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Note on steady solutions of the Eguchi-Oki-Matsumura equation

By Takao Hanada,∗) Naoyuki Ishimura,∗∗) and MasaAki Nakamura
∗∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Nov. 13, 2000)

Abstract: Eguchi-Oki-Matsumura (EOM) equations are introduced to model theoretically
the kinetics of ordering which accompanies phase separation in some binary alloys. Numerical anal-
ysis shows that EOM equations admit several steady states. Employing the variational structure
associated with the free energy, we prove that there really exist non-trivial steady solutions for
EOM equations.
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1. Introduction. In thermodynamics, the
phenomena of phase separation observed in certain
alloys have been an attractive subject for researches.
Eguchi-Oki-Matsumura [1], in an attempt of theoret-
ically investigating such kinetics, introduced a sys-
tem of equations, which will be referred to as EOM
equations hereafter. This motion law is derived from
the first principles of thermodynamics of irreversible
process under appropriate assumptions on the free
energy, and consists of coupled two variables; one is
the local concentration and the other is the local de-
gree of order. After performing a suitable scaling of
parameters, EOM equations in one-space dimension
are expressed as follows.



ut = −ε2uxxxx + ((a+ v2)u)xx

in x ∈ (0, 1), t > 0

vt = vxx + (b− u2 − v2)v

in x ∈ (0, 1), t > 0

ux = uxxx = vx = 0

at x = 0, 1, t > 0,

(1)

where u = u(x, t) and v = v(x, t) denote unknown
functions related to the local concentration and the
local degree of order, respectively. The total concen-
tration of u is conserved under the evolution of (1).
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Namely we have ∫ 1

0

u(x, t) dx = m,

where m is a constant.

ε, a are positive constants depending on the
temperature, and b ∈ R is a constant which increase
from negative to positive as the temperature crosses
downward the critical one. We focus our attention,
however, on the case of positive b, since the negative
b turns out to enjoy rather trivial behaviors.

As a special case of EOM equations, we remark
that if v ≡ 0 then (1) reduces to



ut = −ε2uxxxx + auxx

in x ∈ (0, 1), t > 0

ux = uxxx = 0

at x = 0, 1, t > 0∫ 1

0

u dx = m.

This is the famous Cahn-Hilliard equation in its sim-
plest form. While if we put u ≡ m in (1) then we
recover 


vt = vxx + (b−m2 − v2)v

in x ∈ (0, 1), t > 0

vx = 0 at x = 0, 1, t > 0,

which is deduced from the Ginzburg-Landau theory
for superconductivity.

In this note, we are concerned with steady so-
lutions of (1). To be precise, we want to seek for
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solutions u = u(x) and v = v(x) which verify


−ε2uxxxx + ((a+ v2)u)xx = 0

in x ∈ (0, 1)

vxx + (b− u2 − v2)v = 0

in x ∈ (0, 1)

ux = uxxx = vx = 0

at x = 0, 1∫ 1

0

u dx = m.

(2)

As is easily seen, (2) always has a solution u ≡ m
and v ≡ 0. If b ≤ 0 then the maximum principle im-
plies that this is the only solution to (2). If b > m2,
(2) has another solution u ≡ m and v ≡ ±

√
b−m2.

We call these solutions as trivial solutions of EOM
equations.

Our intention is now to discuss whether there
exists other solution to (2) or not. Indeed, numeri-
cal computation on (1) indicates that there are var-
ious steady solutions different from trivial solutions
[3], which will be called non-trivial. The aim of the
present note is to confirm analytically this numerical
observation. Our main results read as follows.

Theorem 1. For all large b � m2, there ex-
ists at least one non-trivial steady solution for EOM
equations.

The largeness of b and m2 stated in Theorem 1
can be computed explicitly, though we do not need
it.

The proof of Theorem 1 is carried out from the
variational point of view in the next section, where
other properties of steady solutions are also exhib-
ited. For the study on the evolution system (1) itself,
we refer to [2] for instance.

2. Variational structure for steady solu-
tions. Although (2) is a system of equations of
fourth-order, it has a second-order variational struc-
ture; the solution to (2) is given by the critical point
of a functional

F [u, v] :=
∫ 1

0

(ε2
2
u2

x +
1
2
v2

x +
a

2
u2

+
1
4
v4 − b

2
v2 +

1
2
u2v2

)
dx

among the function spaces (referred to as admissible
functions)

A :=
{

(u, v) ∈ (H1(0, 1))2
∣∣∣

ux = vx = 0 at x = 0, 1 and
∫ 1

0

u dx = m
}
.

We immediately obtain

F [m, 0] =
a

2
m2,

F [m,±
√
b−m2] =

a

2
m2 − 1

4
(b−m2)2 if b > m2.

Since F is bounded below on A, our task of finding a
non-trivial steady solution is to choose a test function
(u, v) ∈ A such that

F [u, v] <
a

2
m2 − 1

4
(b−m2)2.(3)

The minimization procedure then yields the solution
we want.

To accomplish this, we take

u(x) = m− δ cosπx

v(x) = ±
√
b− (m− δ cosπx)2,

where δ > 0 is a parameter and we assign b > (m+
δ)2. Clearly (u, v) ∈ A and we compute

F [u, v] =
a

2
m2 − 1

4
(b−m2)2 + (ε2π2 + a)

δ2

4

+
δ2π2

2

∫ 1

0

(m− δ cosπx)2 sin2 πx

b− (m− δ cosπx)2
dx

− m2δ2

2
− 3

32
δ4 +

δ2

4
(b−m2).

If we further set b = 2m2 and δ = m/4, then we infer
that

F [u, v] =

F [m,±
√
b−m2]− 131

213
m4

+
(
ε2π2 + a

64
+
π2

32

∫ 1

0

(4− cosπx)2 sin2 πx

32− (4− cosπx)2
dx

)
m2,

from which we conclude that (3) holds, taking m

larger if necessary. The proof of Theorem 1 is com-
pleted.

We end the current short article with establish-
ing additional results concerning local minimizers for
F . We recall that (u0, v0) ∈ A is a local minimizer
if there is a neighborhood U of (u0, v0) in A such
that F [u0, v0] ≤ F [u, v] for all (u, v) ∈ U ; (u0, v0) is
a steady solution of EOM equations and the second
variation of F at (u0, v0) is non-negative. A standard
argument now leads to
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Theorem 2. All local minimizers for F are
monotone functions.

Of course not every steady solution is attained
by a local minimizer; there is a strong numerical evi-
dence that exist steady solutions which are not local
minimizers. These steady solutions are not necessar-
ily monotone [3]. Our test functions, on the other
hand, are monotone and they may be in a neighbor-
hood of the global minimizer for F .
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