On the Green function of the p-Laplace equation for Riemannian manifolds

By Takeshi Kura

Department of Mathematics, Faculty of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Communicated by Heisuke HIRONAKA, M. J. A., March 12, 1999)

1. Introduction. Let M be a smooth noncompact connected complete Riemannian n-manifold without boundary and 1 be a constant. The purpose of this note is to give geometric criteria for the existence and nonexistence of the <math>p-Green function of the p-Laplace equation

(1)
$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0$$

on M. In case p=2, Ichihara [5] has given geometric criteria for the existence and nonexistence of the 2-Green function of M. Kasue [6] has given estimates of 2-Green function of M. We shall extend the results of Ichihara [5] and Kasue [6] to (1). The p-Green function of (1) for M was first defined by Holopainen [2]. We refer to Holopainen [3], [4] and Tanaka [8] for the p-Green function of M and related topics.

For open set G in M, a function $u \in locW^{1,p}(G) \cap C(G)$ is said to be p-harmonic in G if u satisfies

$$\int_G \langle |\nabla u|^{p-2} \nabla u, \nabla \varphi \rangle dv_M = 0, \quad \text{ for all } \varphi \in C_0^\infty(G),$$

where \langle , \rangle and v_M are the Riemannian metric and volume measure of M respectively. Let q be a fixed point in M. For a bounded smooth domain G containing q, a function $g = g(\cdot, q)$ is said to be p-Green function of G with pole q if it satisfies the following conditions:

$$\begin{split} g \text{ is } p\text{-harmonic in } G \setminus \{q\}, \\ \lim_{x \to y} g(x) &= 0 \qquad \text{for every } y \in \partial G, \\ \lim_{x \to q} g(x) &= \infty, \\ -\text{div}(|\nabla g|^{p-2} \nabla g) &= \delta_q \text{ in } G, \end{split}$$

in the sense of distributions, i.e.

$$\int_{G} \langle |\nabla g|^{p-2} \nabla g, \nabla \varphi \rangle dv_{M} = \varphi(q),$$
 for all $\varphi \in C_{0}^{\infty}(G)$.

Let $\{G_l\}_{l\in\mathbb{N}}$ be an exhaustion of M by bounded

smooth domains G_l such that $q \in G_1, G_l \subset G_{l+1}$, and $M = \bigcup_l G_l$. Holopainen [2] proved that there exists a p-Green function g_l of G_l such that the sequence $\{g_l\}$ is increasing. By the Harnack's convergence theorem ([1, Theorem 6.14]) $g = \lim_{l \to \infty} g_l$ is either p-harmonic in $M \setminus \{q\}$ or identically $+\infty$ in M. In the former case g is said to be a p-Green function of M. The uniqueness of the p-Green function of M is not known except p = n. In case p = n, Holopainen [2] proved the uniqueness.

2. Results. Let SM be the unit tangent bundle of M. For a $v \in S_xM$, we set $\alpha_v(t) = \exp(tv)$ and $N(v) = \{w \in S_xM | \langle v, w \rangle = 0\}$. Set h(x) = d(q, x) in M where d is the Riemannian distance of M. Suppose that Ω is a bounded open set in M containing q and put $\Omega_1 = \Omega \setminus \{q\}$. Let S be the set of the positive p-harmonic functions of (1) in Ω_1 with isolated singularity at q and

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \delta_q \text{ in } \Omega.$$

Let

$$G_p(t) = \begin{cases} t^{\frac{n-p}{p-1}}, & \text{if } 1$$

The following lemma is due to Serrin [7].

Lemma 1. There exist two positive constants c_1, c_2 such that

$$c_1 \le \liminf_{x \to q} \frac{u(x)}{G_p(h(x))} \le \limsup_{x \to q} \frac{u(x)}{G_p(h(x))} \le c_2,$$
for $u \in S$

Let K_M and Ric_M denote the sectional and Ricci curvatures of M respectively. Put $k_p = (n-p)/(p-1)$ if $1 and <math>k_n = 1$. Let $R: [0, \infty) \to \mathbf{R}$ be a continuous function. We assume that the injectivity radius of q is infinity and that the initial value problem

(2)
$$\begin{cases} f'' + R(t)f = 0 & \text{in } (0, \infty), \\ f(0) = 0, \quad f'(0) = 1, \end{cases}$$

has the positive solution f. We have by Lemma 1

the following theorems:

Theorem 1. Suppose that R satisfies

$$\mathrm{K}_{\mathrm{M}}(\alpha_v'(t),w) \leq R(t)$$

for $v \in S_q M$, $0 < t < \infty$, $w \in N(\alpha'_v(t))$. Let

$$\int_{T}^{\infty} f(t)^{\frac{1-n}{p-1}} dt < \infty \quad for \ some \ T > 0.$$

Then the p-Green function g of M satisfies

$$g(x,q) \le k_p c_2 \int_{h(x)}^{\infty} f(t)^{\frac{1-n}{p-1}} dt \quad in \ M.$$

In particular, M has a p-Green function.

Theorem 2. Suppose that R satisfies

$$\operatorname{Ric}_{\mathcal{M}}(\alpha'_v(t), \alpha'_v(t)) \ge (n-1)R(t)$$

for $v \in S_qM$, $0 < t < \infty$. Then the p-Green function g of M satisfies

$$g(x,q) \ge k_p c_1 \int_{h(x)}^{\infty} f(t)^{\frac{1-n}{p-1}} dt$$
 in M .

In particular, if

$$\int_{T}^{\infty} f(t)^{\frac{1-n}{p-1}} dt = \infty, \quad for \ some \ T > 0,$$

then M has no p-Green function.

Let B(t) be the geodesic ball of radius t about q. If F(t) is a C^2 function on $(0, \infty)$ satisfying F'(t) < 0, then u(x) = F(h(x)) satisfies

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) =$$

$$-|F'(h)|^{p-2}(|F'(h)|\Delta h - (p-1)F''(h))$$

in $M \setminus \{q\}$. Let f be the positive solution of (2). Then

$$k_p^{-1} = \lim_{t \to 0} \frac{1}{G_n(t)} \int_t^{\infty} f(s)^{\frac{1-n}{p-1}} ds.$$

Proof of Theorem 1. By the Hessian comparison theorem(cf. Kasue [6, Lemma 2.18]), we have

$$\Delta h(x) \ge (n-1) \frac{f'(h(x))}{f(h(x))}$$
 for $x \in M \setminus \{q\}$.

Let

$$F(t) = \int_{t}^{\infty} f(s)^{\frac{1-n}{p-1}} ds, \quad u(x) = F(h(x)).$$

Then

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) < 0 \quad in \quad M \setminus \{q\}.$$

Let G be a bounded smooth domain in M such that $\Omega \subset G$ and g_1 be a p-Green function of G. Then $g_1 \in \mathcal{S}$. Fix a small $\varepsilon > 0$. By Lemma 1, there exists $\delta > 0$ such that $g_1(x) \leq (k_p^{-1} - \varepsilon)^{-1}(c_2 + \varepsilon)u(x)$ in $B(\delta) \setminus \{q\}$. The comparison principle [1, Theorem 7.6]) implies that $g_1(x) \leq (k_p^{-1} - \varepsilon)^{-1}(c_2 + \varepsilon)u(x)$ in

 $G\setminus\{q\}$. By letting $\varepsilon\to 0$ we obtain $g_1(x)\leq k_pc_2u(x)$ in $G\setminus\{q\}$, and the theorem is proved.

Proof of Theorem 2. By the Laplacian comparison theorem(cf. Kasue [6, Lemma 2.5]), we have

$$\Delta h(x) \le (n-1) \frac{f'(h(x))}{f(h(x))}$$
 for $x \in M \setminus \{q\}$.

There exists $T_1 > 0$ such that $\Omega \subset B(T_1)$. Fix $T > T_1$. Choose a bounded smooth domain G in M such that $B(T) \subset G$. Let g_1 be a Green function of G. Then $g_1 \in \mathcal{S}$. Set

$$F(t) = \int_{t}^{T} f(s)^{\frac{1-n}{p-1}} ds, \quad u(x) = F(h(x)).$$

Then

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) \ge 0 \quad in \quad B(T) \setminus \{q\}.$$

Fix a small $\varepsilon > 0$. By Lemma 1, there exists $\delta > 0$ such that $g_1(x) \geq (k_p^{-1} + \varepsilon)^{-1}(c_2 - \varepsilon)u(x)$ in $B(\delta) \setminus \{q\}$. The comparison principle([1, Theorem 7.6]) implies that $g_1(x) \geq (k_p^{-1} + \varepsilon)^{-1}(c_1 - \varepsilon)u(x)$ in $B(T) \setminus \{q\}$. By letting $\varepsilon \to 0$ we obtain $g_1(x) \geq k_p c_1 u(x)$ in $B(T) \setminus \{q\}$. If g is a p-Green function of M, then $g(x) \geq k_p c_1 u(x)$ in $B(T) \setminus \{q\}$. The theorem follows by letting $T \to \infty$.

References

- J. Henonen, T. Kilpelainen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993).
- I. Holopainen: Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn., Ser.A, I Math. Diss., 74, 1–45 (1990).
- [3] I. Holopainen: Positive solutions of quasilinear elliptic equations on Riemannian manifolds. Proc. London Math. Soc., **65**, 651–671 (1992).
- [4] I. Holopainen: Solutions of elliptic equations on manifolds with roughly Euclidean ends. Math. Z., 217, 459–477 (1994).
- [5] K. Ichihara: Curvature, geodesics and the Brownian motion on a Riemannian manifold I. Nagoya Math. J., 87, 101–114 (1982).
- [6] A. Kasue: A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold. Japan J. Math., 8, 309–341 (1982).
- [7] J. Serrin: Isolated singularities of solutions of quasilinear equations. Acta Math., **113**, 219–240 (1965).
- [8] H. Tanaka: Harmonic boundaries of Riemannian manifolds. Nonlinear Analysis, Theory, Methods & Applications, 14, 55–67 (1990).