A note on quadratic fields in which a fixed prime number splits completely. II

By Humio Ichimura

Department of Mathematics, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027 (Communicated by Shokichi IYANAGA, M.J.A., Oct. 12, 1999)

1. Introduction. Let p be a fixed prime number and let $M(p)^+$ (resp. $M(p)^-$) be the set of all real (resp. imaginary) quadratic fields in which p splits. For a quadratic field K in which p splits, denote by n_K the order of the ideal class of a prime ideal of K over p. Here, an ideal class is the one in the usual sense. We are concerned with the images of the maps

$$\begin{split} \delta_p^+ &: \ M(p)^+ \longrightarrow \ \boldsymbol{N}, \quad K \to n_K \\ \delta_p^- &: \ M(p)^- \longrightarrow \ \boldsymbol{N}, \quad K \to n_K. \end{split}$$

In the previous paper [2, Theorem 2], we proved that the image Im δ_p^- of δ_p^- equals N for any p. For the real quadratic case, we remarked in [2, Remark 3] that Im δ_p^+ contains 1 and 2 for any p. The purpose of the present note is to prove the following:

Theorem. The image of the map δ_p^+ contains 2^n for all $n \ge 0$ and any prime number p.

Notation. We denote by N and Q the set of natural numbers and the field of rationals, respectively. The ideal class group Cl_K of a quadratic field K is the one in the usual sense. Namely, Cl_K is the quotient of the group of fractional ideals by the subgroup of *all* principal ideals.

2. Lemma. We fix a prime number p and a natural number n. Take natural numbers r and X such that

- (1) (r, 2p) = 1 and $r \notin (\boldsymbol{Q}^{\times})^2$,
- (2) (X, 2p) = 1 and $X \notin (\mathbf{Q}^{\times})^2$.

We assume that r and X satisfy the following conditions.

- (3) $rX \notin (\mathbf{Q}^{\times})^2$ and $rX + 4p^{2^n} \notin (\mathbf{Q}^{\times})^2$.
- (4) There exist natural numbers Y, Z such that

$$r(Y^2 - X^2 Z^2) = 4(X Z^2 p^{2^n} \pm 1).$$

By the conditions (1), (2) and (3), $rX(rX + 4p^{2^n})$ is not a square in \mathbf{Q}^{\times} , and hence

$$K = \boldsymbol{Q}(\sqrt{rX(rX + 4p^{2^n})})$$

is a real quadratic field in which p splits. Let \mathcal{P} be a prime ideal of K over p. For an ideal \mathcal{A} of K, we denote by $[\mathcal{A}]$ the ideal class represented by \mathcal{A} . The following lemma is a consequence of the well known fact (cf. eg. Hecke [1, Section 45]) on 2–ranks of the ideal class groups of quadratic fields.

Lemma. Under the above setting, the order of $[\mathcal{P}]$ is 2^{n+1} . Namely, $\delta_p^+(K) = 2^{n+1}$.

To prove this, we need the following claims.

Claim 1. $K(\sqrt{r}) \neq K(\sqrt{rX + 4p^{2^n}}).$

Claim 2. Let ϵ be the fundamental unit of K with $\epsilon > 1$. Then, $N(\epsilon) = 1$ and $K(\sqrt{\epsilon}) = K(\sqrt{r})$. Here, N denotes the norm map.

Proof of Claim 1. This follows easily from (1), (2) and (3). \Box

Proof of Claim 2. From (4), we see that

$$\delta = \frac{Y\sqrt{r} + Z\sqrt{X(rX + 4p^{2^n})}}{2}$$

is a unit of $K(\sqrt{r})$ and that $\delta \notin K^{\times}$. Therefore, $\eta = \delta^2$ is a totally positive unit of K and $\eta \notin (K^{\times})^2$. From this, we obtain the assertion.

Proof of Lemma. Put $x = rX + 4p^{2^n}$ for brevity. We have

$$K = \boldsymbol{Q}(\sqrt{x(x-4p^{2^n})}).$$

Write $x = f^2 d$ with d square free, and $d = \ell_1 \cdots \ell_s$ where ℓ_i $(1 \le i \le s)$ are prime numbers different from each other. By (1) and (2), d and $x - 4p^{2^n}$ are relatively prime. Hence, ℓ_i is ramified in K: $(\ell_i) = \mathcal{L}_i^2$.

We put

$$\alpha = \frac{x + \sqrt{x(x - 4p^{2^n})}}{2}.$$

We have $N(\alpha) = xp^{2^n}$ and $Tr(\alpha) = x$ where Tr is the trace map. Hence, $(\alpha, \alpha') \supseteq (x)$. From these, we obtain

$$(\alpha) = f\mathcal{L}_1 \cdots \mathcal{L}_s \mathcal{P}^{2^n},$$

Partially supported by Grant-in-Aid for Scientific Research (C), (No. 11640041), the Ministry of Education, Science, Sports and Culture of Japan.

where \mathcal{P} is a prime ideal of K over p. Therefore, it suffices to show that $[\mathcal{L}_1 \cdots \mathcal{L}_s] \neq 1$ since $(\mathcal{L}_1 \cdots \mathcal{L}_s)^2 = (d)$.

Assume, to the contrary, that $[\mathcal{L}_1 \cdots \mathcal{L}_s] = 1$. Then, we have

$$(A + B\sqrt{d(x - 4p^{2^n})}) = \mathcal{L}_1 \cdots \mathcal{L}_s$$

for some $A, B \in \mathbf{Q}$. We easily see that $AB \neq 0$. Writing A = A'd, we obtain

$$(A'\sqrt{d} + B\sqrt{x - 4p^{2^n}}) = (1)$$

in $K(\sqrt{d})$. Therefore,

$$\delta' = A'\sqrt{d} + B\sqrt{x - 4p^{2^n}}$$

is a unit of $K(\sqrt{d})$, and $\delta' \notin K^{\times}$ (as $AB \neq 0$). Hence, $\eta' = {\delta'}^2$ is a totally positive unit of K and $\eta' \notin (K^{\times})^2$. From this, we see that $K(\sqrt{d}) = K(\sqrt{\epsilon})$. Therefore, by Claim 2, we obtain

$$K(\sqrt{r}) = K(\sqrt{d}) = K(\sqrt{rX + 4p^{2^n}}).$$

However, this is impossible by Claim 1. \Box

3. Proof of Theorem. It suffices to give a real quadratic field $K \in M(p)^+$ such that $\delta_p^+(K) = 2^m$ for each integer $m \ge 2$ by [2, Remark 3]. For $n \ge 1$, we define an integer a_n as follows and put $K_n = \mathbf{Q}(\sqrt{a_n})$.

$$a_n = \begin{cases} 3(3p^{2^n} + 1)(25p^{2^n} + 3) & \text{when } p \ge 5\\ 7(7p^{2^n} + 1)(81p^{2^n} + 7) & \text{when } p = 3\\ 3(12p^{2^n} + 1)(64p^{2^n} + 3) & \\ & \text{when } p = 2 \text{ and } n \text{ is odd}\\ 3(48p^{2^n} - 1)(196p^{2^n} - 3) & \\ & \text{when } p = 2 \text{ and } n \text{ is even.} \end{cases}$$

Clearly, p splits in K_n . The above real quadratic field is obtained by setting

$$(r, X, Y, Z) = \begin{cases} ((3p^{2^n} + 1)/4, 3, 5, 1) & \text{when } p \ge 5\\ ((7p^{2^n} + 1)/8, 7, 9, 1) & \text{when } p = 3\\ ((12p^{2^n} + 1)/7, 3, 8, 2) & \text{when } p = 2 \text{ and } n \text{ is odd}\\ ((48p^{2^n} - 1)/13, 3, 14, 4) & \text{when } p = 2 \text{ and } n \text{ is even} \end{cases}$$

in the notation of Section 2. When $(p,n) \neq (3,1)$, the above quadruple satisfies the conditions $(1), \ldots$, (4) in Section 2, and hence $\delta_p^+(K_n) = 2^{n+1}$ by the Lemma. When (p,n) = (3,1), it is easy to see that $\delta_3^+(K_1) = 2^2$. Therefore, we obtain the Theorem.

Remark. For an integer x relatively prime to 2p and a natural number N, we put

$$K = Q(\sqrt{x^2 \pm 4p^N})$$
 and $\beta = \frac{x + \sqrt{x^2 \pm 4p^N}}{2}$.

We see that p splits in K and that $(\beta) = \mathcal{P}^N$ where \mathcal{P} is a prime ideal of K over p. It is plausible that $\delta_p^+(K) = N$ for infinitely many x. Namely, we can hope that $\operatorname{Im} \delta_p^+ = \mathbf{N}$ and that the inverse image $(\delta_p^+)^{-1}(N)$ of N is an infinite set for each N. Quadratic fields of the form $\mathbf{Q}(\sqrt{a^2 \pm 4b^N})$ were used by Nagell [3], Yamamoto [4] and several others to construct quadratic fields whose class numbers are divisible by a given integer N.

References

- E. Hecke: Lectures on the Theory of Algebraic Numbers. Springer, New York, pp. 1–239 (1981).
- H. Ichimura: A note on quadratic fields in which a fixed prime number splits completely. Nagoya Math. J., 99, 63–71 (1985).
- [3] T. Nagell: Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 1, 140–150 (1922).
- Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57–76 (1970).

151

No. 8]