theorem applied to the ideal class group in (4.6), we can replace \mathfrak{a} by a prime ideal $\mathfrak{p} = [p, (r + \sqrt{D})/2]$ such that (p, N) = 1. Now we have

$$(-4N)$$
 if

(4.8)
$$D = \begin{cases} -4N, & \text{if } k = 1, \\ -N, & \text{if } k = 2 \\ (\text{the case } N \equiv 3 \pmod{4} \text{ only}). \end{cases}$$

Since the argument in (I, 4) works for k = 1 without any change, from now on we shall consider exclusively the case k = 2, and so $N \equiv 3 \pmod{4}$. First note that, by (4.4),

(4.9)
$$4p|N+r^2.$$

Next choose u so that $Nu \equiv -r \pmod{4p}$. In view of (4.9), we have $N^2 u^2 \equiv r^2 \equiv -N \pmod{4p}$, hence $4p|N(1+Nu^2)$ and so $4p|1+Nu^2$. Consequently, we find

(4.10)
$$\mathfrak{p} = \left[p, \frac{r + \sqrt{-N}}{2}\right] = \left[p, \frac{-Nu + \sqrt{-N}}{2}\right].$$

Using v such that $4pv = 1 + Nu^2$, put $G = 2px^2 + Nu^2$ $2Nuxy + 2Nvy^2$. Then, one verifies that $D_G = -4N$ and i(G) = 2, i.e., $G \in \mathcal{F}_2(N)$. Since the ideal \mathfrak{p} corresponds to $2^{-1}G$, the form class of $2^{-1}G$ is mapped to the class of F since \mathfrak{p} , \mathfrak{a} are in the same ideal class.

Having verified that the map π_k is bijective, our proof of (1.1) Theorem is a consequence of materials in 2, especially of (2.9)-(2.12).

5. $\Gamma_0(p^{2n+1})$. Let p be a prime and n be a nonnegative integer. As an application of (1.1) Theorem we shall determine the cardinality of the set $H^1(q, \Gamma_0(p^{2n+1}))$ where the action of q on $\Gamma_0(p^{2n+1})$

109

No. 7]

Table

Case 1. $D = -4p^{2n+1}$.					
	$p \equiv 1, 2 \pmod{4}$	p = 3	$p \equiv 3 \pmod{4}, \ (p \neq 3)$		
d_K	-4p	-3	-p		
f	p^n	$2 \cdot 3^n$	$-2p^n$		
$[\mathcal{O}_K^ imes:\mathcal{O}_f^ imes]$	1	3	1		
$\prod_{p f}$	1	3/2	$3/2, \ p \equiv 3 \pmod{8}$ $1/2, \ p \equiv 7 \pmod{8}$		
h(D)	$h_K p^n$	$h_K 3^n$	$\begin{array}{l} 3h_K p^n, \ p \equiv 3 \pmod{8} \\ h_K p^n, \ p \equiv 7 \pmod{8} \end{array}$		

Case 2. $D = -p^{2n+1}, p \equiv 3 \pmod{4}$	Case 2.	$D = -p^{2n+1}$	$p \equiv 3$	$\pmod{4}$
--	---------	-----------------	--------------	------------

$F \to F \to F$				
	p = 3	$p \equiv 3 \pmod{4}, \ (p \neq 3)$		
d_K	-3	-p		
f	3^n	p^n		
$[\mathcal{O}_K^\times:\mathcal{O}_f^\times]$	$ \begin{array}{l} 1, \ n = 0 \\ 3, \ n \ge 1 \end{array} $	1		
$\prod_{p \mid f}$	1	1		
h(D)	$h_K, \qquad n = 0$ $h_K 3^{n-1}, \ n \ge 1$	$h_K p^n$		

is the one described in 1. For simplicity we denote this cardinality by $h^1(\Gamma_0(p^{2n+1}))$. Hence (1.1) Theorem implies that

(5.1)
$$h^{1}(\Gamma_{0}(p^{2n+1}))$$

= $\begin{cases} 2h(-4p^{2n+1}), & p \not\equiv 3 \pmod{4}, \\ 2(h(-4p^{2n+1}) + h(-p^{2n+1})), & p \equiv 3 \pmod{4}. \end{cases}$

Since

$$K = \mathbf{Q}(\sqrt{-4p^{2n+1}}) = \mathbf{Q}(\sqrt{-p^{2n+1}}) = \mathbf{Q}(\sqrt{-p}),$$

the class numbers on the right side of (5.1) can be expressed in terms of $h(-p) = h_K$, the class number of K. This is based on the well-known formula:

(5.2)
$$h(D) = \frac{h_K f}{[\mathcal{O}_K^{\times} : \mathcal{O}_f^{\times}]} \prod_{p \mid f} \left(1 - \left(\frac{d_K}{p}\right) p^{-1} \right)$$

where D is a negative integer, $\equiv 0, 1 \pmod{4}$, $K = \mathbf{Q}(\sqrt{D})$, d_K the discriminant of K, \mathcal{O}_f the order of conductor f in \mathcal{O}_K and (d_K/p) is the Kronecker symbol. Note that $D = d_K f^2$. The above tables exhibit

values of ingredients of (5.2) for $D = -4p^{2n+1}$ and $-p^{2n+1}$.

Substituting these data in (5.1), we obtain

(5.3)
$$h^{1}(\Gamma_{0}(p^{2n+1}))$$

$$= \begin{cases} 2h_{K}p^{n}, & p \neq 3 \pmod{4} \\ 8h_{K}p^{n}, & p \equiv 3 \pmod{8}, \ (p \neq 3) \\ 4h_{K}p^{n}, & p \equiv 7 \pmod{8} \\ 4, & p = 3, \ n = 0, \\ 8h_{K}3^{n-1}, & p = 3, \ n \geq 1. \end{cases}$$

References

- $[\ 1\]$ Cox, D.: Primes of the Form $x^2+ny^2.$ John Wiley, New York (1989).
- [2] Ono, T.: On certain cohomology sets attached to Riemann surfaces. Proc. Japan Acad., 76A, 116– 117 (2000).
- [3] Ono, T.: On certain cohomology set for $\Gamma_0(N)$. Proc. Japan Acad., **77A**, 39–41 (2001).