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Let M be a
noncompact connected complete Riemannian n-
manifold without boundary and 1 < p < n be a
constant. The purpose of this note is to give geo-
metric criteria for the existence and nonexistence of
the p-Green function of the p-Laplace equation

(1) div(|Vu[P~2Vu) = 0

1. Introduction. smooth

on M. In case p = 2, Ichihara [5] has given geo-
metric criteria for the existence and nonexistence of
the 2-Green function of M. Kasue [6] has given es-
timates of 2-Green function of M. We shall extend
the results of Ichihara [5] and Kasue [6] to (1). The
p-Green function of (1) for M was first defined by
Holopainen [2]. We refer to Holopainen [3], [4] and
Tanaka [8] for the p-Green function of M and related
topics.
For open set G in M, a function

u € locW1P(G) (N C(G) is said to be p-harmonic in
G if u satisfies

/ (|Vu|P~2Vu, Vp)duy =0,  for all ¢ € C§°(Q),

G

where (,) and vy are the Riemannian metric and
volume measure of M respectively. Let g be a fixed
point in M. For a bounded smooth domain G con-
taining ¢, a function g = ¢(+, q) is said to be p-Green

function of G with pole q if it satisfies the following
conditions:

g is p-harmonic in G \ {q},

lim g(z) =0 for every y € 0G,

lim g(x) = co,

—div(|Vg[P~2?Vg) = 6, in G,

in the sense of distributions, i.e.
/G<|Vg\p_2Vg,V<p>de = ¢(q),

for all p € C5°(G).
Let {G}1en be an exhaustion of M by bounded

smooth domains G; such that ¢ € G1,G; C Gy,
and M = |J, Gi. Holopainen [2] proved that there
exists a p-Green function g; of G such that the se-
quence {g;} is increasing. By the Harnack’s conver-
gence theorem ([1, Theorem 6.14]) g = lim;_, g is
either p-harmonic in M \ {¢} or identically +oco in
M. In the former case g is said to be a p-Green func-
tion of M. The uniqueness of the p-Green function
of M is not known except p = n. In case p = n,
Holopainen [2] proved the uniqueness.

2. Results. Let SM be the unit tangent
bundle of M. For av € S, M, we set a,(t) = exp(tv)
and N(v) = {w € Sy M|{(v,w) = 0}. Set h(z) =
d(q,z) in M where d is the Riemannian distance of
M. Suppose that €2 is a bounded open set in M con-
taining ¢ and put Q; = Q\ {¢}. Let S be the set of
the positive p-harmonic functions of (1) in Q; with
isolated singularity at q and

—div(|Vul|P~*Vu) = §, in Q.

n—p
tr=1, if 1l<p<mn,
Gp(t) = { / p

Let

—logt,if p=n.
The following lemma is due to Serrin [7].

Lemma 1. There exist two positive constants
c1,co such that

c1 < liminf ﬂ < lim sup ﬂ < cg,
e=q Gp(M)) 7 g Gp(h(z))
forue S

Let Ky and Ricy; denote the sectional and Ricci
curvatures of M respectively. Put k, = (n —p)/(p —
ifl<p<nandk, =1 Let R: [0,00) —
R be a continuous function. We assume that the
injectivity radius of ¢ is infinity and that the initial
value problem

{f”+R(t)f_O in (0, 00),
f(0)=0, f'(0)=1,

has the positive solution f. We have by Lemma 1

(2)
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the following theorems:
Theorem 1. Suppose that R satisfies

K (a, (1), w) < R(t)
forve SyM, 0 <t<oo, we N(a(t)). Let
/OO f(t)i%lldt < oo for someT > 0.
Then thz p-Green function g of M satisfies
g(x,q) < kpeo h:o) f(t);%?dt in M.

In particular, M has a p-Green function.
Theorem 2. Suppose that R satisfies

Ricm (o, (t), 00, (1)) = (n = 1)R(t)
for ve SM, 0 <t <oo. Then the p-Green func-
tion g of M satisfies
o0 1—n
9(x,q) = kper f&)7=rdt in M.
h(z)
In particular, if

/ f(t)%dt =00, for someT >0,
T

then M has no p-Green function.

Let B(t) be the geodesic ball of radius ¢ about gq.
If F(t) is a C? function on (0, o) satisfying F'(t) <
0, then u(x) = F(h(x)) satisfies
div(|VulP~2Vu) =

—|E"(h)[P=2(|F'(h)| Ah = (p = 1)F" (h))

in M \ {¢}. Let f be the positive solution of (2).
Then

1 o0 1-n
—1 1 e
Ry = lim Gp(t)/t J(s)rrds.
Proof of Theorem 1. By the Hessian com-

parison theorem(cf. Kasue [6, Lemma 2.18]), we
have

Ah(z) > (n — 1)m for x e M\ {q}.
Let
Py = [ £ s, ula) = F(ha)
Then

div(|VulP2Vu) <0 in M\ {q}.
Let G be a bounbed smooth domain in M such that
Q C G and g; be a p-Green function of G. Then
g1 € S. Fix asmall ¢ > 0. By Lemma 1, there exists
6 > 0 such that gi(z) < (k' — &) (c2 + €)u(z) in
B(8) \ {¢}. The comparison principle( [1, Theorem
7.6]) implies that g, (z) < (k, ' —&)~!(c2 +€)u(x) in
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G\{¢}. By letting e — 0 we obtain g1 (z) < kycou(z)
in G\ {q}, and the theorem is proved. [l
Proof of Theorem 2. By the Laplacian com-
parison theorem(cf. Kasue [6, Lemma 2.5]), we have
f'(h(z)
Ah(z) < (n—1)=—" for x€ M\{q}.
f(h(x))

There exists 77 > 0 such that Q ¢ B(Ty). Fix T >
T,. Choose a bounded smooth domain G in M such
that B(T) C G. Let g1 be a Green function of G.
Then ¢g; € S. Set

1—n

T
F(t):/f f(s)rP=1ds,
Then I

div(|Vu[’"*Vu) >0 in B(T)\ {q}.
Fix a small ¢ > 0. By Lemma 1, there exists
6 > 0 such that gi(z) > (k' + &) ' (c2 — e)u(x)
in B(d) \ {¢}- The comparison principle([1, Theorem
7.6]) implies that g (x) > (k' +¢) "' (c1 — e)u(x) in
B(T) \ {q}. By letting ¢ — 0 we obtain g¢;(z) >
kpciu(z) in B(T) \ {q}. If g is a p-Green function of
M, then g(z) > kpciu(z) in B(T)\{¢}. The theorem

follows by letting T" — oo. ]
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