Class number two problem for real quadratic fields with fundamental units with the positive norm

By Fitnat KaraAlí and Hülya İŞCAN
Department of Mathematics, Trakya University, 22030 Edirne, Turkey
(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1998)

1. Introduction and notations. Throughout this paper, we denote by N the set of positive rational integers, and put $\mathrm{N}_{0}=\mathrm{N} \cup\{0\} . \mathrm{Z}$ will mean as usual the set of rational integers. For a square-free $D \in \mathrm{~N}$, the real quadratic field $Q(\sqrt{D})$ will be denoted by k, its class number by h_{k} and its fundamental unit >1 by $\varepsilon_{D}=(t+u$ $\sqrt{D}) / 2$. The norm map from k to Q will be denoted by N. The class number two problem requires to determine the set of all D for which h_{k} $=2$ under certain conditions. This problem was solved by Katayama $[2,3]$ with one possible exception for the conditions $N \varepsilon_{D}=-1,1 \leq u$ ≤ 200; by Mollin and Williams [5] for k of Extended Richaud-Degert type (i.e. with $D=m^{2}+r$ where $4 m \equiv 0(\bmod r)$), also with one possible exception; and by Taya and Terai [7] for k of Narrow Richaud-Degert type (i.e. with $r= \pm 1$ or $\pm 4)$.

In this paper, we shall consider this problem for the case $N \varepsilon_{D}=1,1 \leq u \leq 100$ and solve it with one possible exception (see Theorem below).
2. Lemmas and propositions. We begin by citing two known results as Lemmas 1,2 (The letters $N, D, \varepsilon_{D}, t, u$ will always keep the meanings explained above. For a real number x, $[x]$ means as usual the greatest integer $\leq x$).

Lemma 1 (Yokoi [11]). Suppose $N \varepsilon_{D}=1$. Then the following conditions for $n, v \in \mathrm{~N}_{0}, w$ $\in Z$ determine these numbers uniquely, and we have $n=\left[t / u^{2}\right], w=D-2 t n+u^{2} n^{2}$:
$t=u^{2} n+v, v^{2}-4=w u^{2}, v<u^{2}$
$D=u^{2} n^{2}+2 v n+w$.
For our real quadratic field $k=Q(\sqrt{D})$, we denote by d_{k} its discriminant (i.e. d_{k} is D or $4 D$ according as $D \equiv 1(\bmod 4)$ or $\equiv 2,3(\bmod 4)$), by χ_{k} Kronecker character of k and by $L\left(1, \chi_{k}\right)$ the Dirichlet L-function with this character.

Lemma 2 (Tatuzawa [6]). Suppose $d_{k} \geq$ $\max \left(e^{1 / \alpha}, e^{11.2}\right)$ for a real number α with $0<\alpha$ $<1 / 2$. Then we have

$$
L\left(1, \chi_{k}\right)>\frac{0.655 \alpha}{d_{k}^{\alpha}}
$$

with one possible exception of k.
The following lemma will be used immediately afterward:

Lemma 3. We have $\varepsilon_{D}<2 u \sqrt{D}$.
Proof. This follows easily from $t=$ $\sqrt{D u^{2} \pm 4}<u \sqrt{D}+2 . \quad$ Q. E. D.

Let D be a square-free number $\in \mathrm{N}$ for which $N \varepsilon_{D}=1$ and n, v, w be the numbers $\in Z$ determined by the conditions in Lemma 1. From Lemmas 2,3, we can deduce the following

Proposition 1. D, n, v, w being as above, there exists a real number $v(u)$ determined by u, such that $h_{k}>2$ follows from $n \geq v(u)$, with one possible exception of D.

Proof. From Lemma 2 and the well-known Dirichlet's class number formula, we get

$$
h_{k}=\frac{\sqrt{d_{k}}}{2 \log \varepsilon_{D}} L\left(1, \chi_{k}\right)>\frac{0.655}{2 \log \varepsilon_{D}} \frac{\sqrt{d_{k}} d_{k}^{-1 / y}}{y}
$$

for $y \geq 11.2$ and $d_{k} \geq e^{y}$, with one possible exception of k. Since $\varepsilon_{D}<2 u \sqrt{D} \leq 2 u \sqrt{d_{k}}$ by Lemma 3, we have

$$
h_{k}>\frac{0.655 d_{k}^{1 / 2-1 / y}}{y\left(\log d_{k}+2 \log u+2 \log 2\right)}
$$

y being fixed, the right-hand side is a monotone increasing function of d_{k}. Thus we can replace here d_{k} by e^{y} to obtain

$$
h_{k}>\frac{0.655 d_{k}^{y / 2-1}}{y(y+2 \log u+2 \log 2)}
$$

Let us denote by $f_{u}(y)$ the right-hand side of this inequality. For any fixed $u, f_{u}(y)$ tends to ∞ as $y \rightarrow \infty$. So there exists a real number $c(u) \geq 11.2$ satisfying $f_{u}(c(u)) \geq 2$. Thus, solving the inequality

$$
e^{c(u)} \leq D=u^{2} n^{2}+2 v n+w \leq d_{k}
$$

for n, one can find a real number $v(u)$ such that $h_{k}>f_{u}(c(u)) \geq 2$ for $n \geq v(u) . \quad$ Q. E. D.

In fact, we may take $v(u) \geq \sqrt{4+u^{2} e^{c(u)}}$, u^{2}. Moreover, we can choose $c(u)<16.5$ for 1
$\leq u \leq 100$ by the help of computer, so that we obtain

$$
\sqrt{4+u^{2} e^{c(u)}}<\sqrt{4+u^{2} e^{16.5}}<3828 u
$$

and can put $\cup(u)=3828 / u$ for such u 's. This result will be soon used.

To facilitate the formulation of the next Lemmas 4,5 , we introduce the following

Definition. For many $m \in \mathrm{~N}$ and squarefree $D \in \mathrm{~N}$, the Diophantine equation $x^{2}-D y^{2}$ $= \pm 4 m$ is said to have a trivial solution $\left(x_{0}, y_{0}\right)$ if $m=s^{2}$ and s divides both x_{0} and y_{0}. Any other solution is called non-trivial.

Lemma 4 (Davenport- Ankeny-Hasse- Ichimura). The notations being as above from the existence of at least one non-trivial solution of $x^{2}-D y^{2}$ $= \pm 4 m$ follows $m \geq(t-2) / u^{2}$.

Proof. See [10] Lemma 1.
Q. E. D.

Lemma 5. Let D, k be as above, q an odd prime with $\left(\frac{D}{q}\right)=1$ and e the order of the
ideal class of k containing a prime factor of q. Then the Diophantine equation $x^{2}-D y^{2}= \pm$ $4 q^{e}$ has a non-trivial solution.

Proof. Let Q be a prime factor of q in k and put $Q^{e}=(w), w=(x+y \sqrt{D}) / 2$. Since q splits in k, we get

$$
q^{e}=N Q^{e}=|N(w)|=\frac{\left|x^{2}-4 y^{2}\right|}{4} \text {. Q. E. D. }
$$

Proposition 2. Let D be as above, n, v, w the numbers given in Lemma 1 , and q an odd prime with $\left(\frac{D}{q}\right)=1$. If $h_{k}=2$, then $q^{2} \geq n$.

Proof. By Lemmas 4,5 , we have $q^{e} \geq(t-$ 2) $/ u^{2}$. Here we may replace e by 2 owing to h_{k} $=2$. Therefore by Lemma 1, we get

$$
q^{2} \geq \frac{u^{2} n+v-2}{u^{2}}=n+\frac{v-2}{u^{2}} \geq n-\frac{2}{u^{2}} .
$$

If $u \geq 2$, we have $q^{2} \geq n-1 / 2$ whence $q^{2} \geq n$. If $u=1$, we have $q^{2} \geq n-2$ and $D=n^{2}-4$

Table

(D)	(u,	D)	(u,	D)	(u,	D)	(u,	D)
(1,	165)*	(7,	429)*	(13,	4245)*	(24,	8357)	(56,	111)
(1,	221)*	(7,	1205)*	(14,	51)	(27,	6573)*	(56,	305)
(1,	285)*	(7,	1245)*	(14,	447)*	(28,	194)*	(56,	602)
(1,	357)*	(7,	2373)*	(15,	2013)*	(30,	1007)	(56,	782)*
(1,	957)*	(7,	5885)*	(15,	2037)*	(32,	258)*	(56,	5397)
(1,	1085)*	(7,	8333)*	(15,	5117)	(32,	1605)*	(57,	1005)
(1,	1517)*	(8,	39)*	(15,	5645)*	(32,	7733)*	(57,	6773)
(1,	2397)*	(8,	95)*	(16,	66)*	(33,	3893)	(58,	843)*
(2,	15)*	(8,	105)*	(16,	395)*	(34,	287)*	(60,	70)
(2,	35)*	(8,	138)*	(16,	2717)*	(35,	861)	(60,	902)*
(2,	143)*	(8,	203)*	(16,	5757)*	(35,	1653)	(64,	1022)*
(3,	205)*	(8,	885)	(17,	2613)*	(40,	155)	(64,	2301)*
(3,	1469)*	(8,	1173)*	(19,	3237)*	(40,	402)*	(65,	11357)
(3,	1965)*	(8,	2093)*	(19,	9005)*	(40,	2261)	(66,	335)
(3,	2085)*	(8,	3813)*	(20,	102)*	(40,	4893)*	(69,	2877)
(3,	2669)	(9,	741)*	(20,	222)	(42,	923)	(72,	183)
(4,	30)*	(9,	2045)*	(21,	1581)	(44,	482)*	(72,	1298)*
(4,	42)*	(10,	635)*	(22,	119)	(45,	5453)	(80,	3597)*
(4,	110)*	(11,	3005)*	(22,	123)*	(46,	527)*	(84,	266)
(4,	182)*	(11,	5957)*	(23,	4773)*	(48,	299)	(88,	273)
(5,	645)*	(12,	34)*	(24,	55)	(48,	3605)	(88,	755)
(5,	4277)*	(12,	78)	(24,	146)*	(48,	7973)	(95,	1749)
(5,	7157)*	(12,	230)*	(24,	327)*	(50,	623)*	(96,	710)
(87)*	(12,	318)*	(24,	377)	(51,	805)	(96,	14405)*
(6,	215)*	(13,	1533)*	(24,	2765)	(52,	$678) *$	(99,	1837)

by Lemma 1 . If $q^{2}=n-1$ or $n-2, D=n^{2}-$ 4 should be divisible by 4 or q^{2} respectively in contradiction to choice of D. Therefore $q^{2} \geq n$.
Q. E. D.

Suppose now $D \in \mathrm{~N}$ is square-free and $N \varepsilon_{D}$ $=1$. Let n, v, w be the numbers given in Lemma 1 and $1 \leq u \leq 100$. From Proposition 1,2 and the genus theory follow the following necessary conditions for $h_{k}=2$:
(i) $0 \leq n<v(u)=3828 / u$,
(ii) $q^{2} \geq n$ for the least odd prime q with $\left(\frac{D}{q}\right)$ $=1$,
(iii) The number of distinct prime factors of d_{k} is 2 or 3 .
3. Main theorem. We have now all necessary tools to get the following

Theorem. There exists exactly 125 real quadratic fields $k=Q(\sqrt{D})$ as given in the Table (with one possible exception) with class number 2 with $1 \leq u \leq 100$, where $(t+u \sqrt{D}) / 2$ is the fundamental unit >1 of k.

Proof. By the help of a computer and using Kida's UBASIC 86, we can list up all D satisfying the above necessary conditions with $h_{k}=$ 2.

Remark. In the Table, those given in [5] are marked with *.

Acknowledgements. The authors would like to thank the referee for suggestions concerning this work.

References

[1] H. Cohn: Advanced Number Theory. Dover, New York (1980).
[2] S.-G. Katayama: On certain real quadratic fields with class number 2. Proc. Japan Acad., 67A, 99-100 (1991).
[3] S.-G. Katayama: On certain real quadratic fields with class number 2. Math. Japonica, 37, no. 6, 1105-1115 (1992).
[4] Y. Kida: UBASIC86. Nihonhyoronsha, Tokyo (1989).
[5] R. A. Mollin and H. C. Williams: On a solution of a class number two problem for a family of real quadratic fields. Computational Number Theory (eds. A. Pethö , M. Pohst, H. Williams, and H. Zimmer). Walter de Gruyter, Berlin, pp. 95-101 (1991).
[6] T. Tatuzawa: On a theorem of Siegel. Japanese J. Math., 21, 163-178 (1951).
[7] H. Taya and N. Terai: Determination of certain real quadratic fields with class number two. Proc. Japan Acad., 67A, 139-144 (1991).
[8] H. Yokoi: On real quadratic fields containing unit with norm -1. Nagoya. Math. J., 33, 139-152 (1968).
[9] H. Yokoi: On the fundamental unit of real quadratic field with norm 1. Journal of Number Theory, 2, 106-115 (1970).
[10] H. Yokoi: Some relations among new invariants of prime number p congruent to $1 \bmod 4$. Adv. Studies in Pure Math., 13, 493-501 (1988).
[11] H. Yokoi: New invariants and class number problem in real quadratic fields. Nagoya Math. J., 132, 175-197 (1993).

