Simplified proof of an order preserving operator inequality

By Takayuki FURUTA

Department of Applied Mathematics, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Communicated by Kiyosi ITÔ, M. J. A., Sept. 14, 1998)

A capital letter means a bounded linear operator on a Hilbert space.

Theorem 1. If $A \ge B \ge 0$ with A > 0, then for $1 \ge q \ge t \ge 0$ and $p \ge q$, (1) $A^{q-t+r} \ge \{A^{r/2}(A^{-t/2}B^{p}A^{-t/2})^{s}A^{r/2}\}^{(q-t+r)/((p-t)s+r)}$ for $s \ge 1$ and $r \ge t$.

We cite the following results to prove a simplified proof of Theorem 1 in [3].

Theorem A [1]. If $A \ge B \ge 0$, then for each $r \ge 0$ (A-1) $(A^{r/2}A^{b}A^{r/2})^{1/q} \ge (A^{r/2}B^{b}A^{r/2})^{1/q}$ holds for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

The domain drawn for p, q and r in Figure is the best possible one [4] for (A-1). Theorem A implies Löwner-Heinz inequality:

(#) $A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\alpha}$ for $\alpha \in [0, 1]$.

Lemma [2]. Let X be a positive invertible and Y be an invertible. For any real number λ ,

$$(YXY^*)^{\lambda} = YX^{1/2}(X^{1/2}Y^*YX^{1/2})^{\lambda-1}X^{1/2}Y^*.$$

Proof of Theorem 1. First of all, we prove

that if $A \ge B \ge 0$ with A > 0, then (*) $A^q \ge \{A^{t/2} (A^{-t/2} B^p A^{-t/2})^s A^{t/2}\}^{q/\lceil (p-t)s+t \rceil}$ for $1 \ge q \ge t \ge 0$, $p \ge q$ and $s \ge 1$.

In case $2 \ge s \ge 1$, as s-1, $q/[(p-t)s+t] \in [0, 1]$ and $A^t \ge B^t$ by (#), we have (2) by Lemma and (#)

(2) $B_1 = \{A^{t/2}(A^{-t/2}B^{p}A^{-t/2})^{s}A^{t/2}\}^{q/[(p-t)s+t]}$ $= \{B^{p/2}(B^{p/2}A^{-t}B^{p/2})^{s-1}B^{p/2}\}^{q/[(p-t)s+t]}$ $\leq \{B^{p/2}(B^{p/2}B^{-t}B^{p/2})^{s-1}B^{p/2}\}^{q/[(p-t)s+t]}$ $= B^{q} \leq A^{q} = A_1 \text{ by } (\#)$

for $1 \geq q \geq t \geq 0$, $p \geq q$ and $2 \geq s \geq 1$. Repeating (2) for $A_1 \geq B_1 \geq 0$, then we have (3) $A_1^{q_1} \geq \{A_1^{t_1/2}(A_1^{-t_1/2}B_1^{p_1}A^{-t_1/2})^{s_1}A_1^{t_1/2}\}^{q_1/[(p_1-t_1)s_1+t_1]}$ for $1 \geq q_1 \geq t_1 \geq 0$, $p_1 \geq q_1$ and $2 \geq s_1 \geq 1$. Put $1 = q_1 \geq t_1 = t/q \geq 0$ and

 $\begin{aligned} p_1 &= [(p-t)s+t]/q \geq q_1 = 1 \text{ in (3). Then} \\ (4) \ A^q &\geq \{A^{t/2}[A^{-t/2}A^{t/2}(A^{-t/2}B^pA^{-t/2})^sA^{t/2}A^{-t/2}]^{s_1}A^{t/2}\}^{q/((p-t)ss_1+t)} \\ &= \{A^{t/2}(A^{-t/2}B^pA^{-t/2})^{ss_1}A^{t/2}\}^{q/((p-t)ss_1+t)} \text{ for } 1 \geq q \geq t \\ &\geq 0, \ p \geq q \text{ and } 4 \geq ss_1 \geq 1. \end{aligned}$

Repeating this process from (2) to (4), we obtain

(*) for $1 \ge q \ge t \ge 0$, $p \ge q$ and $any \ s \ge 1$. Put $A_0 = A^q$ and

 $A_2=A^q$ and $B_2=\{A^{t/2}\,(A^{-t/2}B^pA^{-t/2})^sA^{t/2}\}^{q/[(p-t)s+t]}$ in (*). Then $A_2\geq B_2\geq 0$ by (*), so by Theorem A we have

(5) $A_2^{1+r_2} \geq (A_2^{r_2/2}B_2^{p_2}A_2^{r_2/2})^{(1+r_2)/(p_2+r_2)}$ for $p_2 \geq 1$ and $r_2 \geq 0$.

We have only to put $r_2 = (r - t)/q \ge 0$ and $p_2 = [(p - t)s + t]/q \ge 1$ in (5) to obtain (1).

References

- [1] T. Furuta: $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with (1+2r)q $\ge p+2r$. Proc. Amer. Math. Soc., 101, 85-88 (1987).
- [2] T. Furuta: Extension of the Furuta inequality and Ando-Hiai log majorization. Linear Alg and Its Appl., **219**, 139-155 (1995).
- [3] T. Furuta, T. Yamazaki, and M. Yanagida: Order preserving operator inequalities via Furuta inequality (preprint).
- [4] K. Tanahashi: Best possibility of the Furuta inequality. Proc. Amer. Math. Soc., 124, 141-146 (1996).