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A generalization of the Hardy theorem to semisimple Lie groups

By Mitsuhiko Ebata,∗1) Masaaki Eguchi,∗2),∗5) Shin Koizumi,∗3),∗5) and Keisaku Kumahara∗4),∗6)

(Communicated by Heisuke Hioronaka, m. j. a., Sept. 13, 1999)

1. Introduction. The classical uncertainty
principle asserts that a function and its Fourier
transform cannot both be concentrated on intervals
of small measure. In the case of the Euclidean space,
various forms of the uncertainty principle are known.
One of them is the following Hardy theorem (cf. [1,
pp. 155-158]). If a measurable function f on R satis-
fies |f | ≤ C exp{−ax2} and |f̂ | ≤ C exp{−by2} and
ab > 1/4, then f = 0 (a.e.). Here we take f̂(y) =
(1/

√
2π)

∫∞
−∞ f(x) exp{

√
−1xy}dx as the definition

of the Fourier transform of f .
Recently A. Sitaram and M. Sundari [6] gen-

eralized this theorem to the cases of the semisim-
ple Lie groups with one conjugacy class of Cartan
subgroups, the Riemannian symmetric spaces and
SL(2,R). On the other hand M. Sundari [7] showed
the Hardy theorem for the Euclidean motion group.
And also M. Eguchi, S. Koizumi and K. Kumahara
generalized the results to Cartan motion group [2]
and gave an Lp version for motion groups [3]. In this
paper we give an analogue of the Hardy theorem to
noncompact semisimple Lie groups.

2. Notation and preliminaries. The stan-
dard symbols Z, R and C shall be used for the set of
the integers, the real numbers and the complex num-
bers. If V is a vector space over R, Vc, V ∗ and V ∗c
denote its complexification, its real dual and its com-
plex dual, respectively. For a Lie group L, L̂ denotes
the set of all equivalence classes of irreducible unitary
representations of L. If L is a reductive Lie group,
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L̂disc denotes the subset comprised of all equivalence
classes of discrete series. As usual for a Lie group,
we use lower case German letters to denote its Lie
algebras. If H is a complex separable Hilbert space,
the operator norm on H will be denoted by ‖ · ‖∞.

Let G be a connected semisimple Lie group with
finite center. We fix a maximal compact subgroup K

of G and denote by θ the corresponding Cartan in-
volution. Let g = k+ p be the Cartan decomposition
of g defined by θ. Let ap be a maximal abelian sub-
space of p and denote by Σ the set of all restricted
roots of g relative to ap. We fix an order in a∗p and
denote by Σ+ the set of all positive restricted roots.
Let {α1, · · · , αl} be the set of simple roots of (g, ap)

and put L =
{∑l

i=1 niαi ; ni ∈ Z (i = 1, · · · , l)
}

and L+ =
{∑l

i=1 niαi ; ni ∈ Z≥0 (i = 1, · · · , l)
}

.

For each λ =
∑l

i=1 λiαi ∈ L+, put |λ| =
∑l

i=1 λi.
For q = (q1, . . . , ql) ∈ Zl

≥0, we also put α(H)q =
α1(H)q1 · · ·αl(H)ql (H ∈ a) and |q| =

∑l
i=1 qi.

Let a−p be a choice of negative Weyl chamber. We
set np =

∑
λ∈Σ+ gλ and put Ap = exp ap, Np =

exp np and Mp = ZK(ap). Then P0 = MpApNp
is a minimal parabolic subgroup of G. When g =
k expX (k ∈ K, X ∈ p), we set σ(g) = ‖X‖, where
‖ ·‖ denoting the norm coming from the Killing form
of g.

We write Car(G) for the set of all θ-stable Car-
tan subgroups and denote by Car′(G) the subset
of Car(G) comprised of all noncompact ones. For
J ∈ Car(G), let PJ = MJAJNJ be the Langlands
decomposition of the cuspidal parabolic subgroup PJ

associated to J . We remark that if J ∈ Car′(G) then
AJ 6= {e}.

Under the decomposition G=KPJ=KMJAJNJ ,
each g∈G can be written as g=κ(g)µJ(g) expHJ(g)
nJ(g), where κ(g) ∈ K, µJ(g) ∈ MJ , HJ(g) ∈ aJ

and nJ(g) ∈ NJ . Let σ ∈ (M̂J)disc and ν ∈ a∗J . We
denote by (πJ,σ,ν ,HJ,σ,ν) the representation induced
from σ ⊗ ν ⊗ 1 of PJ to G. Then it is known that
(πJ,σ,ν ,HJ,σ,ν) is unitary.
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3. The main theorem. As the Hardy the-
orem in the case Ĝdisc = ∅ is obtained in [6], we
suppose rankG = rankK, that is, Ĝdisc 6= ∅. Let
J ∈ Car′(G) and PJ = MJAJNJ be the corre-
sponding cuspidal parabolic subgroup of G. For
σ ∈ (M̂J)disc and ν ∈ a∗J , we define the Fourier trans-
form f̂J(σ, ν) of f ∈ L1(G) by

f̂J(σ, ν) =
∫

G

f(g)πJ,σ,ν(g) dg.

We write πλ for the discrete series representation of
G with Harish-Chandra parameter λ. We define the
Fourier transform f̂d(λ) of f ∈ L1(G) by

f̂d(λ) =
∫

G

f(g)πλ(g) dg.

The following is an analogue of Hardy theorem
for semisimple Lie group.

Theorem 3.1. Let f be a measurable function
on G such that

|f(g)| ≤ Ce−aσ(g)2(1)

‖f̂J(σ, ν)‖∞ ≤ CJ,σe−b‖ν‖2 (ν ∈ a∗J)(2)

for each J ∈ Car′(G), some constants a > 0, b > 0,
C > 0 and CJ,σ > 0. If ab > 1/4 then f = 0 (a.e.).

We give here a sketch of the proof. From the as-
sumption for the function f , we see that f ∈ L1(G)∩
L2(G) and f̂J(σ, ν) makes sense on (M̂J)disc× (a∗J)c.
It is shown that the assumption of f and f̂J in Theo-
rem 3.1 implies f̂J(σ, ν) = 0 for ν ∈ a∗J . This is ac-
complished by a similar argument to that of [6]. By
the Plancherel formula and the above argument for
continuous series, we can suppose f ∈ L2

d(G), L2
d(G)

denoting the closed subspace of L2(G) spanned by
the set of K-finite matrix elements of discrete series
of G. Decomposing f into the sum

f =
∑

χτ1 ∗ f ∗ χτ2 =
∑

fτ1,τ2

and using the assumptions (1) and (2), we can prove
that fτ1,τ2 satisfies also the assumptions (1) and (2).
Therefore, we can assume

f =
∑

1≤k≤s

CkΦk,

where Φk is a matrix element of a discrete series.
We apply the asymptotic expansion to each Φk and
pay attention that the leading exponents are of first
order. Then we can see the assumption (2) on f

leads to a contradiction by the following theorem.
Theorem 3.2 ([4,5]). Let Φ be a matrix ele-

ment of a discrete series. Then there exist mutually
integrally non-equivalent elements µ1, · · · , µr ∈ a∗J ,
a finite set M ⊂ Zl

≥0 and constants Cµj+λ,q ∈ C
(j = 1, · · · , r, λ ∈ L+, q ∈ M) with Cµj ,q 6= 0
(j = 1, · · · , r, q ∈M), such that

Φ(a) =
r∑

j=1

∑
q∈M

α(log a)qe(µj+ρ)(log a)

×
∑

λ∈L+

Cµj+λ,qe
λ(log a), a ∈ A−p .

Here the series on the right hand side is abso-
lutely and uniformly convergent as long as a ∈ A−p ,
−αj(log a) ≥ εj > 0.
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