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Some characterizations of quaternionic space forms

By Toshiaki Adachi∗) and Sadahiro Maeda∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Dec. 12, 2000)

Abstract: In this paper we give characterizations of quaternionic space forms in the class of
quaternionic Kähler manifolds in terms of the curvature tensor and the extrinsic shape of geodesics
on geodesic spheres.
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1. Introduction. The aim of this paper is
to give two characterizations of quaternionic space
forms in the class of quaternionic Kähler manifolds.
A quaternionic Kähler structure J on a Riemannian
manifold (M, 〈 , 〉) of real dimension 4n with Rie-
mannian metric 〈 , 〉 is a rank 3 vector subbundle of
the bundle of endomorphisms of the tangent bundle
of M with the following properties:
1) For each point x ∈ M there is an open neigh-

borhood G of x in M and sections J1, J2, J3 of
the restriction J |G over G such that
i) each Ji is an almost Hermitian structure on

G, that is,

J2
i = − id and 〈JiX, Y 〉+ 〈X, JiY 〉 = 0

for all vector fields X and Y on G.
ii) JiJi+1 = Ji+2 = −Ji+1Ji (i mod 3) for i =

1, 2, 3.
2) The condition that ∇XJ is a section of J holds

for each vector field X on M and section J of
the bundle J , where ∇ denotes the Riemannian
connection of M .

This triple {J1, J2, J3} is called a canonical local ba-
sis of J . We call a connected quaternionic Kähler
manifold (M, 〈 , 〉,J ) a quaternionic space form of
quaternionic sectional curvature c (∈ R) if the Rie-
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mannian sectional curvature 〈R(v, Jv)v, Jv〉 of M

is equal to c for each unit vector v ∈ TM and
each unit J ∈ J . Here we adopt the following
signature for Riemannian curvature tensor of M ;
R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z. Quaternionic
space forms are the simplest examples in the class
of quaternionic Kähler manifolds. They are locally
congruent to either a quaternionic projective space
HPn(c) of quaternionic sectional curvature c(> 0), a
quaternionic Euclidean space Hn or a quaternionic
hyperbolic space HHn(c) of quaternionic sectional
curvature c (< 0).

In this paper we characterize quaternionic space
forms from two points of view. In section 2, we char-
acterize them by investigating their curvature ten-
sors. In his paper [K] Kosmanek characterized com-
plex space forms in the class of Kähler manifolds
(M,J) by the property that the vector R(u, Ju)u is
proportional to Ju for all non-null tangent vectors
(see also [T]). We here give its quaternionic version.

In section 3, we characterize quaternionic space
forms by observing the extrinsic shape of particu-
lar geodesics on their geodesic spheres of sufficiently
small radius, which is a quaternionic version of our
preceding results in [AM].

2. Curvature tensor of quaternionic
space forms. For a quaternionic space form of
quaternionic sectional curvature c its curvature ten-
sor can be written down as follows(cf. [I]):

R(X, Y )Z =
c

4

[
〈X, Z〉Y − 〈Y, Z〉X(2.1)

+
3∑

i=1

(〈Y, JiZ〉JiX − 〈X, JiZ〉JiY

− 2〈X, JiY 〉JiZ)
]
,
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where {J1, J2, J3} is a canonical local basis of J .
This guarantees that R(u, Ju)u = cJu, in particu-
lar, guarantees that the vector R(u, Ju)u is propor-
tional to Ju for each unit tangent vector u and unit
J ∈ J . In this section we characterize quaternionic
space forms by this property. We shall start with the
following lemma.

Lemma 1. The curvature tensor R of a
quaternionic Kähler manifold (M, 〈 , 〉,J ) satisfies
the following equality at an arbitrary point x ∈ M :

R(Ju, Jv) = R(u, v)

for each unit J ∈ J and for each u, v ∈ TxM such
that v is orthogonal to the quaternionic subspace J u

of TxM spanned by u.
Proof. For each canonical local basis

{J1, J2, J3} of quaternionic structure on G, there
exist three 1-forms q1, q2 and q3 on G satisfying

(2.2) ∇XJi = qi+2(X)Ji+1 − qi+1(X)Ji+2 (i mod 3)

for each vector field X on G and i = 1, 2, 3. Using
this equality repeatedly, we can verify the following
identity for arbitrary vector fields X, Y, Z on G and
for i = 1, 2, 3:

R(X, Y )(JiZ) = JiR(X, Y )Z(2.3)

+ ηi,i+1(X, Y )Ji+1Z

+ ηi,i+2(X, Y )Ji+2Z (i mod 3).

Here the differentiable 2-forms ηi,i+1 and ηi,i+2 can
be expressed as follows:

ηi,i+1(X, Y ) = qi+1(X)qi(Y )− qi(X)qi+1(Y )

−X(qi+2(Y )) + Y (qi+2(X)) + qi+2([X, Y ]),

ηi,i+2(X, Y ) = qi+2(X)qi(Y )− qi(X)qi+2(Y )

+X(qi+1(Y ))− Y (qi+1(X))− qi+1([X, Y ]).

Since v is orthogonal to the quaternionic subspace
J u, for arbitrary tangent vectors w, z ∈ TxM we
can see with the aid of (2.3) that

〈R(Jiu, Jiv)w, z〉 = 〈R(w, z)Jiu, Jiv〉
= 〈JiR(w, z)u, Jiv〉
= 〈R(w, z)u, v〉 = 〈R(u, v)w, z〉.

Thus we find R(Jiu, Jiv) = R(u, v) (i = 1, 2, 3). As
we can choose a canonical local basis {J1, J2, J3}
with J = J1 for each unit J ∈ J , we obtain the
conclusion.

We now show the following characterization of
quaternionic space forms:

Theorem 1. Let (M, 〈 , 〉,J ) be an n(= 2)-
dimensional connected quaternionic Kähler mani-
fold. Then M is a quaternionic space form if and
only if at an arbitrary point x ∈ M the vector
R(u, Ju)u is proportional to Ju for each tangent vec-
tor u ∈ TxM and J ∈ J .

Proof. We are enough to show the “if” part.
First we check

〈R(u, Ju)u, Ju〉 = 〈R(u, J ′u)u, J ′u〉(2.4)

for a tangent vector u ∈ TxM and each J, J ′ ∈ J
with ‖J‖ = ‖J ′‖ = 1. Indeed, since 〈(J + J ′)u, (J −
J ′)u〉 = 0, we know by the hypothesis that

0 = 〈R(u, (J + J ′)u)u, (J − J ′)u〉
= 〈R(u, Ju)u, Ju〉 − 〈R(u, J ′u)u, J ′u〉.

Next, we check that

〈R(u, Ju)u, Ju〉 = 〈R(v, Jv)v, Jv〉(2.5)

for each unit J ∈ J and unit tangent vectors u, v ∈
TxM such that v is orthogonal to the quaternionic
subspace J u of TxM . Since 〈J(u+v), J(u−v)〉 = 0,
our hypothesis shows

0 = 〈R(u + v, J(u + v))(u + v), J(u− v)〉
= 〈R(u, Ju)u, Ju〉 − 〈R(v, Jv)v, Jv〉
− 〈R(u, Jv)u, Jv〉+ 〈R(v, Ju)v, Ju〉.

Here by using Lemma 1 we have

〈R(u, Jv)u, Jv〉 = 〈R(−Ju, v)u, Jv〉
= −〈R(u, Jv)Ju, v〉
= −〈R(−Ju, v)Ju, v〉
= 〈R(v, Ju)v, Ju〉.

Hence we obtain (2.5). Combining (2.4) and (2.5),
we find at each point x ∈ M the quaternionic sec-
tional curvature does not depend on the choice of a
tangent vector u ∈ TxM . Therefore the quaternionic
version of Schur’s theorem tells us that our manifold
M is a quaternionic space form (see Theorem 5.3 in
[I]).

Remark. We can relax the condition in Theo-
rem 1 as follows: At an arbitrary point x ∈ M , there
is a normal basis {I1, I2, I3} of J such that for each
tangent vector u ∈ TxM the vector R(u, I1u)u is pro-
portional to I1u and the vector R(u, (I1 + Ii)u)u is
orthogonal to (I1 − Ii)u, i = 2, 3.

3. Geodesic spheres of quaternionic
space forms. In this section we characterize
quaternionic space forms by the extrinsic shape of
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geodesics on geodesic spheres. A smooth curve
γ = γ(s) in a Riemannian manifold M parametrized
by its arclength s is called a circle of curvature
κ (= 0), if there exists a field of unit vectors Ys along
this curve which satisfies the differential equations:
∇γ̇ γ̇ = κYs, ∇γ̇Ys = −κγ̇, where κ is a constant
and ∇γ̇ denotes the covariant differentiation along γ

with respect to the Riemannian connection ∇ of M .
A circle of null curvature is nothing but a geodesic.

The following lemma is based on the Taylor ex-
pansion for the second fundamental form of geodesic
spheres in an arbitrary Riemannian manifold M ,
which is due to Chen and Vanheche [CV].

Lemma 2. For non-zero tangent vectors
v, w ∈ TxM at a point x ∈ M , we choose a unit
tangent vector u ∈ TxM orthogonal to both v and w.
We respectively denote by vr, wr ∈ Texpx(ru)M the
parallel displacements of v and w along the geodesic
segment expm(su), 0 5 s 5 r. Then for sufficiently
small r we have

〈Am,rvr, wr〉(3.1)

=
1
r
〈v, w〉 − r

3
〈R(u, v)w, u〉+ O(r2),

where Am,r denotes the shape operator of the geodesic
sphere Sx(r) of radius r centered at x.

Let N be a real hypersurface of a quaternionic
Kähler manifold M and N a unit local normal vec-
tor field of N in M . We denote by D the maximal
subbundle of TN which is invariant by the quater-
nionic Kähler structure J : At a point y ∈ N (⊂ M)
the subspace Dy is the maximal subspace of TyN

with the property that Jv ∈ Dy for each v ∈ Dy

and J ∈ Jy. Let D⊥ denote the orthogonal comple-
ment of D in TN . It is a rank 3 vector subbundle of
TN . By using a canonical local basis {J1, J2, J3}
of J over an open subset G of M containing y,
we find that D⊥y is the real linear subspace of TyN

spanned by J1N , J2N , J3N . On an open set G ∩N

we set ξi = −JiN and define φi : TN → TN by
φi = π ◦ Ji|TN for i = 1, 2, 3, where π : TM |N →TN

is the canonical projection. Then the following iden-
tities hold on G ∩N for i = 1, 2, 3:

φiξi = 0, φiξi+1 = ξi+2, φiξi+2 = −ξi+1,

φi ◦ φi+1|D = φi+2|D = −φi+1 ◦ φi|D (i mod 3).

From now on, we pay attention on geodesics γ on
geodesic spheres with the initial vector γ̇(0) ∈ D⊥γ(0).

In a quaternionic Euclidean space Hn, a
geodesic sphere Sx(r) is nothing but a (4n − 1)-

dimensional standard sphere of curvature 1/r2 as a
totally umbilic hypersurface of R4n(= Hn). In par-
ticular, every geodesic on Sx(r) is a circle of cur-
vature 1/r in Hn. On the other hand, each non-
flat quaternionic space form M(c) (= HPn(c) or
HHn(c)) does not admit a real hypersurface N all
of whose geodesics are circles in the ambient space
M(c), because there exist no totally umbilic real hy-
persurfaces of M(c). However Sx(r) is the simplest
example of real hypersurfaces in M(c), c 6= 0. For
latter use, we here summarize some of basic proper-
ties on the shape operator A of a geodesic sphere in
a nonflat quaternionic space form.

Lemma 3 (cf. [P]). Every geodesic sphere
Sx(r) in a nonflat quaternionic space form M satis-
fies the following:
(1) The structure tensor φi and the shape operator

A of Sx(r) are commutative: φiA = Aφi (i =
1, 2, 3).

(2) The shape operator A of Sx(r), 0 < r < π/2
in HPn(4) satisfies the following at each point
y ∈ Sx(r):

Au = cot r · u for all u ∈ Dy

and

Aξ = 2 cot 2r · ξ for all ξ ∈ D⊥y ,

and the shape operator A of Sx(r), 0 < r < ∞
in HHn(−4) satisfies the following at each point
y ∈ Sx(r):

Au = coth r · u for all u ∈ Dy

and

Aξ = 2 coth 2r · ξ for all ξ ∈ D⊥y .

(3) The covariant derivative of the shape operator
A of N = Sx(r) satisfies

(N∇XA)Y = ∓
3∑

i=1

{〈φiX, Y 〉ξi + 〈ξi, Y 〉φiX},

where the double sign depends on the case
that either the ambient space is HPn(4) or
HHn(−4).
We are now in a position to prove the following.
Theorem 2. Let M be an n (= 2)-dimen-

sional connected quaternionic Kähler manifold.
Then the following conditions are equivalent.
(1) M is a quaternionic space form.
(2) Consider an arbitrary geodesic sphere Sx(r) of

sufficiently small radius r centered at an arbi-
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trary point x ∈ M . Every geodesic γ = γ(s)
with γ(0) = y and γ̇(0) ∈ D⊥y for an arbitrary
fixed point y ∈ Sx(r) is a circle of positive cur-
vature in the ambient manifold M .
Proof. (1) =⇒ (2). It suffices to check the

case where the ambient manifold M is one of HPn(4)
and HHn(−4). First we consider a geodesic sphere
Sx(r) in HPn(4). We denote by N∇ and ∇ the Rie-
mannian connections of N = Sx(r) and HPn(4),
respectively. Let γ = γ(s) be a geodesic on Sx(r)
with the initial condition that γ(0) = y ∈ N and
γ̇(0) ∈ D⊥y . We shall show that Aγ̇(s) = 2 cot 2r · γ̇(s)
for every s. It follows from the third assertion of
Lemma 3 that

N∇γ̇‖Aγ̇(s)− 2 cot 2r · γ̇(s)‖2

= N∇γ̇〈Aγ̇, Aγ̇〉 − 4 cot 2rN∇γ̇〈Aγ̇, γ̇〉
= 2〈(N∇γ̇A)γ̇, Aγ̇〉 − 4 cot 2r〈(N∇γ̇A)γ̇, γ̇〉

= −2
〈 3∑

i=1

{〈φiγ̇, γ̇〉ξi + 〈ξi, γ̇〉φiγ̇} , Aγ̇− 2 cot 2r · γ̇
〉

= −2
3∑

i=1

〈ξi, γ̇〉〈φiγ̇, Aγ̇〉.

Since Aφi = φiA, we find 〈φiγ̇, Aγ̇〉 = 〈Aφiγ̇, γ̇〉 =
−〈Aγ̇, φiγ̇〉, which leads us to 〈φiγ̇, Aγ̇〉 = 0, and
hence to N∇γ̇‖Aγ̇(s) − 2 cot 2r · γ̇(s)‖2 = 0. As we
have Aγ̇(0) = 2 cot 2r · γ̇(0) by the initial condition,
we obtain the desirable equality Aγ̇(s) = 2 cot 2r ·
γ̇(s) for every s. By use of the formulae of Gauss
and Weingarten

∇XZ = N∇XZ + 〈AX, Z〉N and ∇XN = −AX,

we can see that

∇γ̇ γ̇ = 2 cot 2r · N and ∇γ̇N = −2 cot 2r · γ̇,

which means that the extrinsic shape of the geodesic
γ is a circle of curvature 2 cot 2r in HPn(4).

For geodesics on geodesic spheres in HHn(−4)
we can get the similar result by the same argument.

(1) ⇐= (2). Let γ = γ(s) be a geodesic on
Sx(r) with the initial condition that γ(0) = y and
γ̇(0) = ξ ∈ D⊥y , where ξ is an arbitrary fixed unit
vector. It follows from the formulae of Gauss and
Weingarten that

∇γ̇(∇γ̇ γ̇)(3.2)

= 〈(N∇γ̇Am,r)γ̇, γ̇〉N − 〈Am,rγ̇, γ̇〉Am,rγ̇.

On the other hand, since γ is a circle in M by the
hypothesis, there exists a positive constant κγ satis-

fying that

∇γ̇(∇γ̇ γ̇) = −κ2
γ γ̇.(3.3)

Comparing the tangential components of (3.2) and
(3.3), we find the following:

〈Am,rγ̇, γ̇〉Am,rγ̇ = κ2
γ γ̇.

As κγ 6= 0, at s = 0 we have for every unit vector
ξ ∈ D⊥y

Am,rξ = κξξ or Am,rξ = −κξξ

for some positive κξ. Since we have

κξ+ξ′(ξ + ξ′) = Am,r(ξ + ξ′) = κξξ + κξ′ξ
′,

we find a constant κy satisfying that

Am,rξ = κyξ for all ξ ∈ D⊥y .

Here, we employ Lemma 2. Let u ∈ TxM be any
fixed unit vector at an arbitrary point x ∈ M and J

be any element in J \{0}. We choose a tangent vec-
tor w ∈ TxM orthogonal to both u and Ju and set
v = Ju. Since ur is a normal vector of the geodesic
sphere Sx(r) in M at y = expx(ru), we know that
vr ∈ D⊥y , so that Am,rvr = κyvr. Hence the expan-
sion (3.1) shows that the curvature tensor R of M

satisfies

〈R(u, Ju)w, u〉 = 0.

Therefore we can see that R(u, Ju)u is proportional
to Ju for every u ∈ TxM and for every J ∈ J at
each point x ∈ M , so that M is a quaternionic space
form by Theorem 1.

The following is an improvement of Theorem 2.
Theorem 3. Let M be an n (= 2)-dimen-

sional connected quaternionic Kähler manifold.
Then the following conditions are equivalent.
(1) M is a quaternionic space form.
(2) Consider an arbitrary geodesic sphere Sx(r) of

sufficiently small radius r centered at an arbi-
trary point x ∈ M . At each point y ∈ Sx(r)
there exists an orthonormal basis {η1, η2, η3} of
D⊥y such that all geodesics on Sx(r) through y in
the direction ηi + ηj (i, j = 1, 2, 3) are circles of
positive curvature in the ambient manifold M .
Proof. We are enough to show that the condi-

tion (2) implies that M is a quaternionic space form.
Let γi = γi(s) (i = 1, 2, 3) be geodesics on Sx(r) with
γi(0) = y and γ̇i(0) = ηi and σj = σj(s) (j = 2, 3) be
geodesics on Sx(r) through y in the direction η1 +ηj .
Then the same discussion as in the proof of Theorem
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2 yields

〈Am,rηi, ηi〉Am,rηi = κ2
i ηi, i = 1, 2, 3

〈Am,r(η1 + ηj), (η1 + ηj)〉Am,r(η1 + ηj)

= λ2
j (η1 + ηj), j = 2, 3

for some positive constants κi and λj . Hence we find

Am,rηi = ±κiηi, and Am,r(η1 + ηj) = ±λj(η1 + ηj).

Since 〈η1 + ηj , η1 − ηj〉 = 0, j = 2, 3, we find

〈Am,r(η1 + ηj), η1 − ηj〉 = 0,

so that

〈Am,rη1, η1〉 = 〈Am,rηj , ηj〉,

because Am,r is symmetric. Thus there exists a con-
stant κy with

Am,rξ = κyξ for all ξ ∈ D⊥y .

By the proof of Theorem 2 we get our conclusion.
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