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Intersection matrix of a generalized Airy function

in terms of skew-Schur polynomials

By Katsunori Iwasaki
∗) and Keiji Matsumoto

∗∗)

(Communicated by Shigefumi Mori, m. j. a., Nov. 13, 2000)

Abstract: A duality is introduced between a pair of polynomial twisted de Rham coho-
mology groups associated with a generalized Airy function in several variables. Natural bases of
the twisted de Rham groups are constructed in terms of Schur polynomials. Then the intersection
matrix relative to these bases is calculated explicitly in terms of skew-Schur polynomials.
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1. Introduction. The classical Airy func-
tion in single-variable is defined by a one-dimensional
complex integral:

Ai(a) =
∫

c

e(1/3)t3+at dt (a ∈ C),

where c is a cycle chosen in such a way that the in-
tegrand is exponentially decreasing at infinity along
c (see Fig. 1). The Airy function is an important
special function arising in mathematical optics (see
Airy [1]). A generalization of the Airy function into
several variables was introduced by Gel’fand, Retakh
and Serganova [4], and was studied in some depth by
Kimura [7, 8].

In studying hypergeometric functions in their
broadest sense, including generalized Airy functions,
it is important to investigate the structure of rational
twisted de Rham cohomology groups associated with
them. This is because, from the viewpoint of Euler
integral representations, a hypergeometric function
is defined to be an integral of a closed twisted differ-
ential form along a twisted cycle (see e.g., Aomoto
and Kita [2]).

Kimura [7] constructed a basis of the polynomial
twisted de Rham cohomology group for a generalized
Airy function in terms of Schur polynomials (with-
out proof). A standard fact about the cohomology
ring of a Grassmannian manifold tells us that his

1991 Mathematics Subject Classification. Primary 33C70;
Secondary 05E05.

∗) Faculty of Mathematics, Kyushu University, 6-10-1,
Hakozaki, Higashi-ku, Fukuoka 812-8581.

∗∗) Division of Mathematics, Graduate School of Science,
Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-
0810.

c1

c2

c3

Fig. 1. Cycles for the Airy integral.

conjectural basis is actually a basis.
Recently, Iwasaki [5] constructed a duality be-

tween a pair of polynomial twisted de Rham coho-
mology groups associated with an isolated surface
singularity. As a special case, this construction yields
a duality between a pair of twisted de Rham coho-
mology groups of a generalized Airy function. The
aim of this paper is to describe this duality explicitly.
Our main result is a formula expressing the intersec-
tion matrix relative to Kimura’s bases in terms of
skew-Schur polynomials (see Theorem 2). This pro-
vides us with a cohomological interpretation of skew-
Schur polynomials by means of a twisted intersection
theory.

2. Generalized Airy function. We begin
by recalling the definition of a generalized Airy func-
tion, following Gel’fand, Retakh and Serganova [4]
and Kimura [7], but in a slightly modified manner.
Let θk(t) be the k-th coefficient of a generating series:

log(1 + t1X + · · ·+ tnX
n) =

∞∑
k=1

θk(t)Xk.
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Table I. Polynomials θk(t)

θ1(t) = t1

θ2(t) = t2 − (1/2)t21

θ3(t) = t3 − t2t1 + (1/3)t31

θ4(t) = t4 − t3t1 − (1/2)t22
+t2t21 − (1/4)t41

θ5(t) = t5 − t4t1 − t3t2 + t3t
2
1

+t22t1 − t2t31 + (1/5)t51

θ6(t) = t6 − t5t1 − t4t2 + t4t
2
1

−(1/2)t23 + 2t3t2t1 − t3t31 + (1/3)t32
−(3/2)t22t

2
1 + t2t

4
1 − (1/6)t61

θ7(t) = · · · · · · · · · · · · · · · · · ·

Then θk(t) is a weighted homogeneous polynomial of
degree k in t = (t1, . . . , tn), where tj is assumed to
be of degree j. For small values of k, polynomials
θk(t) are illustrated in Table I. Set

f = f(a, t) =
N∑

k=0

(−1)k ek(a) θN−k+1(t),

where ek(a) is the k-th elementary symmetric poly-
nomial of a = (a1, . . . , aN ) with N ≥ n.

Let Ω·
T be the space of polynomial differential

forms in t = (t1, . . . , tn), and d±f be the twisted
exterior differentials in t defined by

d±f = e∓f de±f = d± (df) ∧ .

Then one can speak of the twisted polynomial de
Rham complexes (Ω·

T , d±f ) and their cohomology
groups H ·(Ω·

T , d±f ). Kimura [7] showed that only
the n-th cohomology groups Hn(Ω·

T , d±f ) are non-
trivial with

dimHn(Ω·
T , d±f ) = µ, where µ =

(
N

n

)
.

We proceed to homology. Let T = Cn be the
complex n-space with coordinates t = (t1, . . . , tn).
Following Pham [13, 14], we define a family Φ of
supports in the following manner: an element of Φ
is a closed subset c of T such that Re θN+1(t)|c →
−∞, quicker than −‖t‖q for some q > 0 as ‖t‖ :=

∑n
j=1 |tj |1/j → ∞. Let HΦ

n (T ) denote the n-th ho-
mology group of T over Z with supports in Φ, which
is a free Abelian group of rank µ (see Kimura [8]).

A generalized Airy function is now defined by

A(a) =
∫

c

ef(a,t) ω,

where ω ∈ Ωn
T is a df -closed polynomial n-form

and c is an n-cycle with support in Φ. This in-
tegral depends only on the cohomology class [ω] ∈
Hn(Ω·

T , df ) and the homology class [c] ∈ HΦ
n (T ).

3. Bases of cohomology. We present bases
of the cohomology groups Hn(Ω·

T , d±f ). To do so, it
is convenient to introduce variables z = (z1, . . . , zn)
such that

tj = (−1)jej(z) (j = 1, . . . , n),

where ej(z) is the j-th elementary symmetric poly-
nomial of z. Given a Young diagram λ, let sλ(z)
denote the Schur polynomial in z attached to the di-
agram λ (see Macdonald [10]). Note that sλ(z) is
representable as a polynomial in t.

Let R(p, q) be the rectangular Young diagram
with p rows and q columns, and let Y(p, q) be the
set of all Young subdiagrams of R(p, q). The follow-
ing theorem asserts that the cohomology groups have
bases indexed by the Young diagrams in Y(n,N−n).

Theorem 1. Denote by φ±λ the cohomology
classes in Hn(Ω·

T , d±f ) represented by the polyno-
mial differential n-form sλ(z) dt, where dt = dt1 ∧
· · · ∧ dtn. Then the sets {φ±λ : λ ∈ Y(n,N − n)}
form bases of the cohomology groups Hn(Ω·

T , d±f ).
The proof is based on the observation that the

graduations grHn(Ω·
T , d±f ) of Hn(Ω·

T , d±f ) with re-
spect to the degree filtration are linearly isomorphic
to the cohomology ring H∗(Grn(CN )) of the Grass-
mannian manifold Grn(CN ) of n-dimensional sub-
spaces in CN . Then the theorem follows from a stan-
dard fact in Schubert calculus (see e.g., Fulton and
Pragacz [3, p. 27]). We omit the details.

4. Duality. A general construction in
Iwasaki [5] implies that there exists a natural
duality between Hn(Ω·

T , df ) and Hn(Ω·
T , d−f ). In

what follows we will briefly describe this duality.
Let Z = Cn be the complex n-space with coor-

dinates z = (z1, . . . , zn). The symmetric group Sn

acts on Z by permuting the coordinates, and one
has T = Z/Sn. Thus considering the de Rham com-
plexes (Ω·

T , d±f ) downstairs is equivalent to consid-
ering the de Rham complexes (Ω·

Z , d±f ) upstairs Sn-
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equivariantly, where Ω·
Z is the space of polynomial

differential forms in z. Indeed, the canonical projec-
tion Z → T induces isomorphisms:

Hn(Ω·
T , d±f ) ∼→ Hn(Ω·

Z , d±f )Sn ,

(the transfer isomorphisms), where Hn(Ω·
Z , d±f )Sn

denote the Sn-invariant parts of Hn(Ω·
Z , d±f ).

At this stage we should recall a comparison theo-
rem established in Iwasaki [5]. Let S ·Z be the space of
smooth differential forms of Schwartz class on Z, and
T ·

Z be the space of tempered currents on Z. Then
the natural inclusions of complexes:

(Ω·
Z , d±f , ) ↪→ (T ·

Z , d±f )←↩ (S ·Z , d±f )

induce Sn-equivariant isomorphisms:

Hn(Ω·
Z , d±f ) ∼→ Hn(T ·

Z , d±f ) ∼← Hn(S ·Z , d±f ).

The topological duality between S ·Z and T ·
Z induces

an Sn-equivariant duality between Hn(S ·Z , df ) and
Hn(T ·

Z , d−f ). Thus, through the comparison theo-
rem above, one has an Sn-equivariant duality:

Hn(Ω·
Z , df )×Hn(Ω·

Z , d−f )→ C,

which restricts to the Sn-invariant parts. Now the
transfer isomorphisms lead to the desired duality:

Hn(Ω·
T , df )×Hn(Ω·

T , d−f )→ C.

Explicitly, the duality (or the intersection) pair-
ing between φ± ∈ Hn(Ω·

Z , d±f ) is given by

〈φ+, φ−〉 =
1

(2πi)n

∫
Z

ψ+ ∧ φ−,(1)

where ψ+ is a smooth differential n-form of
Schwartz class on Z corresponding to the cohomol-
ogy class φ+ ∈ Hn(Ω·

Z , df ) through the isomorphism
Hn(S ·Z , df ) ∼→ Hn(Ω·

Z , df ).
5. Intersection matrix. We will explicitly

calculate the intersection matrix relative to the bases
constructed in Theorem 1 in terms of skew-Schur
polynomials. Let sλ/µ(a) denote the skew-Schur
polynomial of a = (a1, . . . , aN ) attached to a pair
(λ, µ) of Young diagrams (see Macdonald [10]). Note
that sλ/µ(a) ≡ 0 unless µ is a subdiagram of λ.
To state the result, we need the concept of com-
plementary diagrams. Given a Young diagram λ =
(λ1, λ2, . . . , λp) ∈ Y(p, q), its complementary dia-
gram λ̌ ∈ Y(p, q) is defined by

λ̌ = (q − λp, q − λp−1, . . . , q − λ1).

Pictorially, λ̌ is obtained by rotating the rectangle
R(p, q), together with λ, around its center by 180◦
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λ̌ = (4, 4, 3, 2, 2, 2, 0)

Fig. 2. Complementary diagrams.

and then deleting λ from R(p, q). For instance, a
Young diagram λ = (5, 3, 3, 3, 2, 1, 1) has the com-
plementary diagram λ̌ = (4, 4, 3, 2, 2, 2, 0) in Y(7, 5)
(see Fig. 2). Taking complementary diagrams λ �→ λ̌

defines an involution on the set Y(p, q).
Theorem 2. With respect to the bases {φ±λ }

constructed in Theorem 1, the intersection pairing:

Hn(Ω·
T , df )×Hn(Ω·

T , d−f )→ C,

is represented in the following manner:

〈φ+
λ , φ

−
µ 〉 = (−1)n(n−1)/2 n! sλ/µ̌(a),

for λ, µ ∈ Y(n,N − n).

We will sketch the proof of Theorem 2 in the
following two sections, for the one-dimensional case
n = 1 in §6, and for the multi-dimensional case in
§7, respectively.

6. One-dimensional case. In the one-
dimensional case, we have T = Z = C with coor-
dinate t = −z. For λ = (p) ∈ Y(1, N − 1), the coho-
mology classes φ±λ ∈ H1(Ω·

T , d±f ) are represented by
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the 1-form sλ(z) dt = −zpdz. Since p ranges over the
set {0, 1, . . . , N−1}, any elements φ± ∈ H1(Ω·

T , d±f )
are uniquely expressed as

φ± = −
N∑

k=1

u±k z
N−k dz (u±k ∈ C).

Given such a 1-form φ+, there exists a unique
formal power series ψ+ =

∑∞
k=1 v

+
k z

−k ∈ C[[z−1]]
such that dfψ

+ = φ+. Indeed, this equation is re-
casted into a recurrence relation for the coefficients
v+

k that can be solved uniquely. For the first N terms
v+
1 , . . ., v+

N , the recurrence relation becomes:

k−1∑
j=0

(−1)jej(a) v+
k−j = u+

k (k = 1, . . . , N).

Let hj(a) denote the complete symmetric polynomial
of degree j in a = (a1, . . . , aN ). Then the equations
above can be settled as

v+
k =

k−1∑
j=0

hj(a)u+
k−j (k = 1, . . . , N).

Lemma 3. With the notations as above, we
have

〈φ+, φ−〉 = Resz=∞(ψ+ φ−)

=
N∑

j=1

N∑
k=1

hN+1−j−k(a)u+
j u

−
k ,

where we understand hj(a) ≡ 0 for j < 0.

Proof. There exists a smooth function ξ+ on
C ∪ {∞} having ψ+ as its Taylor expansion around
z = ∞. Then ϕ+ := φ+ − dfξ

+ becomes a smooth
1-form of Schwartz class that represents the coho-
mology class φ+ in H1(S ·C, df ). From the integral
representation (1) of the duality, one has

〈φ+, φ−〉 =
1

2πi

∫
C

ϕ+ ∧ φ−

=
1

2πi
lim

r→∞

∫
Dr

ϕ+ ∧ φ−,

where Dr is the disk of radius r with center at the
origin. Since ϕ+ is a 1-form having−∂̄ξ+ as its (0, 1)-
component and φ− is a holomorphic 1-form, it fol-
lows that ϕ+ ∧ φ− = −(∂̄ξ+) ∧ φ− = −∂̄(ξ+φ−) =
−d(ξ+φ−). Substituting this into the above and us-

ing the Stokes theorem yield

〈φ+, φ−〉 = − 1
2πi

lim
r→∞

∫
∂Dr

ξ+φ−

= − 1
2πi

lim
r→∞

∫
∂Dr

(ξ+ − η+)φ−

− 1
2πi

lim
r→∞

∫
∂Dr

η+φ−,

where η+ :=
∑m

k=1 v
+
k z

−k is a finite partial sum
of the formal power series ψ+. If m is sufficiently
large, then the first term in the right-hand side van-
ishes and the second term is nothing other than the
residue of η+φ− at z =∞. Thus we have 〈φ+, φ−〉 =
Resz=∞(η+φ−) = Resz=∞(ψ+φ−), which verifies
the first equality of the lemma. The second equality
is obtained by substituting the explicit formula for
ψ+ into the first equality.

With Lemma 3 in hand, it is now easy to prove
Theorem 2 for n = 1. For λ = (p), µ = (q) ∈
Y(1, N − 1), let φ+ = φ+

λ and φ− = φ−µ . Then we
have u+

j = δj,N−p and u−k = δk,N−q, where δjk de-
notes Kronecker’s symbol. It follows from Lemma 3
that 〈φ+

λ , φ
−
µ 〉 = hp+q+1−N (a) = sλ/µ̌(a).

7. Multi-dimensional case. The multi-
dimensional case is reduced to the one-dimensional
case by making use of an exterior power structure
of the cohomology groups Hn(Ω·

T , d±f ), compatible
with the intersection pairing. This reduction com-
pletely fits in with the Jacobi-Trudi formulas for
Schur and skew-Schur polynomials.

Let W = C be the complex 1-space with coor-
dinate w, and g be a polynomial in w defined by

g(w) = −
N∑

k=0

(−1)k ek(a)
N + 1− k w

N+1−k.

Then the arguments and results in §6 apply to the
cohomology groups H1(Ω·

W , d±g), since g is just the
one-dimensional case of f .

Lemma 4. There exist natural isomorphisms:

∧nH1(Ω·
W , d±g)

∼→ Hn(Ω·
Z , d±f )Sn ,(2)

such that if ξ±1 ∧ · · · ∧ ξ±n on the left-hand side corre-
spond to ϕ± on the right-hand side, then

n! det(〈ξ+j , ξ−k 〉) = 〈ϕ+, ϕ−〉.(3)

Proof. Let Zj = C be the complex 1-space
with coordinate zj , and set fj = g(zj) for j =
1, . . . , n. Note that each (Ω·

Zj
, d±fj

) is a copy
of (Ω·

W , d±g). A key observation here is that we
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have f = f1 + · · · + fn. Hence there are natu-
ral isomorphisms of complexes:

⊗n
j=1(Ω

·
Zj
, d±fj

) ∼→
(Ω·

Z , d±f ). So the Künneth formula yields isomor-
phisms:

n⊗
j=1

H1(Ω·
Zj
, d±fj

) ∼→ Hn(Ω·
Z , d±f ),(4)

sending ϕ±
1 ⊗ · · · ⊗ ϕ±

n to p∗1ϕ
±
1 ∧ · · · ∧ p∗nϕ±

n , where
pj : Z = Z1×· · ·×Zn → Zj is the projection down to
the j-th component Zj of Z. The same arguments
apply to the complexes (S ·Zj

, d±fj
) and (S ·Z , d±f ),

provided that the tensor products are understood
to be topological tensor products on nuclear spaces.
Thus one has

n⊗
j=1

H1(S ·Zj
, d±fj

) ∼→ Hn(S ·Z , d±f ).

From these observations it is easy to see that if ϕ±
1 ⊗

· · · ⊗ ϕ±
n correspond to ϕ± under the isomorphisms

(4), then one has
n∏

j=1

〈ϕ+
j , ϕ

−
j 〉 = 〈ϕ+, ϕ−〉.(5)

Let πj : Zj → W be the canonical isomorphism
defined by the change of coordinates: zj �→ w. Then
there exist well-defined homomorphisms:

∧nH1(Ω·
W , d±g)→

n⊗
j=1

H1(Ω·
Zj
, d±fj

),(6)

sending ξ±1 ∧ · · · ∧ ξ±n ∈ ∧nH1(Ω·
W , d±g) to∑

σ∈Sn

(sgnσ)π∗
1ξ

±
σ(1) ⊗ · · · ⊗ π

∗
nξ

±
σ(n).

An inspection shows that the composite of (4) with
(6) yields isomorphisms (2) sending ξ±1 ∧ · · · ∧ ξ±n to

ϕ± =
∑

σ∈Sn

(sgnσ)p∗1π
∗
1ξ

±
σ(1) ∧ · · · ∧ p

∗
nπ

∗
nξ

±
σ(n).

Finally, one can easily verify the formula (3) by using
(5). The lemma is established.

We are now in a position to prove Theorem 2 for
a general n. Let λ = (λ1, . . . , λn), µ = (µ1, . . . , µn) ∈
Y(n,N − n), and set ξ+j = −wλj+n−j dw and ξ−k =
−wµk+n−k dw for j = 1, . . . , n. Then it follows from
the calculation in §6 that

〈ξ+j , ξ−k 〉 = h(λj+n−j)+(µk+n−k)+1−N (a)

= hλj−µ̌n+1−k−j+(n+1−k)(a),

where the relation µk = N − n − µ̌n+1−k is used in
the second equality. Therefore,

det(〈ξ+j , ξ−k 〉) = det(hλj−µ̌n+1−k−j+(n+1−k)(a))

= (−1)n(n−1)/2 det(hλj−µ̌k−j+k(a)).

By the Jacobi-Trudi formula for skew-Schur polyno-
mials (see e.g., Macdonald [10]), one has

det(〈ξ+j , ξ−k 〉) = (−1)n(n−1)/2sλ/µ̌(a).(7)

On the other hand, the isomorphism (2) maps
ξ+1 ∧ · · · ∧ ξ+n to

ϕ+ = (−1)n
∑

σ∈Sn

(sgnσ)zλσ(1)+n−σ(1)
1 dz1 ∧ · · ·

· · · ∧ zλσ(n)+n−σ(n)
n dzn

= (−1)n det(zλk+n−k
j ) dz1 ∧ · · · ∧ dzn

= (−1)n
det(zλk+n−k

j )

det(zn−k
j )

dt1 ∧ · · · ∧ dtn.

Similarly, (2) maps ξ−1 ∧ · · · ∧ ξ−n to

ϕ− = (−1)n
det(zµk+n−k

j )

det(zn−k
j )

dt1 ∧ · · · ∧ dtn.

By the Jacobi-Trudi formula for Schur polynomials
(see e.g., Macdonald [10]), one has{

ϕ+ = (−1)nsλ(z) dt = (−1)nφ+
λ ,

ϕ− = (−1)nsµ(z) dt = (−1)nφ−µ .
(8)

Substitution of (7) and (8) into (3) yields the formula
in Theorem 2. The proof is complete.
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