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Essential self-adjointness of Dirac operators with a variable mass term

By Hubert Kalf∗) and Osanobu Yamada∗∗)

(Communicated by Shigefumi Mori, m. j. a., Feb. 14, 2000)

Abstract: In this paper we study the essential self-adjointness of Dirac operators with a
variable mass term m(x) and an electric potential V (x). We are mainly interested in the local
singularities of m(x) and V (x). We can treat singularities of m(x) and V (x) which are stronger
than those of Coulomb potentials.
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In this note we consider the essential self-
adjointness of the Dirac operator

H :=
3∑

j=1

αj Dj +m(x)β + V (x) I4(
x ∈ R3, Dj = −i ∂

∂xj

)
defined on D := [C∞0 (R3 \ {0}]4 in the Hilbert space
H := [L2(R3)]4 , where

αj =
(

0 σj

σj 0

)
(1 ≤ j ≤ 3),

β =
(
I2 0
0 −I2

)
, I4 =

(
I2 0
0 I2

)
,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =
(

1 0
0 −1

)
, I2 =

(
1 0
0 1

)
,

m(x), V (x) are real valued functions and C∞0 (Ω) de-
notes the set of all C∞-functions with compact sup-
port in Ω. We are interested mainly in the case that
m(x) and V (x) have singularities at the origin.

The bound-state problem for m(r) = e/r,
V (r) = e′/r was studied by Vasconcelos [8], who
also gave a short history of the Dirac operator with
a variable mass term as a quark model. The spectral
properties of H with m dominating V or vice versa
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at infinity as well as the case m(x) = V (x) → ∞
(|x| → ∞) were investigated in [7] and [10], which
also contain additional references to the physical lit-
erature.

We remark that, if the real-valued functions
m(x) and V (x) belong to L2

loc(R
3 \ {0}), then the

symmetric operator H has at least one self-adjoint
extension. Indeed, the symmetric operator H is
real with respect to the conjugation J defined by
Ju := α1 α3 ū .

We summarize some notations used here.

Ω := R3 \ {0} , R+ := (0,+∞)

D := [C∞0 (Ω)]4 . α ·D :=
3∑

j=1

αj Dj ,

αr :=
3∑

j=1

xj

r
αj , σr :=

3∑
j=1

xj

r
σj .

If V = V (r), m = m(r) are spherically symmet-
ric, the problem of the essential self-adjointness re-
duces to the problem whether every one-dimensional
Dirac operator Lk (k ∈ Z \ {0}) in R+

Lk :=
(
m(r) + V (r) −(d/dr) + (k/r)

(d/dr) + (k/r) −m(r) + V (r)

)
is of limit point type at 0, or not. If V (r) ≡ 0 , any Lk

is of limit point type at 0 for a relatively large class
of m(r). For example, the following proposition can
be shown by Arnold–Kalf–Schneider [2], where more
general theorems are given.

Proposition 1. Let m = m(r) be a real-
valued function and belong to L1

loc(R+). Then the
one-dimensional Dirac operator Lk with V = 0 is
of limit point type at 0, if m(r) satisfies one of the
following conditions
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(i) limr→∞ rm(r) exists and is finite,
or
(ii) limr→0 r|m(r)| = ∞, and sgnm is constant near

the origin.
The following theorem shows a result for spheri-

cally symmetric functions m(r) and scalar potentials
V (x) with a singularity at the origin, which is weaker
than that of m(r). Let [W 1,2(R3)]4 be the Sobolev
space (see, e.g., Yosida [11], ChapterI-9).

Theorem 1. Let m = m(r) be spherically
symmetric and absolutely continuous in R+ with the
derivative m′(r) ∈ L2

loc(R+). Assume that α·D+mβ
on D is essentially self-adjoint, and V (x) ∈ L2

loc(Ω)
satisfies

(1 + ε)
[
V 2(x) +

1
4r2

]
+
∣∣∣∣m′(r) +

m(r)
r

∣∣∣∣(1)

≤ m2(r) +
1
r2

(x ∈ Ω)

for some ε > 0. Then H is essentially self-adjoint.
If m(r) is of Coulomb type, m(r) = e/r (e ∈ R),
then the domain D(H̄) of the closure H̄ coincides
with the Sobolev space [W 1,2(R3)]4.

The above Theorem 1 can be proved along the
line of [4] and Schmincke [6] by using the following
proposition.

Proposition 2. Assume the condition (1).
Let s ∈ R and

A := α ·D +mβ +
i

2r
αr + is, B := V − i

2r
αr.

Then we have

A∗A ≥ 1
r2

+m2 −
(
m′ +

m

r

)
iαrβ

≥ 1
r2

+m2 −
∣∣∣m′ +

m

r

∣∣∣ ≥ (1 + ε)B∗B.

Remark 1. In Theorem 1 we can treat sin-
gularities of m(x) and V (x) which are stronger than
those of Coulomb potential. For example, if we as-
sume

m(r) =
C1

rµ
, |V (x)| ≤ C2

rµ
, C1 > C2 > 0(2)

and µ > 1, then H is essentially self-adjoint. Indeed,
if we set

m̃ =
C1

rµ
+ C

for C > 0, then V and m̃ satisfy condition (1) if
ε > 0 is sufficiently small and C > 0 is sufficiently
large. Thus the essential self-adjointness is valid for
α ·D +mβ + V I4 + Cβ, and, therefore, for α ·D +

mβ + V I4.
In the special case m(r) = C1/r

µ and V (r) =
C2/r

µ (C1 > C2 > 0, µ > 1) it follows from Theo-
rem 3 in [2] that the equation Lkv = 0 has, for any
k ∈ Z \ {0}, a fundamental system of solutions v±
with

|v±(r)|=exp
{[
±
√
C2

1 − C2
2/(µ− 1) + o(1)

]
r1−µ

}
as r → 0. This singularity of m therefore has the
same effect on the solutions as an anomalous mag-
netic moment in Behncke [3].

If µ = 1 in (2), then (1) is satisfied if a condition
like C2

2 < C2
1 + (3/4) holds. This result corresponds

to the case b1 = 0 and s = 1/2 in Theorem 3.1 in
Arai [1]. In this case the essential self-adjointness
still holds when C2

2 = C2
1 + (3/4), if we ignore the

domain property of the closure (Yamada [9]).
The following theorem states a proposition with-

out the assumption on the spherical symmetry of
m(x) .

Theorem 2. Let m, V ∈ L2
loc(Ω) be real-

valued,

q(r) :=

sup
|x|=r

[
V 2(x) +m2(x) + 2|m(x)|

√
V 2(x) +

1
4r2

]1/2

and

a := sup
r>0

(
1
r

∫ r

0

t2q2(t)dt
)1/2

<

√
3

2
.(3)

Then H is essentially self-adjoint with D(H̄) =
[W 1,2(R3)]4.

Outline of the proof. The proof is given
along the line of [4]. Let a > 0, ε > 0, s ∈ R and

f(r) :=
1− ε

2a2r2

∫ r

0

t2q2(t)dt+
ε

4r
A := α·D + if(r)αr + is, B := mβ + V − if(r)αr.

Then we have

B∗B = f2 +m2 + V 2 + 2m[V β + f(iαrβ)]

≤ f2 +m2 + V 2 + 2|m|
√
V 2(x) +

1
4r2

.

The same estimate as in [4] yields, by means of (3),
that

A∗A− (1 + ε)B∗B ≥ 0.

for a sufficiently small ε > 0, which gives our asser-
tion.
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Remark 2. Theorem 1 and Theorem 2 are di-
rectly extended to the n-dimensional Dirac operator
(n ≥ 2)

H :=
n∑

j=1

αjDj +m(x)αn+1 + V (x)IN(
N = 2[(n+1)/2]

)
,

where αj (j = 1, 2, . . . , n + 1) are N × N Hermi-
tian symmetric matrices satisfying αjαk + αkαj =
2δjkIN . Then we have only to replace (1) in Theo-
rem 1 by

(1 + ε)
[
V 2(x) +

1
4r2

]
+
∣∣∣∣m′(r) +

m(r)
r

∣∣∣∣
≤ m2(r) +

(
n− 1

2

)2 1
r2
,

and (3) in Theorem 2 by

a := sup
r>0

(
1

rn−2

∫ r

0

tn−1q2(t)dt
)1/2

<

√
n

2

(n ≥ 3).
In the plane, H = σ1D1 + σ2D2 + mσ3 + V I2

with m(r) = C1/r and V (r) = C2/r is essentially
self-adjoint if and only if |C2| ≤ |C1|. Indeed, Lk

(k ∈ Z + (1/2) if n = 2) is of limit point type at 0 if
and only if C2

2 − C2
1 ≤ k2 − (1/4).

In view of Kato’s inequality one has the follow-
ing result on the essential self-adjointness for the case
m ≡ V .

Theorem 3. Assume that m(x) ≡ V (x) is an
L2

loc(R
3) function. Then H = (α ·D) + V β + V on

D is essentially self-adjoint.
Outline of the proof. We have only to see

that the ranges of (H ± i) are dense in H. If oth-
erwise, we could take non-zero vectors v := t(v1, v2)
and w := t(w1, w2) ∈ [L2(R3)]2 such that{

(σ ·D)w + 2V v = ηv

(σ ·D)v = ηw,
(4)

where η = i or −i, and

−∆v + 2ηV v = −v(5)

in the sense of distributions. Then we have V v ∈
L1

loc(R
3), by means of the assumption, and ∆v ∈

L1
loc(R

3) by (5). Therefore, we obtain from (5) and
Kato’s inequality that

∆(|v1|+ |v2|) ≥ Re[sgn v̄1 ·∆v1 + sgn v̄2 ·∆v2]
= |v1|+ |v2|,

which implies |v1| + |v2| = 0 by the same argument
as in Kato [5]. Hence we have also w = 0 by (4),
which is a contradiction.
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