Adelic Minkowski's second theorem over a division algebra

By Seiji Kimata and Takao Watanabe
Department of Mathematics, Graduate School of Science, Osaka University, 1-16, Machikaneyama-machi, Toyonaka, Osaka 560-0043
(Communicated by Heisuke Hironaka, m. J. a., Dec. 12, 2000)

Abstract

We prove an analogue of Minkowski's second fundamental theorem for a vector space over a central division algebra in an adelic manner.

Key words: Minkowski's second fundamental theorem; successive minima.
0. Introduction. For a bounded o-symmetric convex body S in \mathbf{R}^{n} with volume $V(S)$, Minkowski introduced successive minima $\lambda_{1}, \ldots, \lambda_{n}$ of S with respect to the lattice \mathbf{Z}^{n} and proved the second fundamental theorem;

$$
\begin{equation*}
\frac{2^{n}}{n!} \leq \lambda_{1} \cdots \lambda_{n} V(S) \leq 2^{n} \tag{1}
\end{equation*}
$$

From an adelic viewpoint, this theorem was generalized first by Macfeat, and then by Bombieri and Vaaler as follows. Let k be an algebraic number field and $E=k^{L}$ the k-vector space. For a k-lattice M in E and a bounded o-symmetric convex body S in $E \otimes_{\mathbf{Q}} \mathbf{R}$, the successive minima $\lambda_{1}, \ldots, \lambda_{L}$ of S with respect to M is defined. Then an inequality analogous to (1) holds for $\lambda_{1}, \ldots, \lambda_{L}$ ([M, Theorem 5], [B-V, Theorems 3 and 6]).

The purpose of this paper is to generalize the Minkowski's second fundamental theorem to a vector space over a central division algebra D of an algebraic number field k. Let $E=D^{L}$ be a left D-vector space, Λ an order in D, M a Λ-lattice in E and S a bounded o-symmetric convex body in $E \otimes_{\mathbf{Q}} \mathbf{R}$. In Section 1, we define successive minima of S with respect to M and give an upper estimate of the product of successive minima (Theorem 1). This result is regarded as a generalization of the second fundamental theorem over the Hamilton quaternion algebra due to Weyl ([We, Theorem $\left.\left.1^{* *}\right]\right)$. As will be mentioned after Theorem 1, it is observed that this upper estimate is equivalent to the upper estimate by Macfeat and Bombieri-Vaaler. In Section 2, we will give a lower estimate of the product of successive minima (Theorem 2). This result is a strict generalization of [B-V, Theorem 6].

[^0]1. An upper bound of successive minima. Let k be an algebraic number field, D a central division algebra of finite dimension over k and E an L-dimensional left vector space over D. A subset of D will be called an order of D if it is a subring containing 1 and a k-lattice. Let Λ be an order of D. A k-lattice of E will be called a Λ-lattice if it is a finitely generated left Λ-module.

For each place v of k, let $|\cdot|_{v}$ be the absolute value of the completion k_{v} of k at v normalized so that $|a|_{v}=\nu_{v}(a C) / \nu_{v}(C)$, where ν_{v} is a Haar measure of k_{v} and C is an arbitrary compact subset of k_{v} with nonzero measure. Let d be the degree of k over \mathbf{Q}, n^{2} the degree of D over k. We set $D_{v}:=D \otimes_{k} k_{v}, D_{\infty}:=\prod_{v \in P_{\infty}} D_{v}, D_{f}:=\prod_{v \in P_{f}}^{\prime} D_{v}$ and $D_{\mathbf{A}}:=D_{\infty} \times D_{f}$, where $P_{f}\left(\right.$ resp. $\left.P_{\infty}\right)$ is the set of all finite (resp. infinte) places of k.

For each $v \in P_{\infty}$, there is an isomorphism σ_{v} of D_{v} onto $M_{m_{v}}\left(K_{v}\right)$, where if v is an unramified real (resp. a ramified real and an imaginary) place, m_{v} equals n (resp. $n / 2$ and n) and K_{v} denotes \mathbf{R} (resp. \mathbf{H} and $\mathbf{C})$. Let $\mathbf{e}_{i j}^{(v)}$ be matrix units of $M_{m_{v}}(\mathbf{R})$ and $\left\{u_{l}^{(v)}\right\}$ the canonical basis of K_{v} over \mathbf{R}. Then $\left\{\mathbf{e}_{i j}^{(v)} \otimes u_{l}^{(v)}\right\}$ is a basis of $M_{m_{v}}\left(K_{v}\right)$ over \mathbf{R}. By this basis, $M_{m_{v}}\left(K_{v}\right)$ is identified with $\mathbf{R}^{\left[K_{v}: \mathbf{R}\right] n^{2}}$, and a Haar measure μ_{v} on $M_{m_{v}}\left(K_{v}\right)$ is taken as

$$
\mu_{v}:=c \prod_{i=1}^{\left[K_{v}: \mathbf{R}\right] n^{2}} d x_{i}
$$

where $d x_{i}$ is the usual Lebesgue measure on \mathbf{R} and $c=1$ or $2^{n^{2}}$ according as v is real or imaginary. We define a Haar measure α_{v} on D_{v} as a pull-back of μ_{v} by σ_{v} and set $\alpha_{\infty}:=\prod_{v \in P_{\infty}} \alpha_{v}$. A Haar measure α_{f} on D_{f} is taken so that the volume of $D_{\mathbf{A}} / D$ equals 1 with respect to the measure $\alpha_{\infty} \times \alpha_{f}$.

We denote by V the product measure $\left(\alpha_{\infty} \times\right.$ $\left.\alpha_{f}\right)^{L}$ on $E_{\mathbf{A}}=\left(D_{\mathbf{A}}\right)^{L}$.

Let Λ be an order of D and M a Λ-lattice. For $v \in P_{f}$, we set $M_{v}:=\Lambda_{v} \otimes_{\Lambda} M$. For each $v \in P_{\infty}$, let S_{v} be a nonempty, open, convex, bounded and symmetric subset of E_{v}. Then the subset \mathcal{S} of $E_{\mathbf{A}}$ is defined to be

$$
\mathcal{S}:=\prod_{v \in P_{\infty}} S_{v} \times \prod_{v \in P_{f}} M_{v}
$$

Definition. Let \mathcal{S} be as above. For each integer $l, 1 \leq l \leq L$, let

$$
\begin{gathered}
\lambda_{l}:=\inf \{\lambda>0:(\lambda \mathcal{S}) \cap E \text { contains } l \text { linearly } \\
\text { independent vectors }\},
\end{gathered}
$$

where $\lambda \mathcal{S}$ denotes the set $\prod_{v \in P_{\infty}} \lambda S_{v} \times \prod_{v \in P_{f}} M_{v}$. Then $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}$ will be called the successive minima for \mathcal{S} with respect to the subgroup E.

Theorem 1. Let \mathcal{S} be as above. Then the successive minima $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}$ satisfy the inequality

$$
\left(\lambda_{1} \lambda_{2} \cdots \lambda_{L}\right)^{n^{2} d} V(\mathcal{S}) \leq 2^{n^{2} d L}
$$

This theorem is proved by the same way to $[B-V]$, so we omit its proof.

Obviously, [B-V, Theorem 3] is a special case, i.e. $n=1$, of Theorem 1. Conversely [B-V, Theorem 3] implies Theorem 1 as a consequence of the following fact;

Let \mathcal{S} and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}$ be as in Theorem 1. Regarding E as a vector space over k, one has the successive minima $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{n^{2} L}^{\prime}$ for \mathcal{S} in a sense of $[\mathrm{B}-\mathrm{V}]$. Then $\left\{\lambda_{1}, \ldots, \lambda_{L}\right\}$ is a subset of $\left\{\lambda_{1}^{\prime}, \ldots, \lambda_{n^{2} L}^{\prime}\right\}$ and $\lambda_{i} \leq \lambda_{(i-1) n^{2}+1}^{\prime}$ holds for all i, $1 \leq i \leq L$.
2. A lower bound of successive minima. Let v be an infinite place of k. For $x \in D_{v}$ we define a norm $\|x\|_{v}$ by

$$
\|x\|_{v}:=\operatorname{tr}\left({ }^{t} \overline{\sigma_{v}(x)} \sigma_{v}(x)\right)^{1 / 2}
$$

Theorem 2. Let \mathcal{S} be as in Theorem 1. In addition, assume that \mathcal{S} satisfies the following condition:

For each infinite place $v, x S_{v} \subseteq S_{v}$ holds for all $x \in D_{v}$ with $\|x\|_{v}=1$.
Then the successive minima $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}$ satisfy the inequality
$\left(\frac{\left\{\left(n^{2}\right)!\sqrt{\pi}^{n^{2}}\right\}^{L}}{\left(n^{2} L\right)!\Gamma\left(n^{2} / 2+1\right)^{L}}\right)^{r_{1}}\left(\frac{\left\{\left(2 n^{2}\right)!(2 \pi)^{n^{2}}\right\}^{L}}{\left(2 n^{2} L\right)!\Gamma\left(n^{2}+1\right)^{L}}\right)^{r_{2}}$ $\leq\left(\lambda_{1} \lambda_{2} \cdots \lambda_{L}\right)^{n^{2} d} V(\mathcal{S})\left(\alpha_{\infty}\left(D_{\infty} / \Lambda\right)\right)^{L}$,
where r_{1} (resp. r_{2}) is the number of real (resp. imaginary) places of k.

Proof. Since M is a Λ-lattice, M contains a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{L}\right\}$ of E over D. For each $\lambda_{l}, 1 \leq$ $l \leq L$, we may associate a vector \mathbf{u}_{l} in E such that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{l}\right\}$ are linearly independent over D and are contained in the set $(\lambda \mathcal{S}) \cap E$ for any $\lambda>\lambda_{l}$. Let $U:={ }^{t}\left(\mathbf{u}_{1} \ldots \mathbf{u}_{L}\right)$ be an $L \times L$ matrix. The map $\mathbf{x} \rightarrow \mathbf{x} U$ is an automorphism of $E_{\mathbf{A}}$, and by the product formula, the module of this automorphism is equal to 1 , so that we have

$$
V(\mathcal{S})=V\left(\mathcal{S} U^{-1}\right)
$$

The sets $S_{v} U^{-1}, v \in P_{\infty}$, and $M_{v} U^{-1}, v \in P_{f}$, have exactly the same properties as S_{v} and M_{v}. Thus the successive minima for $\mathcal{S} U^{-1}$ may be defined and are clearly equal to the successive minima $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}$ for \mathcal{S}. Now the vectors associated with the successive minima for $\mathcal{S} U^{-1}$ may be taken as $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{L}$. Thus we may assume without loss of generality that $\mathbf{u}_{l}=\mathbf{e}_{l}$ to begin with.

For each $v \in P_{\infty}$, we define a subset S_{v}^{\prime} of E_{v} as

$$
S_{v}^{\prime}:=\left\{\mathbf{T}=\sum_{l=1}^{L} T_{l} \mathbf{e}_{l} \in E_{v} \mid \sum_{l=1}^{L} \lambda_{l}\left\|T_{l}\right\|_{v}<1\right\} .
$$

For $\mathbf{T}=\sum_{l=1}^{L} T_{l} \mathbf{e}_{l} \in S_{v}^{\prime}-\{0\}$, there exists $c>1$ so that $c \sum_{l=1}^{L} \lambda_{l}\left\|T_{l}\right\|_{v}=1$. For each l whose $T_{l} \neq 0$, we have

$$
T_{l} \mathbf{e}_{l}=c \lambda_{l}\left\|T_{l}\right\|_{v} \frac{T_{l}}{\left\|T_{l}\right\|_{v}}\left(\frac{1}{c \lambda_{l}} \mathbf{e}_{l}\right)
$$

Since $\left(1 / c \lambda_{l}\right) \mathbf{e}_{l}$ is contained in S_{v} and $T_{l} /\left\|T_{l}\right\|_{v}$ is an element of D_{v} with $\left\|\left(T_{l} /\left\|T_{l}\right\|_{v}\right)\right\|_{v}=1$, we have

$$
\frac{T_{l}}{\left\|T_{l}\right\|_{v}}\left(\frac{1}{c \lambda_{l}} \mathbf{e}_{l}\right) \in S_{v}
$$

It follows from the convexity of S_{v} that $\sum_{l=1}^{L} T_{l} \mathbf{e}_{l}$ is contained in S_{v}. Thus S_{v} contains S_{v}^{\prime}. The volume of S_{v}^{\prime} is given as follows: if v is real,

$$
\alpha_{v}^{L}\left(S_{v}^{\prime}\right)=\frac{1}{\left(\lambda_{1} \cdots \lambda_{L}\right)^{n^{2}}} \frac{\left(\left(n^{2}\right)!\sqrt{\pi}^{n^{2}}\right)^{L}}{\left(n^{2} L\right)!\Gamma\left(n^{2} / 2+1\right)^{L}}
$$

and if v is imaginary

$$
\alpha_{v}^{L}\left(S_{v}^{\prime}\right)=\frac{1}{\left(\lambda_{1} \cdots \lambda_{L}\right)^{2 n^{2}}} \frac{\left(\left(2 n^{2}\right)!(2 \pi)^{n^{2}}\right)^{L}}{\left(2 n^{2} L\right)!\Gamma\left(n^{2}+1\right)^{L}}
$$

Let $v \in P_{f}$. Since Λ-lattice M contains a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{L}\right\}$ of E over D, M_{v} contains $\left(\Lambda_{v}\right)^{L}$, and hence

$$
\alpha_{f}\left(\prod_{v \in P_{f}} \Lambda_{v}\right)^{L} \leq \alpha_{f}^{L}\left(\prod_{v \in P_{f}} M_{v}\right)
$$

Since the sequence

$$
0 \rightarrow \prod_{v \in P_{f}} \Lambda_{v} \rightarrow\left(D_{\infty} \prod_{v \in P_{f}} \Lambda_{v}\right) / \Lambda \rightarrow D_{\infty} / \Lambda \rightarrow 0
$$

is exact and the volume of $D_{\mathbf{A}} / D=\left(D_{\infty} \prod_{v \in P_{f}} \Lambda_{v}+\right.$ $D) / D$ equals 1 , we have

$$
\alpha_{\infty}\left(D_{\infty} / \Lambda\right)=\alpha_{f}\left(\prod_{v \in P_{f}} \Lambda_{v}\right)^{-1}
$$

Let $\mathcal{S}^{\prime} \subseteq E_{\mathbf{A}}$ be defined by

$$
\mathcal{S}^{\prime}:=\prod_{v \in P_{\infty}} S_{v}^{\prime} \times \prod_{v \in P_{f}}\left(\Lambda_{v}\right)^{L} .
$$

Then the volume of \mathcal{S}^{\prime} is equal to

$$
\begin{aligned}
& V\left(\mathcal{S}^{\prime}\right)=\frac{1}{\left(\lambda_{1} \cdots \lambda_{L}\right)^{n^{2} d}}\left(\frac{\left\{\left(n^{2}\right)!\sqrt{\pi}^{n^{2}}\right\}^{L}}{\left(n^{2} L\right)!\Gamma\left(n^{2} / 2+1\right)^{L}}\right)^{r_{1}} \\
& \quad \times\left(\frac{\left\{\left(2 n^{2}\right)!(2 \pi)^{n^{2}}\right\}^{L}}{\left(2 n^{2} L\right)!\Gamma\left(n^{2}+1\right)^{L}}\right)^{r_{2}}\left(\alpha_{\infty}\left(D_{\infty} / \Lambda\right)\right)^{-L} .
\end{aligned}
$$

As $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ we have the inequality $V\left(\mathcal{S}^{\prime}\right) \leq V(\mathcal{S})$.

References

[B-V] Bombieri, E., and Vaaler, J.: On Siegel's Lemma. Invent. Math., 73, 11-32 (1983).
[M] Macfeat, R. B.: Geometry of numbers in adele spaces. Dissertations Math. (Rozprawy Mat.), vol. 138, Instytut Matematyczny Polskiej Akademii Nauk, Warszawa (1971).
[S] Siegel, C. L.: Lectures on Geometry of Numbers. Springer, Berlin-Heidelberg-New York (1989).
[W] Weil, A.: Basic Number Theory. Springer, Berlin-Heidelberg-New York (1973).
[We] Weyl, H.: Theory of reduction for arithmetical equivalence. Trans. Amer. Math. Soc., 48, 126164 (1940).

[^0]: 1991 Mathematics Subject Classification. Primary 11H06; Secondary 11R56.

