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1. Introduction. Let M be a smooth
noncompact connected complete Riemannian n-
manifold without boundary and 1 < p ≤ n be a
constant. The purpose of this note is to give geo-
metric criteria for the existence and nonexistence of
the p-Green function of the p-Laplace equation

div(|∇u|p−2∇u) = 0(1)

on M . In case p = 2, Ichihara [5] has given geo-
metric criteria for the existence and nonexistence of
the 2-Green function of M . Kasue [6] has given es-
timates of 2-Green function of M . We shall extend
the results of Ichihara [5] and Kasue [6] to (1). The
p-Green function of (1) for M was first defined by
Holopainen [2]. We refer to Holopainen [3], [4] and
Tanaka [8] for the p-Green function of M and related
topics.

For open set G in M , a function
u ∈ locW 1,p(G)

⋂
C(G) is said to be p-harmonic in

G if u satisfies∫
G

〈|∇u|p−2∇u,∇ϕ〉dvM = 0, for all ϕ ∈ C∞0 (G),

where 〈, 〉 and vM are the Riemannian metric and
volume measure of M respectively. Let q be a fixed
point in M . For a bounded smooth domain G con-
taining q, a function g = g(·, q) is said to be p-Green
function of G with pole q if it satisfies the following
conditions:

g is p-harmonic in G \ {q},
lim
x→y

g(x) = 0 for every y ∈ ∂G,

lim
x→q

g(x) =∞,

−div(|∇g|p−2∇g) = δq in G,

in the sense of distributions, i.e.∫
G

〈|∇g|p−2∇g,∇ϕ〉dvM = ϕ(q),

for all ϕ ∈ C∞0 (G).

Let {Gl}l∈N be an exhaustion of M by bounded

smooth domains Gl such that q ∈ G1, Gl ⊂ Gl+1,

and M =
⋃

l Gl. Holopainen [2] proved that there
exists a p-Green function gl of Gl such that the se-
quence {gl} is increasing. By the Harnack’s conver-
gence theorem ([1, Theorem 6.14]) g = liml→∞ gl is
either p-harmonic in M \ {q} or identically +∞ in
M . In the former case g is said to be a p-Green func-
tion of M . The uniqueness of the p-Green function
of M is not known except p = n. In case p = n,
Holopainen [2] proved the uniqueness.

2. Results. Let SM be the unit tangent
bundle of M . For a v ∈ SxM , we set αv(t) = exp(tv)
and N(v) = {w ∈ SxM |〈v, w〉 = 0}. Set h(x) =
d(q, x) in M where d is the Riemannian distance of
M . Suppose that Ω is a bounded open set in M con-
taining q and put Ω1 = Ω \ {q}. Let S be the set of
the positive p-harmonic functions of (1) in Ω1 with
isolated singularity at q and

−div(|∇u|p−2∇u) = δq in Ω.

Let

Gp(t) =

{
t

n−p
p−1 , if 1 < p < n,

− log t, if p = n.

The following lemma is due to Serrin [7].
Lemma 1. There exist two positive constants

c1, c2 such that

c1 ≤ lim inf
x→q

u(x)
Gp(h(x))

≤ lim sup
x→q

u(x)
Gp(h(x))

≤ c2,

for u ∈ S

Let KM and RicM denote the sectional and Ricci
curvatures of M respectively. Put kp = (n− p)/(p−
1) if 1 < p < n and kn = 1. Let R : [0,∞) →
R be a continuous function. We assume that the
injectivity radius of q is infinity and that the initial
value problem{

f ′′ + R(t)f = 0 in (0,∞),
f(0) = 0, f ′(0) = 1,

(2)

has the positive solution f . We have by Lemma 1
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the following theorems:
Theorem 1. Suppose that R satisfies

KM(α′v(t), w) ≤ R(t)

for v ∈ SqM, 0 < t <∞, w ∈ N(α′v(t)). Let∫ ∞

T

f(t)
1−n
p−1 dt <∞ for some T > 0.

Then the p-Green function g of M satisfies

g(x, q) ≤ kpc2

∫ ∞

h(x)

f(t)
1−n
p−1 dt in M.

In particular, M has a p-Green function.
Theorem 2. Suppose that R satisfies

RicM(α′v(t), α′v(t)) ≥ (n− 1)R(t)

for v ∈ SqM, 0 < t < ∞. Then the p-Green func-
tion g of M satisfies

g(x, q) ≥ kpc1

∫ ∞

h(x)

f(t)
1−n
p−1 dt in M.

In particular, if∫ ∞

T

f(t)
1−n
p−1 dt =∞, for some T > 0,

then M has no p-Green function.
Let B(t) be the geodesic ball of radius t about q.

If F (t) is a C2 function on (0,∞) satisfying F ′(t) <

0, then u(x) = F (h(x)) satisfies

div(|∇u|p−2∇u) =

−|F ′(h)|p−2(|F ′(h)|∆h− (p− 1)F ′′(h))

in M \ {q}. Let f be the positive solution of (2).
Then

k−1
p = lim

t→0

1
Gp(t)

∫ ∞

t

f(s)
1−n
p−1 ds.

Proof of Theorem 1. By the Hessian com-
parison theorem(cf. Kasue [6, Lemma 2.18]), we
have

∆h(x) ≥ (n− 1)
f ′(h(x))
f(h(x))

for x ∈M \ {q}.

Let

F (t) =
∫ ∞

t

f(s)
1−n
p−1 ds, u(x) = F (h(x)).

Then

div(|∇u|p−2∇u) ≤ 0 in M \ {q}.
Let G be a bounbed smooth domain in M such that
Ω ⊂ G and g1 be a p-Green function of G. Then
g1 ∈ S. Fix a small ε > 0. By Lemma 1, there exists
δ > 0 such that g1(x) ≤ (k−1

p − ε)−1(c2 + ε)u(x) in
B(δ) \ {q}. The comparison principle( [1, Theorem
7.6]) implies that g1(x) ≤ (k−1

p − ε)−1(c2 + ε)u(x) in

G\{q}. By letting ε→ 0 we obtain g1(x) ≤ kpc2u(x)
in G \ {q}, and the theorem is proved.

Proof of Theorem 2. By the Laplacian com-
parison theorem(cf. Kasue [6, Lemma 2.5]), we have

∆h(x) ≤ (n− 1)
f ′(h(x))
f(h(x))

for x ∈M \ {q}.

There exists T1 > 0 such that Ω ⊂ B(T1). Fix T >

T1. Choose a bounded smooth domain G in M such
that B(T ) ⊂ G. Let g1 be a Green function of G.
Then g1 ∈ S. Set

F (t) =
∫ T

t

f(s)
1−n
p−1 ds, u(x) = F (h(x)).

Then

div(|∇u|p−2∇u) ≥ 0 in B(T ) \ {q}.
Fix a small ε > 0. By Lemma 1, there exists
δ > 0 such that g1(x) ≥ (k−1

p + ε)−1(c2 − ε)u(x)
in B(δ) \ {q}. The comparison principle([1, Theorem
7.6]) implies that g1(x) ≥ (k−1

p + ε)−1(c1− ε)u(x) in
B(T ) \ {q}. By letting ε → 0 we obtain g1(x) ≥
kpc1u(x) in B(T ) \ {q}. If g is a p-Green function of
M , then g(x) ≥ kpc1u(x) in B(T )\{q}. The theorem
follows by letting T →∞.
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