A note on quadratic fields in which a fixed prime number splits completely. II

By Humio Ichimura
Department of Mathematics, Yokohama City University,
22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027
(Communicated by Shokichi Iyanaga, m.J.a., Oct. 12, 1999)

1. Introduction. Let p be a fixed prime number and let $M(p)^{+}$(resp. $M(p)^{-}$) be the set of all real (resp. imaginary) quadratic fields in which p splits. For a quadratic field K in which p splits, denote by n_{K} the order of the ideal class of a prime ideal of K over p. Here, an ideal class is the one in the usual sense. We are concerned with the images of the maps

$$
\begin{array}{rll}
\delta_{p}^{+}: & M(p)^{+} \longrightarrow \boldsymbol{N}, & K \rightarrow n_{K} \\
\delta_{p}^{-} & : M(p)^{-} \longrightarrow \boldsymbol{N}, & K \rightarrow n_{K}
\end{array}
$$

In the previous paper [2, Theorem 2], we proved that the image $\operatorname{Im} \delta_{p}^{-}$of δ_{p}^{-}equals N for any p. For the real quadratic case, we remarked in [2, Remark 3] that $\operatorname{Im} \delta_{p}^{+}$contains 1 and 2 for any p. The purpose of the present note is to prove the following:

Theorem. The image of the map δ_{p}^{+}contains 2^{n} for all $n \geq 0$ and any prime number p.

Notation. We denote by \boldsymbol{N} and \boldsymbol{Q} the set of natural numbers and the field of rationals, respectively. The ideal class group Cl_{K} of a quadratic field K is the one in the usual sense. Namely, Cl_{K} is the quotient of the group of fractional ideals by the subgroup of all principal ideals.
2. Lemma. We fix a prime number p and a natural number n. Take natural numbers r and X such that
(1) $(r, 2 p)=1 \quad$ and $\quad r \notin\left(\boldsymbol{Q}^{\times}\right)^{2}$,
(2) $(X, 2 p)=1 \quad$ and $\quad X \notin\left(\boldsymbol{Q}^{\times}\right)^{2}$.

We assume that r and X satisfy the following conditions.
(3) $r X \notin\left(\boldsymbol{Q}^{\times}\right)^{2}$ and $r X+4 p^{2^{n}} \notin\left(\boldsymbol{Q}^{\times}\right)^{2}$.
(4) There exist natural numbers Y, Z such that

$$
r\left(Y^{2}-X^{2} Z^{2}\right)=4\left(X Z^{2} p^{2^{n}} \pm 1\right)
$$

By the conditions (1), (2) and (3), $r X\left(r X+4 p^{2^{n}}\right)$ is not a square in \boldsymbol{Q}^{\times}, and hence

[^0]$$
K=\boldsymbol{Q}\left(\sqrt{r X\left(r X+42^{2}\right)}\right)
$$
is a real quadratic field in which p splits. Let \mathcal{P} be a prime ideal of K over p. For an ideal \mathcal{A} of K, we denote by $[\mathcal{A}]$ the ideal class represented by \mathcal{A}. The following lemma is a consequence of the well known fact (cf. eg. Hecke [1, Section 45]) on 2 -ranks of the ideal class groups of quadratic fields.

Lemma. Under the above setting, the order of $[\mathcal{P}]$ is 2^{n+1}. Namely, $\delta_{p}^{+}(K)=2^{n+1}$.

To prove this, we need the following claims.
Claim 1. $K(\sqrt{r}) \neq K\left(\sqrt{r X+42^{2^{n}}}\right)$.
Claim 2. Let ϵ be the fundamental unit of K with $\epsilon>1$. Then, $N(\epsilon)=1$ and $K(\sqrt{\epsilon})=K(\sqrt{r})$. Here, N denotes the norm map.

Proof of Claim 1. This follows easily from (1), (2) and (3).

Proof of Claim 2. From (4), we see that

$$
\delta=\frac{Y \sqrt{r}+Z \sqrt{X\left(r X+4{p^{2}}^{n}\right)}}{2}
$$

is a unit of $K(\sqrt{r})$ and that $\delta \notin K^{\times}$. Therefore, $\eta=\delta^{2}$ is a totally positive unit of K and $\eta \notin\left(K^{\times}\right)^{2}$. From this, we obtain the assertion.

Proof of Lemma. Put $x=r X+4 p^{2^{n}}$ for brevity. We have

$$
K=\boldsymbol{Q}\left(\sqrt{x\left(x-4 p^{2^{n}}\right)}\right) .
$$

Write $x=f^{2} d$ with d square free, and $d=\ell_{1} \cdots \ell_{s}$ where $\ell_{i}(1 \leq i \leq s)$ are prime numbers different from each other. By (1) and (2), d and $x-4 p^{2^{n}}$ are relatively prime. Hence, ℓ_{i} is ramified in K : $\left(\ell_{i}\right)=\mathcal{L}_{i}^{2}$.

We put

$$
\alpha=\frac{x+\sqrt{x\left(x-4 p^{2^{n}}\right)}}{2}
$$

We have $N(\alpha)=x p^{2^{n}}$ and $\operatorname{Tr}(\alpha)=x$ where Tr is the trace map. Hence, $\left(\alpha, \alpha^{\prime}\right) \supseteq(x)$. From these, we obtain

$$
(\alpha)=f \mathcal{L}_{1} \cdots \mathcal{L}_{s} \mathcal{P}^{2^{n}}
$$

where \mathcal{P} is a prime ideal of K over p. Therefore, it suffices to show that $\left[\mathcal{L}_{1} \cdots \mathcal{L}_{s}\right] \neq 1$ since $\left(\mathcal{L}_{1} \cdots \mathcal{L}_{s}\right)^{2}=(d)$.

Assume, to the contrary, that $\left[\mathcal{L}_{1} \cdots \mathcal{L}_{s}\right]=1$. Then, we have

$$
\left(A+B \sqrt{d\left(x-4 p^{2^{n}}\right)}\right)=\mathcal{L}_{1} \cdots \mathcal{L}_{s}
$$

for some $A, B \in \boldsymbol{Q}$. We easily see that $A B \neq 0$. Writing $A=A^{\prime} d$, we obtain

$$
\left(A^{\prime} \sqrt{d}+B \sqrt{x-4 p^{2^{n}}}\right)=(1)
$$

in $K(\sqrt{d})$. Therefore,

$$
\delta^{\prime}=A^{\prime} \sqrt{d}+B \sqrt{x-4 p^{2^{n}}}
$$

is a unit of $K(\sqrt{d})$, and $\delta^{\prime} \notin K^{\times}$(as $A B \neq 0$). Hence, $\eta^{\prime}=\delta^{\prime 2}$ is a totally positive unit of K and $\eta^{\prime} \notin\left(K^{\times}\right)^{2}$. From this, we see that $K(\sqrt{d})=K(\sqrt{\epsilon})$. Therefore, by Claim 2, we obtain

$$
K(\sqrt{r})=K(\sqrt{d})=K\left(\sqrt{r X+4 p^{2^{n}}}\right)
$$

However, this is impossible by Claim 1.
3. Proof of Theorem. It suffices to give a real quadratic field $K \in M(p)^{+}$such that $\delta_{p}^{+}(K)=$ 2^{m} for each integer $m \geq 2$ by [2, Remark 3]. For $n \geq 1$, we define an integer a_{n} as follows and put $K_{n}=\boldsymbol{Q}\left(\sqrt{a_{n}}\right)$.

$$
a_{n}= \begin{cases}3\left(3 p^{2^{n}}+1\right)\left(25 p^{2^{n}}+3\right) & \text { when } p \geq 5 \\ 7\left(7 p^{2^{n}}+1\right)\left(81 p^{2^{n}}+7\right) & \text { when } p=3 \\ 3\left(12 p^{2^{n}}+1\right)\left(64 p^{2^{n}}+3\right) & \\ \text { when } p=2 \text { and } n \text { is odd } \\ 3\left(48 p^{2^{n}}-1\right)\left(196 p^{2^{n}}-3\right) \\ \text { when } p=2 \text { and } n \text { is even. }\end{cases}
$$

Clearly, p splits in K_{n}. The above real quadratic field is obtained by setting
$(r, X, Y, Z)=\left\{\begin{array}{rr}\left(\left(3 p^{2^{n}}+1\right) / 4,3,5,1\right) & \text { when } p \geq 5 \\ \left(\left(7 p^{2^{n}}+1\right) / 8,7,9,1\right) & \text { when } p=3 \\ \left(\left(12 p^{2^{n}}+1\right) / 7,3,8,2\right) & \\ \text { when } p=2 \text { and } n \text { is odd } \\ \left(\left(48 p^{2^{n}}-1\right) / 13,3,14,4\right) \\ \text { when } p=2 \text { and } n \text { is even }\end{array}\right.$ in the notation of Section 2. When $(p, n) \neq(3,1)$, the above quadruple satisfies the conditions (1),..., (4) in Section 2, and hence $\delta_{p}^{+}\left(K_{n}\right)=2^{n+1}$ by the Lemma. When $(p, n)=(3,1)$, it is easy to see that $\delta_{3}^{+}\left(K_{1}\right)=2^{2}$. Therefore, we obtain the Theorem.

Remark. For an integer x relatively prime to $2 p$ and a natural number N, we put

$$
K=\boldsymbol{Q}\left(\sqrt{x^{2} \pm 4 p^{N}}\right) \text { and } \beta=\frac{x+\sqrt{x^{2} \pm 4 p^{N}}}{2}
$$

We see that p splits in K and that $(\beta)=\mathcal{P}^{N}$ where \mathcal{P} is a prime ideal of K over p. It is plausible that $\delta_{p}^{+}(K)=N$ for infinitely many x. Namely, we can hope that $\operatorname{Im} \delta_{p}^{+}=\boldsymbol{N}$ and that the inverse image $\left(\delta_{p}^{+}\right)^{-1}(N)$ of N is an infinite set for each N. Quadratic fields of the form $\boldsymbol{Q}\left(\sqrt{a^{2} \pm 4 b^{N}}\right)$ were used by Nagell [3], Yamamoto [4] and several others to construct quadratic fields whose class numbers are divisible by a given integer N.

References

[1] E. Hecke: Lectures on the Theory of Algebraic Numbers. Springer, New York, pp. 1-239 (1981).
[2] H. Ichimura: A note on quadratic fields in which a fixed prime number splits completely. Nagoya Math. J., 99, 63-71 (1985).
[3] T. Nagell: Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 1, 140-150 (1922).
[4] Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57-76 (1970).

[^0]: Partially supported by Grant-in-Aid for Scientific Research (C), (No. 11640041), the Ministry of Education, Science, Sports and Culture of Japan.

